References of "Bouret, J.-C"
     in
Bookmark and Share    
Full Text
See detailSPHERE+: Imaging young Jupiters down to the snowline
Boccaletti, A.; Chauvin, G.; Mouillet, D. et al

E-print/Working paper (2020)

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating ... [more ▼]

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHERE's scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei. [less ▲]

Detailed reference viewed: 25 (1 ULiège)
Full Text
See detailThe role of Active Galactic Nuclei in galaxy evolution: insights from space ultraviolet spectropolarimetry
Marin, F.; Charlot, S.; Agis-Gonzalez, Beatriz ULiege et al

in arXiv e-prints (2019)

This Astro2020 white paper summarizes the unknowns of active galactic nuclei (AGN) physics that could be unveiled thanks to a new, space-born, ultraviolet spectropolarimeter. The unique capabilities of ... [more ▼]

This Astro2020 white paper summarizes the unknowns of active galactic nuclei (AGN) physics that could be unveiled thanks to a new, space-born, ultraviolet spectropolarimeter. The unique capabilities of high energy polarimetry would help us to understand the precise mechanisms of matter and energy transfer and supermassive black holes growth, together with the impact of AGN feedback on galaxy evolution. [less ▲]

Detailed reference viewed: 29 (3 ULiège)
Full Text
See detailProbing the structure and evolution of active galactic nuclei with the ultraviolet polarimeter POLLUX aboard LUVOIR
Marin, F.; Charlot, S.; Hutsemekers, Damien ULiege et al

in SF2A-2018: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (2018, December 01)

The ultraviolet (UV) polarization spectrum of nearby active galactic nuclei (AGN) is poorly known. The Wisconsin Ultraviolet Photo-Polarimeter Experiment and a handful of instruments on board the Hubble ... [more ▼]

The ultraviolet (UV) polarization spectrum of nearby active galactic nuclei (AGN) is poorly known. The Wisconsin Ultraviolet Photo-Polarimeter Experiment and a handful of instruments on board the Hubble Space Telescope were able to probe the near- and mid-UV polarization of nearby AGN, but the far-UV band (from 1200 Å down to the Lyman limit at 912 Å) remains completely uncharted. In addition, the linewidth resolution of previous observations was at best 1.89 Å. Such a resolution is not sufficient to probe in detail quantum mechanical effects, synchrotron and cyclotron processes, scattering by electrons and dust grains, and dichroic extinction by asymmetric dust grains. Exploring those physical processes would require a new, high-resolution, broadband polarimeter with full ultraviolet-band coverage. In this context, we discuss the AGN science case for POLLUX, a high-resolution UV spectropolarimeter, proposed for the 15-meter primary mirror option of LUVOIR (a multi-wavelength space observatory concept being developed by the Goddard Space Flight Center and proposed for the 2020 Decadal Survey Concept Study). [less ▲]

Detailed reference viewed: 27 (10 ULiège)
Full Text
Peer Reviewed
See detailThe MiMeS survey of magnetism in massive stars: introduction and overview
Wade, G. A.; Neiner, C.; Alecian, E. et al

in Monthly Notices of the Royal Astronomical Society (2016), 456

The MiMeS (Magnetism in Massive Stars) project is a large-scale, high-resolution, sensitive spectropolarimetric investigation of the magnetic properties of O- and early B-type stars. Initiated in 2008 and ... [more ▼]

The MiMeS (Magnetism in Massive Stars) project is a large-scale, high-resolution, sensitive spectropolarimetric investigation of the magnetic properties of O- and early B-type stars. Initiated in 2008 and completed in 2013, the project was supported by three Large Program allocations, as well as various programmes initiated by independent principal investigators, and archival resources. Ultimately, over 4800 circularly polarized spectra of 560 O and B stars were collected with the instruments ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) at the Canada-France-Hawaii Telescope, Narval at the Télescope Bernard Lyot and HARPSpol at the European Southern Observatory La Silla 3.6 m telescope, making MiMeS by far the largest systematic investigation of massive star magnetism ever undertaken. In this paper, the first in a series reporting the general results of the survey, we introduce the scientific motivation and goals, describe the sample of targets, review the instrumentation and observational techniques used, explain the exposure time calculation designed to provide sensitivity to surface dipole fields above approximately 100 G, discuss the polarimetric performance, stability and uncertainty of the instrumentation, and summarize the previous and forthcoming publications. [less ▲]

Detailed reference viewed: 38 (9 ULiège)
Full Text
Peer Reviewed
See detailMassive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars
Chené, A.-N.; Borissova, J.; Bonatto, C. et al

in Astronomy and Astrophysics (2013), 549

Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of ... [more ▼]

Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. <BR /> Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. <BR /> Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHK[SUB]s[/SUB] VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. <BR /> Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 10[SUP]3[/SUP] M[SUB]⊙[/SUB]) clusters. They are highly obscured (A[SUB]V[/SUB] ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M[SUB]⊙[/SUB] for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002). [less ▲]

Detailed reference viewed: 12 (1 ULiège)
Full Text
Peer Reviewed
See detailHST/STIS spectroscopy of the magnetic Of?p star HD 108: the low state at ultraviolet wavelengths
Marcolino, W. L. F.; Bouret, J.-C.; Walborn, N. R. et al

in Monthly Notices of the Royal Astronomical Society (2012), 422

We present the first ultraviolet spectrum of the peculiar, magnetic Of?p star HD 108 obtained in its spectroscopic low state. The new data, obtained with the Space Telescope Imaging Spectrograph (STIS) on ... [more ▼]

We present the first ultraviolet spectrum of the peculiar, magnetic Of?p star HD 108 obtained in its spectroscopic low state. The new data, obtained with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope, reveal significant changes compared to IUE spectra obtained in the high state: N Vλ1240, Si IVλ1400 and C IVλ1550 present weaker P Cygni profiles (less absorption) in the new data, while N IVλ1718 absorption is deeper, without the clear wind signature evident in the high state. Such changes contrast with those found in other magnetic massive stars, where more absorption is observed in the resonance doublets when the sightline is close to the plane of the magnetic equator. The new data show also that the photospheric Fe IV forest, at ˜1600-1700 Å, has strengthened compared to previous observations. The ultraviolet variability is large compared to that found in typical, non-magnetic O stars, but moderate when compared to the high-/low-state changes reported in the optical spectrum of HD 108 over several decades. We use non-local thermodynamic equilibrium (non-LTE) expanding-atmosphere models to analyse the new STIS observations. Overall, the results are in accord with a scenario in which the optical variability is mainly produced by magnetically constrained gas, close to the photosphere. The relatively modest changes found in the main ultraviolet wind lines suggest that the stellar wind is not substantially variable on a global scale. Nonetheless, multidimensional radiative-transfer models may be needed to understand some of the phenomena observed. [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailFirst HARPSpol discoveries of magnetic fields in massive stars
Alecian, E.; Kochukhov, O.; Neiner, C. et al

in Astronomy and Astrophysics (2011), 536

In the framework of the Magnetism in Massive Stars (MiMeS) project, a HARPSpol Large Program at the 3.6m-ESO telescope has recently started to collect high-resolution spectropolarimetric data of a large ... [more ▼]

In the framework of the Magnetism in Massive Stars (MiMeS) project, a HARPSpol Large Program at the 3.6m-ESO telescope has recently started to collect high-resolution spectropolarimetric data of a large number of Southern massive OB stars in the field of the Galaxy and in many young clusters and associations. We report on the first discoveries of magnetic fields in two massive stars with HARPSpol - HD 130807 and HD 122451, and confirm the presence of a magnetic field at the surface of HD 105382 that was previously observed with a low spectral resolution device. The longitudinal magnetic field measurements strongly vary for HD 130807 from ~-100 G to ~700 G. Those of HD 122451 and HD 105382 are less variable with values ranging from ~-40 to -80 G, and from ~-300 to -600 G, respectively. The discovery and confirmation of three new magnetic massive stars, including at least two He-weak stars, is an important contribution to one of MiMeS objectives: the understanding of the origin of magnetic fields in massive stars and their impact on stellar structure and evolution. Based on observations collected at the European Southern Observatory, Chile (Program ID 187.D-0917). [less ▲]

Detailed reference viewed: 27 (6 ULiège)
Full Text
Peer Reviewed
See detailConfirmation of the magnetic oblique rotator model for the Of?p star HD 191612
Wade, G. A.; Howarth, I. D.; Townsend, R. H. D. et al

in Monthly Notices of the Royal Astronomical Society (2011), 416

This paper reports high-precision Stokes V spectra of HD 191612 acquired using the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, in the context of the Magnetism in Massive Stars ... [more ▼]

