References of "Daem, Nathan"
     in
Bookmark and Share    
Full Text
See detailLead-free double perovskite materials for photovoltaic application
Daem, Nathan ULiege; Dewalque, Jennifer ULiege; Spronck, Gilles ULiege et al

Poster (2019, May 13)

This work consists in studying the implementation of double perovskite materials in the form of thin film and showing the effect of the deposition conditions on the structural properties (uniformity ... [more ▼]

This work consists in studying the implementation of double perovskite materials in the form of thin film and showing the effect of the deposition conditions on the structural properties (uniformity, coverage rate, roughness, thickness, crystallinity, crystallite size) and on the optoelectronic properties (light absorption, electron-hole pair generation efficiency, charge diffusion length, recombination...). Before considering ultrasonic spray pyrolysis deposition, preliminary spin-coating tests are ongoing in order to verify the formation of Cs2AgBiBr6 phase according to the protocol reported by Greul et al. (J. Mater Chem A (2017), 19972-19981). The effect of precursors concentration, thermal post-treatment (hot plate/oven, temperature/duration), antisolvent dripping, relative humidity - which are reported as critical parameters for the preparation of high efficiency lead halides perovskite solar cells - on the layer morphology have been studied. The (micro)structural properties of the layers (uniformity, coverage rate, crystallite size, crystalline phase) have been characterized by scanning electron microscopy and X-ray diffraction. To improve charge collection within the lead-free double perovskite photoactive material, we have also investigated a mesoporous TiO2 network as an electron collecting material filled by Cs2AgBiBr6. Efficiencies of 1.7 % have been reached for our best PV cells which are very promising results. [less ▲]

Detailed reference viewed: 98 (10 ULiège)
Full Text
See detailOpal-like CH3NH3PbI3 perovskite solar cells : effect of the 3D structuration on the conversion efficiency
Dewalque, Jennifer ULiege; Daem, Nathan ULiege; Spronck, Gilles ULiege et al

Poster (2019, May 13)

In this work, the 3D structuration of perovskite films is studied in order to highlight the effect of a periodic porous structure on the optical properties of the films (light harvesting, optical ... [more ▼]

In this work, the 3D structuration of perovskite films is studied in order to highlight the effect of a periodic porous structure on the optical properties of the films (light harvesting, optical coloration, semi-transparency…) and on the PV efficiency, in comparison with dense perovskite films usually used in planar solar cells configuration. The opal-like perovskite scaffold is obtained from templating fabrication method, with polystyrene beads as structuring agent. Five PS bead diameters are studied: 300 nm, 540 nm, 810 nm, 1.0 µm and 2.1 µm, to highlight the effect of the PS bead diameter on the optical properties of the films and on the PV efficiency. PbI2/CH3NH3I 0.7M in DMSO leads to the most covering, homogeneous and overlayer-free porous films. The PV efficiency of the corresponding cells increases with the bead diameter. A significant improvement in the PV conversion efficiency is observed thanks to the 3D structuration compared to a dense reference, due to the improvement of charge separation at the Spiro-OMeTAD/perovskite interface and thus to the reduction of charge recombination. In addition, CH3NH3PbI3 porous films prepared with 810 nm, 1000 nm and 2100 nm PS bead diameter respectively, are coloured, which is very interesting for building-integrated applications (BIPV). [less ▲]

Detailed reference viewed: 50 (7 ULiège)