References of "Deboever, Estelle"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailLinoleic and linolenic acid hydroperoxides interact differentially with biomimetic plant membranes in a lipid specific manner
Deleu, Magali ULiege; Deboever, Estelle ULiege; Nasir, Mehmet Nail et al

in Colloids and Surfaces B: Biointerfaces (2019), 175

Linoleic and linolenic acid hydroperoxides (HPOs) constitute key intermediate oxylipins playing an important role as signaling molecules during plant defense processes in response to biotic or abiotic ... [more ▼]

Linoleic and linolenic acid hydroperoxides (HPOs) constitute key intermediate oxylipins playing an important role as signaling molecules during plant defense processes in response to biotic or abiotic stress. They have also been demonstrated in vitro as antimicrobial agents against plant fungi and bacteria. To reach the phytopathogens in vivo, the HPOs biosynthesized in the plant cells must cross the plant plasma membrane (PPM) where they can also interact with plasma membrane lipids and have an effect on their organization.In the present study, we have investigated the interaction properties of HPOs with PPM at a molecular level using biophysical tools combining in vitro and in silico approaches and using plant biomimetic lipid systems. Our results have shown that HPOs are able to interact with PPM lipids and perturb their lateral organization. Glucosylceramide (GluCer) is a privileged partner, sitosterol lessens their binding and the presence of both GluCer and sitosterol further reduces their interaction. Hydrophobic effect and polar interactions are involved in the binding. The chemical structure of HPOs influences their affinity for PPM lipids. The presence of three double bonds in the HPO molecule gives rise to a higher affinity comparatively to two double bonds, which can be explained by their differential interaction with the lipid polar headgroups. [less ▲]

Detailed reference viewed: 97 (31 ULiège)
Full Text
See detailOxylipins are involved in plant protections processes and are potential biocontrol agents
Deboever, Estelle ULiege; Genva, Manon ULiege; Deleu, Magali ULiege et al

Conference (2018, September 27)

Nowadays, biopesticides have emerged as a main alternative to conventional agriculture. In this context, plant oxylipins, a vast and diverse family of secondary metabolites originated from polyunsaturated ... [more ▼]

Nowadays, biopesticides have emerged as a main alternative to conventional agriculture. In this context, plant oxylipins, a vast and diverse family of secondary metabolites originated from polyunsaturated fatty acids (PUFAs), appear to be crucial agents in plant defence mechanisms. Among plant oxylipins, the 13-hydroperoxy oxylipins (13-HPO) constitute key intermediate oxylipins (KIOs) as they can be converted into jasmonic acid, OPDA, dn-OPDA or traumatic acid, well-characterized components involved in plant resistance mechanisms [1][2]. Their presumed functions include direct antimicrobial effect, stimulation of plant defence gene expression, and/or regulation of plant cell death [3]. Otherwise, OPDA and dn-OPDA were also found esterified in more complex structures such as galactolipids. Those compounds are called arabidopsides. However, the precise contribution of each of those molecules in plant defence remains unknown. The first part of this study aims to understand the oxylipins action mechanisms and especially their membrane activities. As arabidopsides are produced under stress and localized at the chloroplast membranes, their interactions with those were studied using biomimetic membranes via a complementary in silico informatics and in vitro biophysical approaches. On the other hand, as KIOs are found in the literature to be potential biocontrol agents, there effect on different pathogens of agronomic interest were studied in vitro, by the same approach. As far as arabidopsides are concerned, results show that they possess different interfacial properties compared to major chloroplast lipids, which they are produced from. Arabidopsides modify the fluidity and permeabilize chloroplast membranes. As chloroplast membrane lipid composition is essential to its photosynthetic ability, such changes in its composition under stress will affect its function. Concerning KIOs, they seem to interact with pathogens plasma membranes. Indeed, in vitro assays show that KIOs can hinder growth of some plant microbial pathogens, with differences between strains and KIOs forms. [less ▲]

Detailed reference viewed: 52 (17 ULiège)
Full Text
See detailAntimicrobial activities of key intermediate plant oxylipins
Deboever, Estelle ULiege

Conference (2017, June 28)

Nowadays, biopesticides have emerged as a main alternative to conventional agriculture. In this context, plant oxylipins, a vast and diverse family of secondary metabolites originated from polyunsaturated ... [more ▼]

