References of "Branduardi-Raymont, Graziella"
     in
Bookmark and Share    
Full Text
See detailATHENA X-IFU thermal filters development status toward the end of the instrument phase-A
Barbera, Marco; Lo Cicero, Ugo; Sciortino, Luisa et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018, July 01)

The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large ... [more ▼]

The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large array of transition edge sensor micro-calorimeters that will operate at 100 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the opening windows of the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate radio frequency electromagnetic interferences, and to protect the detector from contamination. Thermal filters are critical items in the proper operation of the X-IFU detector in space. They need to be strong enough to survive the launch stresses but very thin to be highly transparent to X-rays. They essentially define the detector quantum efficiency at low energies and are fundamental to make the photon shot noise a negligible contribution to the energy resolution budget. In this paper, we review the main results of modeling and characterization tests of the thermal filters performed during the phase A study to identify the suitable materials, optimize the design, and demonstrate that the chosen technology can reach the proper readiness before mission adoption. [less ▲]

Detailed reference viewed: 34 (4 ULiège)
Full Text
See detailThe ATHENA X-ray Integral Field Unit (X-IFU)
Barret, Didier; Lam Trong, Thien; den Herder, Jan-Willem et al

in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2018, July 01)

The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray spectrometer of the ESA Athena X-ray observatory. Over a field of view of 5' equivalent diameter, it will deliver X-ray spectra from 0.2 ... [more ▼]

The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray spectrometer of the ESA Athena X-ray observatory. Over a field of view of 5' equivalent diameter, it will deliver X-ray spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV up to 7 keV on ˜ 5" pixels. The X-IFU is based on a large format array of super-conducting molybdenum-gold Transition Edge Sensors cooled at ˜ 90 mK, each coupled with an absorber made of gold and bismuth with a pitch of 249 μm. A cryogenic anti-coincidence detector located underneath the prime TES array enables the non X-ray background to be reduced. A bath temperature of ˜ 50 mK is obtained by a series of mechanical coolers combining 15K Pulse Tubes, 4K and 2K Joule-Thomson coolers which pre-cool a sub Kelvin cooler made of a 3He sorption cooler coupled with an Adiabatic Demagnetization Refrigerator. Frequency domain multiplexing enables to read out 40 pixels in one single channel. A photon interacting with an absorber leads to a current pulse, amplified by the readout electronics and whose shape is reconstructed on board to recover its energy with high accuracy. The defocusing capability offered by the Athena movable mirror assembly enables the X-IFU to observe the brightest X-ray sources of the sky (up to Crab-like intensities) by spreading the telescope point spread function over hundreds of pixels. Thus the X-IFU delivers low pile-up, high throughput (< 50%), and typically 10 eV spectral resolution at 1 Crab intensities, i.e. a factor of 10 or more better than Silicon based X-ray detectors. In this paper, the current X-IFU baseline is presented, together with an assessment of its anticipated performance in terms of spectral resolution, background, and count rate capability. The X-IFU baseline configuration will be subject to a preliminary requirement review that is scheduled at the end of 2018. [less ▲]

Detailed reference viewed: 35 (7 ULiège)
See detailAn overview of the first year of observations of Jupiter’s auroras by Juno-UVS with multi-wavelength comparisons
Gladstone, Randy; Greathouse, Thomas K; Versteeg, Maarten H et al

Conference (2017, December 12)

Juno’s Ultraviolet Spectrograph (Juno-UVS) has observed the Jovian aurora during eight perijove passes. UVS typically observes Jupiter for 10 hours centered on closest approach in a series of swaths, with ... [more ▼]

Juno’s Ultraviolet Spectrograph (Juno-UVS) has observed the Jovian aurora during eight perijove passes. UVS typically observes Jupiter for 10 hours centered on closest approach in a series of swaths, with one swath per Juno spin (~30s). During this period the spacecraft range to Jupiter’s aurora decreases from ~6 RJ to ~0.3 RJ (or less) in the north, and then reverses this in the south, so that spatial resolution changes dramatically. A scan mirror is used to target different features or raster across the entire auroral region. Juno-UVS observes a particular location for roughly 17 ms/swath, so the series of swaths provide snapshots of ultraviolet auroral brightness and color. A variety of forms and activity levels are represented in the Juno-UVS data–some have been described before with HST observations, but others are new. One interesting result is that the color ratio, often used as a proxy for energetic particle precipitation, may instead (in certain regions) indicate excitation of H2 by low-energy ionospheric electrons. Additional results from comparisons with simultaneous observations at x-ray, visible, and near-IR wavelengths will also be presented. [less ▲]

Detailed reference viewed: 21 (4 ULiège)
See detailThe Auroral Dynamic Duo - Jupiter's Independent Pulsating X-ray Hot Spots
Dunn, William; Branduardi-Raymont, Graziella; Ray, Licia et al

Conference (2017, June 15)

Detailed reference viewed: 17 (1 ULiège)
Full Text
See detailThe Athena X-ray Integral Field Unit (X-IFU)
Barret, Didier; Trong, Thien Lam; den Herder, Jan-Willem et al

in Proc. SPIE. 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 99052F. (August 17, 2016) (2016, August 01)

The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5 ... [more ▼]

