References of "De Paepe, Michel"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCarnot battery technology: a state-of-the-art review
Dumont, Olivier ULiege; Frate, Guido Francesco; Pillai, Aditya et al

in Journal of Energy Storage (2020), 32(101756),

The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. The Carnot battery buffers electrical energy by ... [more ▼]

The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. The Carnot battery buffers electrical energy by storing thermal energy (charging cycle mode) from a resistive heater or a heat pump system when the electricity production is higher than the demand. When electricity demand is higher than the production, the Carnot battery generates power from the stored thermal energy (power cycle mode). This paper is a review of this emerging and innovative technology, including a market analysis. First, the different possible technologies and configurations of Carnot batteries are described. This includes charging cycles, power cycles and thermal energy storage systems. Furthermore, a state-of-the-art of the existing prototypes in the world is given. The performance indicators for this technology are unclear, and this paper tries to define objective performance indicators. Finally, all the described technologies are compared, and conclusions are drawn to help engineers select the optimal technology for a given case. [less ▲]

Detailed reference viewed: 27 (2 ULiège)
Full Text
Peer Reviewed
See detailPDSim: Demonstrating the capabilities of an open-source simulation framework for positive displacement compressors and expanders
Ziviani, Davide; Bell, Ian; Zhang, Xinye et al

in International Journal of Refrigeration (2020), 110

Detailed reference viewed: 58 (3 ULiège)
Full Text
Peer Reviewed
See detailDYNAMIC MODELING OF WASTE HEAT RECOVERY ORGANIC RANKINE CYCLE SYSTEMS IN THE AMESIM PLATFORM
Guillaume, Ludovic ULiege; Ameel, Bernd; Criens, Chris et al

Conference (2016, September 14)

ORC waste heat recovery is a very promising technology for reducing fuel consumption and consequently the CO2 emissions of future heavy-duty trucks. Because of the transient nature of the heat sources ... [more ▼]

ORC waste heat recovery is a very promising technology for reducing fuel consumption and consequently the CO2 emissions of future heavy-duty trucks. Because of the transient nature of the heat sources encountered on a truck, dynamic simulations are an essential part of the design process of ORC systems for truck applications. Dynamic models are useful for component design, control design and transient evaluation of ORC systems. To ease the burden of building numerous dynamic models of different candidate ORCs while the design process is ongoing, a library of generic dynamic models of ORCs is built in this work. These models work in synergy with a steady-state ORC design tool in which is added a function to automatically populate the parameters of the dynamic models. In this work, the dynamic model library and their parameterization process in LMS AMESim are described. The platform is largely used in automotive industry and offers a variety of libraries: Engine, Control, Two-Phase Flow, etc. Finally, the dynamic models are compared against the steady-state models and experimental data. [less ▲]

Detailed reference viewed: 241 (7 ULiège)
Full Text
Peer Reviewed
See detailORCmKit: an open-source library for organic Rankine cycle modelling and analysis
Dickes, Rémi ULiege; Ziviani, Davide; van den Broek, Martjin et al

in Proceedings of ECOS 2016 (2016, June 20)

As for many other technologies, modelling and simulation of organic Rankine cycles (ORCs) are crucial for design, optimization and control purposes. However, model development is often time consuming and ... [more ▼]

As for many other technologies, modelling and simulation of organic Rankine cycles (ORCs) are crucial for design, optimization and control purposes. However, model development is often time consuming and the scientific community lacks of open-access tools to study ORC systems. For these reasons, researchers from the universities of Liège and Ghent in Belgium gathered their knowledge and created “ORC modelling Kit” (ORCmKit), an open-source library dedicated to the steady-state simulation and analysis of organic Rankine cycles. Both component-level and cycle-level models are provided and different ORC architectures can be simulated. For each of the main component of ORC systems, different models are available with increasing complexity which allows a wide range of modelling possibilities. In order to remain general and accessible to as many people as possible, three widely used programming languages are covered within ORCmKit, i.e. Matlab, Python and EES (Engineering Equation Solver). Besides source codes, ORCmKit also includes calibration tools for empirical and semi-empirical models as well as a complete documentation for ease of use. [less ▲]

Detailed reference viewed: 567 (20 ULiège)
Full Text
Peer Reviewed
See detailOrganic Rankine cycle modelling and the ORCmKit library: analysis of R1234ze(Z) as drop-in replacement of R245fa for low-grade waste heat recovery
Ziviani, Davide; Dickes, Rémi ULiege; Quoilin, Sylvain ULiege et al

in Proceedings of ECOS 2016 (2016, June 20)

Due to the wide interest in organic Rankine cycles (ORCs) as a sustainable technology and the importance of numerical analyses and optimization procedures while considering such systems, we created a ... [more ▼]

Due to the wide interest in organic Rankine cycles (ORCs) as a sustainable technology and the importance of numerical analyses and optimization procedures while considering such systems, we created a dedicated open-source library named “ORC modelling Kit” (ORCmKit). The comprehensive library includes single com-ponents and overall models for subcritical, transcritical and supercritical ORCs. Three main programming environments are currently supported: Matlab, Python and EES (Engineering Equation Solver). A detailed steady-state cycle model of a small-scale regenerative ORC with a single-screw expander is used to evalu-ate the performance influence of R1234ze(Z) as a drop-in replacement of R245fa currently used in the instal-lation. The ORC system is used to recover low-grade waste heat with a temperature range between 90°C and 120°C. A thermal oil heater is used to simulate the heat source. A parametric study is carried out to in-vestigate the performance of the system throughout the range of interest in order to optimize the ORC with R1234ze(Z). [less ▲]

Detailed reference viewed: 180 (12 ULiège)
Full Text
See detailLow-order models of a single-screw expander for organic Rankine cycle applications
Ziviani, Davide; Desideri, Adriano ULiege; Lemort, Vincent ULiege et al

in Low-order models of a single-screw expander for organic Rankine cycle applications D. (2015, September 10)

Screw-type volumetric expanders have been demonstrated to be a suitable technology for organic Rankine cycle (ORC) systems because of higher overall effectiveness and good part-load behaviour over other ... [more ▼]

Screw-type volumetric expanders have been demonstrated to be a suitable technology for organic Rankine cycle (ORC) systems because of higher overall effectiveness and good part-load behaviour over other positive displacement machines. An 11 kWe single-screw expander (SSE) adapted from an air compressor has been tested in an ORC test-rig operating with R245fa as working fluid. A total of 60 steady-steady points have been obtained at four different rotational speeds of the expander in the range between 2000 rpm and 3300 rpm. The maximum electrical power output and overall isentropic effectiveness measured were 7.3 kW and 51.9%, respectively. In this paper, a comparison between two low-order models is proposed in terms of accuracy of the predictions, the robustness of the model and the computational time. The first model is the Pacejka equation-based model and the second is a semi-empirical model derived from a well-known scroll expander model and modified to include the geometric aspects of a single screw expander. The models have been calibrated with the available steady-state measurement points by identifying the proper parameters. 1. [less ▲]

Detailed reference viewed: 32 (2 ULiège)