This paper reports high-precision Stokes V spectra of HD 191612 acquired using the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, in the context of the Magnetism in Massive Stars (MiMeS) Project. Using measurements of the equivalent width of the Hα line and radial velocities of various metallic lines, we have updated both the spectroscopic and orbital ephemerides of this star. We confirm the presence of a strong magnetic field in the photosphere of HD 191612, and detect its variability. We establish that the longitudinal field varies in a manner consistent with the spectroscopic period of 537.6 d, in an approximately sinusoidal fashion. The phases of minimum and maximum longitudinal field are, respectively, coincident with the phases of maximum and minimum Hα equivalent width and H[SUB]p[/SUB] magnitude. This demonstrates a firm connection between the magnetic field and the processes responsible for the line and continuum variability. Interpreting the variation of the longitudinal magnetic field within the context of the dipole oblique rotator model, and adopting an inclination i= 30° obtained assuming alignment of the orbital and rotational angular momenta, we obtain a best-fitting surface magnetic field model with obliquity β= 67°± 5° and polar strength B[SUB]d[/SUB]= 2450 ± 400 G. The inferred magnetic field strength implies an equatorial wind magnetic confinement parameter η[SUB]*[/SUB]≃ 50, supporting a picture in which the Hα emission and photometric variability have their origin in an oblique, rigidly rotating magnetospheric structure resulting from a magnetically channelled wind. This interpretation is supported by our successful Monte Carlo radiative transfer modelling of the photometric variation, which assumes the enhanced plasma densities in the magnetic equatorial plane above the star implied by such a picture, according to a geometry that is consistent with that derived from the magnetic field. Predictions of the continuum linear polarization resulting from Thompson scattering from the magnetospheric material indicate that the Stokes Q and U variations are highly sensitive to the magnetospheric geometry, and that expected amplitudes are in the range of current instrumentation. [less ▲]

Detailed reference viewed: 22 (4 ULiège)
Full Text
Peer Reviewed
See detailThe two components of the evolved massive binary LZ Cephei. Testing the effects of binarity on stellar evolution
Mahy, Laurent ULiege; Martins, F.; Machado, C. et al

in Astronomy and Astrophysics (2011)

Aims. We present an in-depth study of the two components of the binary system LZCep to constrain the effects of binarity on the evolution of massive stars. Methods. We analyzed a set of high-resolution ... [more ▼]

Aims. We present an in-depth study of the two components of the binary system LZCep to constrain the effects of binarity on the evolution of massive stars. Methods. We analyzed a set of high-resolution, high signal-to-noise ratio optical spectra obtained over the orbital period of the system to perform a spectroscopic disentangling and derive an orbital solution. We subsequently determine the stellar properties of each component by means of an analysis with the CMFGEN atmosphere code. Finally, with the derived stellar parameters, we model the Hipparcos photometric light curve using the program NIGHTFALL to obtain the orbit inclination and the stellar masses. Results. LZ Cep is a O9III+ON9.7V binary. It is as a semi-detached system in which either the primary or the secondary star almost fills up its Roche lobe. The dynamical masses are about 16.0 M (primary) and 6.5 M (secondary). The latter is lower than the typical mass of late-type O stars. The secondary component is chemically more evolved than the primary (which barely shows any sign of CNO processing), with strong helium and nitrogen enhancements as well as carbon and oxygen depletions. These properties (surface abundances and mass) are typical ofWolf-Rayet stars, although the spectral type is ON9.7V. The luminosity of the secondary is consistent with that of core He-burning objects. The preferred, tentative evolutionary scenario to explain the observed properties involves mass transfer from the secondary – which was initially more massive- towards the primary. The secondary is now almost a core He-burning object, probably with only a thin envelope of H-rich and CNO processed material. A very inefficient mass transfer is necessary to explain the chemical appearance of the primary. Alternative scenarios are discussed but they are affected by greater uncertainties. [less ▲]

Detailed reference viewed: 12 (1 ULiège)
See detailHot stars survey with the GAIA space mission
Lobel, A.; Liu, C.; Frémat, Y. et al

Poster (2009)

Detailed reference viewed: 35 (11 ULiège)
Full Text
See detailThe Gaia satellite: a tool for Emission Line Stars and Hot Stars
Martayan, C.; Frémat, Y.; Blomme, R. et al

in SF2A-2008 (2008, November 01)

The Gaia satellite will be launched at the end of 2011. It will observe at least 1 billion stars, and among them several million emission line stars and hot stars. Gaia will provide parallaxes for each ... [more ▼]

The Gaia satellite will be launched at the end of 2011. It will observe at least 1 billion stars, and among them several million emission line stars and hot stars. Gaia will provide parallaxes for each star and spectra for stars till V magnitude equal to 17. After a general description of Gaia, we present the codes and methods, which are currently developed by our team. They will provide automatically the astrophysical parameters and spectral classification for the hot and emission line stars in the Milky Way and other close local group galaxies such as the Magellanic Clouds. [less ▲]

Detailed reference viewed: 30 (7 ULiège)