References of "Brown, Tom Jr"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailStructural basis for the interaction of lactivicins with serine beta-lactamases.
Brown, Tom Jr; Charlier, Paulette ULiege; Herman, Raphaël ULiege et al

in Journal of Medicinal Chemistry (2010), 53(15), 5890-4

Lactivicin (LTV) is a natural non-beta-lactam antibiotic that inhibits penicillin-binding proteins and serine beta-lactamases. A crystal structure of a BS3-LTV complex reveals that, as for its reaction ... [more ▼]

Lactivicin (LTV) is a natural non-beta-lactam antibiotic that inhibits penicillin-binding proteins and serine beta-lactamases. A crystal structure of a BS3-LTV complex reveals that, as for its reaction with PBPs, LTV reacts with the nucleophilic serine and that cycloserine and lactone rings of LTV are opened. This structure, together with reported structures of PBP1b with lactivicins, provides a basis for developing improved lactivicin-based gamma-lactam antibiotics. [less ▲]

Detailed reference viewed: 53 (3 ULiège)
Full Text
Peer Reviewed
See detailStructural and mechanistic basis of penicillin-binding protein inhibition by lactivicins
Macheboeuf, Pauline; Fischer, Delphine S; Brown, Tom Jr et al

in Nature Chemical Biology (2007), 3(9), 565-569

beta-lactam antibiotics, including penicillins and cephalosporins, inhibit penicillin-binding proteins (PBPs), which are essential for bacterial cell wall biogenesis. Pathogenic bacteria have evolved ... [more ▼]

beta-lactam antibiotics, including penicillins and cephalosporins, inhibit penicillin-binding proteins (PBPs), which are essential for bacterial cell wall biogenesis. Pathogenic bacteria have evolved efficient antibiotic resistance mechanisms that, in Gram-positive bacteria, include mutations to PBPs that enable them to avoid beta-lactam inhibition(1). Lactivicin (LTV; 1) contains separate cycloserine and c-lactone rings and is the only known natural PBP inhibitor that does not contain a beta-lactam(2-4). Here we show that LTV and a more potent analog, phenoxyacetyl-LTV (PLTV; 2), are active against clinically isolated, penicillin-resistant Streptococcus pneumoniae strains. Crystallographic analyses of S. pneumoniae PBP1b reveal that LTV and PLTV inhibition involves opening of both monocyclic cycloserine and gamma-lactone rings. In PBP1b complexes, the ring-derived atoms from LTV and PLTV show a notable structural convergence with those derived from a complexed cephalosporin (cefotaxime; 3). The structures imply that derivatives of LTV will be useful in the search for new antibiotics with activity against beta-lactam-resistant bacteria. [less ▲]

Detailed reference viewed: 62 (8 ULiège)