Nowadays, biopesticides have emerged as a main alternative to conventional agriculture. In this context, plant oxylipins, a vast and diverse family of secondary metabolites originated from polyunsaturated fatty acids (PUFAs), appear to be crucial agents in plant defense mechanisms. Among plant oxylipins, the 13-hydroperoxy oxylipins (13-HPO) constitute key intermediate oxylipins (KIOs) as they can be converted into jasmonic acid, OPDA, dn-OPDA or traumatic acid, well-characterized components involved in plant resistance mechanisms. Their presumed functions include direct antimicrobial effect, stimulation of plant defense gene expression, and/or regulation of plant cell death. However, the precise contribution of each KIOs to plant defense remains essentially unknown. In this work, we focus on two h13-HPO, the 13(S)-hydroperoxy-octadecadienoic acid (13-HPOD) and the 13(S)-hydroperoxy-octadecatrienoic acid (13-HPOT). In vitro growth inhibition assays were performed to investigate the direct antimicrobial activities against 7 pathogens of agronomic interest including bacteria, oomycetes and fungi. This study showed unambiguously that 13-HPO are able to hinder growth of some plant microbial pathogens, generally with a higher efficacity for 13-HPOT. In order to get a better insight into their mechanism of action, a complementary in silico and experimental biophysical approach was applied. Biomimetic pathogen plasma membranes are used to study the mechanism at the molecular level. Slight conformational differences may have significant impacts on their ability to interact with pathogens lipids and plasma membranes. [less ▲]

Detailed reference viewed: 36 (3 ULiège)
Full Text
See detailUse of complementary biophysical approaches to study the interactions of fatty acid hydroperoxides with biomimetic plant plasma membranes
Deboever, Estelle ULiege; Nasir, Mehmet Nail ULiege; Deleu, Magali ULiege et al

Poster (2017, January 20)

In the actual context, biopesticides have emerged as a main alternative to conventional agriculture1. Hence, elicitors are metabolites naturally produced by microorganisms, pathogenic or not, and plants ... [more ▼]

In the actual context, biopesticides have emerged as a main alternative to conventional agriculture1. Hence, elicitors are metabolites naturally produced by microorganisms, pathogenic or not, and plants which are able to induce the natural resistance of plants. Also, they have proved to be excellent candidates for biological control. In this context, the lipoxygenase pathway leads to the formation of fatty acid degradation products, called oxylipins, which appear to be crucial agents in plant defence mechanisms2,3. Moreover, with their broad spectrum of action and their possible inducibility, oxylipins appear to be promising candidates for their use as elicitors4. This work focuses on two hydroperoxy-derived oxylipins, the 13(S)-hydroperoxy-octadecadienoic acid (13-HPOD) and the 13(S)-hydroperoxy-octadecatrienoic acid (13-HPOT). The study of the interaction of such compounds with representative plant plasma membrane lipids is essential to understand plant resistance mechanisms. Several in silico and experimental techniques of biophysics showed that acyl-hydroperoxides have significant adsorption capacity and a strong affinity for model membranes. They may also penetrate biological membrane but no permeabilisation effect was observed in this work. Slight conformational differences seem to have a significant impact on their ability to interact with plant plasma membranes. Based on these results, further investigation of the interactions of fatty acids hydroperoxides, even more on the 9-forms, with plant plasma membranes and eventually in the presence of phytopathogenic species, would allow a better understanding of the innate immunity and, on the longer term, could lead to the development of new elicitors with biological mechanisms potentially independent of membrane protein receptors. [less ▲]

Detailed reference viewed: 66 (19 ULiège)
Full Text
See detailAnalysis of the interactions of fatty acyds hydroperoxides with biomimetic membranes by complementary biophysical approaches
Deboever, Estelle ULiege; Nasir, Mehmet Nail ULiege; Deleu, Magali ULiege et al

Poster (2016, November 16)

In the actual context, biopesticides have emerged as a main alternative to conventional agriculture1. Hence, elicitors are metabolites naturally produced by microorganisms, pathogenic or not, and plants ... [more ▼]

In the actual context, biopesticides have emerged as a main alternative to conventional agriculture1. Hence, elicitors are metabolites naturally produced by microorganisms, pathogenic or not, and plants which are able to induce the natural resistance of plants. Also, they have proved to be excellent candidates for biological control. In this context, the lipoxygenase pathway leads to the formation of fatty acid degradation products, called oxylipins, which appear to be crucial agents in plant defence mechanisms2,3. Moreover, with their broad spectrum of action and their possible inducibility, oxylipins appear to be promising candidates for their use as elicitors4. This work focuses on two hydroperoxy-derived oxylipins, the 13(S)-hydroperoxy-octadecadienoic acid (13-HPOD) and the 13(S)-hydroperoxy-octadecatrienoic acid (13-HPOT). The study of the interaction of such compounds with representative plant plasma membrane lipids is essential to understand plant resistance mechanisms. Several in silico and experimental techniques of biophysics showed that acyl-hydroperoxides have significant adsorption capacity and a strong affinity for model membranes. They may also penetrate biological membrane but no permeabilisation effect was observed in this work. Slight conformational differences seem to have a significant impact on their ability to interact with plant plasma membranes. Based on these results, further investigation of the interactions of fatty acids hydroperoxides, even more on the 9-forms, with plant plasma membranes and eventually in the presence of phytopathogenic species, would allow a better understanding of the innate immunity and, on the longer term, could lead to the development of new elicitors with biological mechanisms potentially independent of membrane protein receptors. [less ▲]

Detailed reference viewed: 45 (12 ULiège)