The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5 arc second pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV up to 7 keV. In this paper, we first review the core scientific objectives of Athena, driving the main performance parameters of the X-IFU, namely the spectral resolution, the field of view, the effective area, the count rate capabilities, the instrumental background. We also illustrate the breakthrough potential of the X-IFU for some observatory science goals. Then we briefly describe the X-IFU design as defined at the time of the mission consolidation review concluded in May 2016, and report on its predicted performance. Finally, we discuss some options to improve the instrument performance while not increasing its complexity and resource demands (e.g. count rate capability, spectral resolution). The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with further ESA member state contributions from Belgium, Finland, Germany, Poland, Spain, Switzerland and two international partners from the United States and Japan. [less ▲]

Detailed reference viewed: 45 (8 ULiège)
Full Text
Peer Reviewed
See detailThe EChO science case
Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul et al

in Experimental Astronomy (2015), 1502

The discovery of almost 2000 exoplanets has revealed an unexpectedly diverse planet population. Observations to date have shown that our Solar System is certainly not representative of the general ... [more ▼]

The discovery of almost 2000 exoplanets has revealed an unexpectedly diverse planet population. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? What causes the exceptional diversity observed as compared to the Solar System? EChO (Exoplanet Characterisation Observatory) has been designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large and diverse planet sample within its four-year mission lifetime. EChO can target the atmospheres of super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300K-3000K) of F to M-type host stars. Over the next ten years, several new ground- and space-based transit surveys will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets. Placing the satellite at L2 provides a cold and stable thermal environment, as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. A 1m class telescope is sufficiently large to achieve the necessary spectro-photometric precision. The spectral coverage (0.5-11 micron, goal 16 micron) and SNR to be achieved by EChO, thanks to its high stability and dedicated design, would enable a very accurate measurement of the atmospheric composition and structure of hundreds of exoplanets. [less ▲]

Detailed reference viewed: 84 (48 ULiège)
Full Text
See detailMulti-wavelength observations of Jupiter's aurora coordinated with Hisaki and other space telescopes
Kimura, Tomoki; Badman, Sarah; Tao, Chihiro et al

Conference (2014, December 15)

From January to April 2014, two observing campaigns by multi-wavelength remote sensing from X-ray to radio were performed to uncover energy transport process in Jupiter’s plasma environment using space ... [more ▼]

From January to April 2014, two observing campaigns by multi-wavelength remote sensing from X-ray to radio were performed to uncover energy transport process in Jupiter’s plasma environment using space telescopes and ground-based facilities. These campaigns were triggered by the new Hisaki spacecraft launched in September 2013, which is an extremely ultraviolet (EUV) space telescope of JAXA designed for planetary observations. In the first campaign in January, Hubble Space Telescope (HST) made imaging of far ultraviolet (FUV) aurora with a high special resolution (0.08”) through two weeks while Hisaki continuously monitored aurora and plasma torus emissions in EUV wavelength with a high temporal resolution (1 min<). We discovered new magnetospheric activities from the campaign data: e.g., internally-driven type auroral brightening associated with hot plasma injection, and plasma and electromagnetic filed modulations in the inner magnetosphere externally driven by the solar wind modulation. The second campaign in April was performed by Chandra X-ray Observatory (CXO), XMM newton, and Suzaku satellite simultaneously with Hisaki. Relativistic auroral accelerations in the polar region and hot plasma in the inner magnetosphere were captured by the X-ray space telescopes simultaneously with EUV monitoring of aurora and plasma torus. Auroral intensity in EUV indicated a clear periodicity of 45 minutes whereas the periodicity was not evident in X-ray intensity although previous observations by CXO indicated clear 40-minute periodicity in the polar cap X-ray aurora. In this presentation, we show remarkable scientific results obtained these campaigns. [less ▲]

Detailed reference viewed: 30 (1 ULiège)
See detailThe Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission
Nandra, Kirpal; Barret, Didier; Barcons, Xavier et al

Report (2013)

This White Paper, submitted to the recent ESA call for science themes to define its future large missions, advocates the need for a transformational leap in our understanding of two key questions in ... [more ▼]

This White Paper, submitted to the recent ESA call for science themes to define its future large missions, advocates the need for a transformational leap in our understanding of two key questions in astrophysics: 1) How does ordinary matter assemble into the large scale structures that we see today? 2) How do black holes grow and shape the Universe? Hot gas in clusters, groups and the intergalactic medium dominates the baryonic content of the local Universe. To understand the astrophysical processes responsible for the formation and assembly of these large structures, it is necessary to measure their physical properties and evolution. This requires spatially resolved X-ray spectroscopy with a factor 10 increase in both telescope throughput and spatial resolving power compared to currently planned facilities. Feedback from supermassive black holes is an essential ingredient in this process and in most galaxy evolution models, but it is not well understood. X-ray observations can uniquely reveal the mechanisms launching winds close to black holes and determine the coupling of the energy and matter flows on larger scales. Due to the effects of feedback, a complete understanding of galaxy evolution requires knowledge of the obscured growth of supermassive black holes through cosmic time, out to the redshifts where the first galaxies form. X-ray emission is the most reliable way to reveal accreting black holes, but deep survey speed must improve by a factor ~100 over current facilities to perform a full census into the early Universe. The Advanced Telescope for High Energy Astrophysics (Athena+) mission provides the necessary performance (e.g. angular resolution, spectral resolution, survey grasp) to address these questions and revolutionize our understanding of the Hot and Energetic Universe. These capabilities will also provide a powerful observatory to be used in all areas of astrophysics. [less ▲]

Detailed reference viewed: 30 (2 ULiège)