References of "Ducrot, Elsa"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe 0.8-4.5$\mu$m broadband transmission spectra of TRAPPIST-1 planets
Ducrot, Elsa ULiege; Sestovic, M.; Morris, B. M. et al

in Astronomical Journal (2018), 156

The TRAPPIST-1 planetary system represents an exceptional opportunity for the atmospheric characterization of temperate terrestrial exoplanets with the upcoming James Webb Space Telescope (JWST ... [more ▼]

The TRAPPIST-1 planetary system represents an exceptional opportunity for the atmospheric characterization of temperate terrestrial exoplanets with the upcoming James Webb Space Telescope (JWST). Assessing the potential impact of stellar contamination on the planets' transit transmission spectra is an essential precursor step to this characterization. Planetary transits themselves can be used to scan the stellar photosphere and to constrain its heterogeneity through transit depth variations in time and wavelength. In this context, we present our analysis of 169 transits observed in the optical from space with K2 and from the ground with the SPECULOOS and Liverpool telescopes. Combining our measured transit depths with literature results gathered in the mid/near-IR with Spitzer/IRAC and HST/WFC3, we construct the broadband transmission spectra of the TRAPPIST-1 planets over the 0.8-4.5 $\mu$m spectral range. While planets b, d, and f spectra show some structures at the 200-300ppm level, the four others are globally flat. Even if we cannot discard their instrumental origins, two scenarios seem to be favored by the data: a stellar photosphere dominated by a few high-latitude giant (cold) spots, or, alternatively, by a few small and hot (3500-4000K) faculae. In both cases, the stellar contamination of the transit transmission spectra is expected to be less dramatic than predicted in recent papers. Nevertheless, based on our results, stellar contamination can still be of comparable or greater order than planetary atmospheric signals at certain wavelengths. Understanding and correcting the effects of stellar heterogeneity therefore appears essential to prepare the exploration of TRAPPIST-1's with JWST. [less ▲]

Detailed reference viewed: 27 (3 ULiège)
Full Text
Peer Reviewed
See detailNon-detection of Contamination by Stellar Activity in the Spitzer Transit Light Curves of TRAPPIST-1
Morris, Brett M.; Agol, Eric; Hebb, Leslie et al

in Astrophysical Journal. Letters (2018), 863

We apply the transit light curve self-contamination technique of Morris et al. to search for the effect of stellar activity on the transits of the ultracool dwarf TRAPPIST-1 with 2018 Spitzer photometry ... [more ▼]

We apply the transit light curve self-contamination technique of Morris et al. to search for the effect of stellar activity on the transits of the ultracool dwarf TRAPPIST-1 with 2018 Spitzer photometry. The self-contamination method fits the transit light curves of planets orbiting spotted stars, allowing the host star to be a source of contaminating positive or negative flux that influences the transit depths but not the ingress/egress durations. We find that none of the planets show statistically significant evidence for self-contamination by bright or dark regions of the stellar photosphere. However, we show that small-scale magnetic activity, analogous in size to the smallest sunspots, could still be lurking undetected in the transit photometry. [less ▲]

Detailed reference viewed: 14 (0 ULiège)
Full Text
Peer Reviewed
See detailUnmasking the hidden NGTS-3Ab: A hot Jupiter in an unresolved binary system
Günther, M. N.; Queloz, D.; Gillen, E. et al

in Monthly Notices of the Royal Astronomical Society (2018), 478(4), 4720-4737

We present the discovery of NGTS-3Ab, a hot Jupiter found transiting the primary star of an unresolved binary system. We develop a joint analysis of multicolour photometry, centroids, radial velocity (RV ... [more ▼]

We present the discovery of NGTS-3Ab, a hot Jupiter found transiting the primary star of an unresolved binary system. We develop a joint analysis of multicolour photometry, centroids, radial velocity (RV) cross-correlation function (CCF) profiles, and their bisector inverse slopes (BIS) to disentangle this three-body system. Data from the Next Generation Transit Survey (NGTS), SPECULOOS and HARPS are analysed and modelled with our new BLENDFITTER software. We find that the binary consists of NGTS-3A (G6V-dwarf) and NGTS-3B (K1Vdwarf) at < 1 arcsec separation. NGTS-3Ab orbits every 1.675 d. The planet radius and mass are Rplanet = 1.48 ± 0.37 RJ and Mplanet = 2.38 ± 0.26MJ, suggesting it is potentially inflated. We emphasize that only combining all the information frommulticolour photometry, centroids and RV CCF profiles can resolve systems like NGTS-3. Such systems cannot be disentangled from single-colour photometry and RV measurements alone. Importantly, the presence of a BIS correlation indicates a blend scenario, but is not sufficient to determine which star is orbited by the third body. Moreover, even if no BIS correlation is detected, a blend scenario cannot be ruled out without further information. The choice of methodology for calculating the BIS can influence the measured significance of its correlation. The presented findings are crucial to consider for wide-field transit surveys, which require wide CCD pixels (> 5 arcsec) and are prone to contamination by blended objects. With TESS on the horizon, it is pivotal for the candidate vetting to incorporate all available follow-up information from multicolour photometry and RV CCF profiles. © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. [less ▲]

Detailed reference viewed: 22 (2 ULiège)
Full Text
Peer Reviewed
See detailSPECULOOS: A network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs
Delrez, L.; Gillon, Michaël ULiege; Queloz, D. et al

in Proceedings of SPIE : The International Society for Optical Engineering (2018), 10700

We present here SPECULOOS, a new exoplanet transit search based on a network of 1m-class robotic telescopes targeting the ∼1200 ultracool (spectral type M7 and later) dwarfs bright enough in the infrared ... [more ▼]

We present here SPECULOOS, a new exoplanet transit search based on a network of 1m-class robotic telescopes targeting the ∼1200 ultracool (spectral type M7 and later) dwarfs bright enough in the infrared (K-mag ≤ 12.5) to possibly enable the atmospheric characterization of temperate terrestrial planets with next-generation facilities like the James Webb Space Telescope. The ultimate goals of the project are to reveal the frequency of temperate terrestrial planets around the lowest-mass stars and brown dwarfs, to probe the diversity of their bulk compositions, atmospheres and surface conditions, and to assess their potential habitability. © 2018 SPIE. [less ▲]

Detailed reference viewed: 24 (0 ULiège)