References of "Beuzit, J.-L"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe search for disks or planetary objects around directly imaged companions: a candidate around DH Tauri B
Lazzoni, C.; Zurlo, A.; Desidera, S. et al

in Astronomy and Astrophysics (2020), 641

Context. In recent decades, thousands of substellar companions have been discovered with both indirect and direct methods of detection. While the majority of the sample is populated by objects discovered ... [more ▼]

Context. In recent decades, thousands of substellar companions have been discovered with both indirect and direct methods of detection. While the majority of the sample is populated by objects discovered using radial velocity and transit techniques, an increasing number have been directly imaged. These planets and brown dwarfs are extraordinary sources of information that help in rounding out our understanding of planetary systems. <BR /> Aims: In this paper, we focus our attention on substellar companions detected with the latter technique, with the primary goal of investigating their close surroundings and looking for additional companions and satellites, as well as disks and rings. Any such discovery would shed light on many unresolved questions, particularly with regard to their possible formation mechanisms. <BR /> Methods: To reveal bound features of directly imaged companions, whether for point-like or extended sources, we need to suppress the contribution from the source itself. Therefore, we developed a method based on the negative fake companion technique that first estimates the position in the field of view (FoV) and the flux of the imaged companion with high precision, then subtracts a rescaled model point spread function (PSF) from the imaged companion, using either an image of the central star or another PSF in the FoV. Next it performs techniques, such as angular differential imaging, to further remove quasi-static patterns of the star (i.e., speckle contaminants) that affect the residuals of close-in companions. <BR /> Results: After testing our tools on simulated companions and disks and on systems that were chosen ad hoc, we applied the method to the sample of substellar objects observed with SPHERE during the SHINE GTO survey. Among the 27 planets and brown dwarfs we analyzed, most objects did not show remarkable features, which was as expected, with the possible exception of a point source close to DH Tau B. This candidate companion was detected in four different SPHERE observations, with an estimated mass of ~1M[SUB]Jup[/SUB], and a mass ratio with respect to the brown dwarf of 1/10. This binary system, if confirmed, would be the first of its kind, opening up interesting questions for the formation mechanism, evolution, and frequency of such pairs. In order to address the latter, the residuals and contrasts reached for 25 companions in the sample of substellar objects observed with SPHERE were derived. If the DH Tau Bb companion is real, the binary fraction obtained is ~7%, which is in good agreement with the results obtained for field brown dwarfs. <BR /> Conclusions: While there may currently be many limitations affecting the exploration of bound features to directly imaged exoplanets and brown dwarfs, next-generation instruments from the ground and space (i.e., JWST, ELT, and LUVOIR) will be able to image fainter objects and, thus, drive the application of this technique in upcoming searches for exo-moons and circumplanetary disks. <P />Based on observations collected at Paranal Observatory, ESO (Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865, 198.C-0209, and 0104.C-0327(A) and on observations collected at LBT Observatory. [less ▲]

Detailed reference viewed: 24 (1 ULiège)
Full Text
Peer Reviewed
See detailK-Stacker: an algorithm to hack the orbital parameters of planets hidden in high-contrast imaging. First applications to VLT/SPHERE multi-epoch observations
Le Coroller, H.; Nowak, M.; Delorme, P. et al

in Astronomy and Astrophysics (2020), 639

Context. Recent high-contrast imaging surveys, using the Spectro- Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) or the Gemini Planet Imager in search of planets in young, nearby ... [more ▼]

Context. Recent high-contrast imaging surveys, using the Spectro- Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) or the Gemini Planet Imager in search of planets in young, nearby systems, have shown evidence of a small number of giant planets at relatively large separation beyond 10-30 au, where those surveys are the most sensitive. Access to smaller physical separations between 5 and 30 au is the next step for future planet imagers on 10 m telescopes and the next generation of extremely large telescopes in order to bridge the gap with indirect techniques such as radial velocity, transit, and soon astrometry with Gaia. In addition to new technologies and instruments, the development of innovative observing strategies combined with optimized data processing tools is participating in the improvement of detection capabilities at very close angular separation. In that context, we recently proposed a new algorithm, Keplerian-Stacker, which combines multiple observations acquired at different epochs and takes into account the orbital motion of a potential planet present in the images to boost the ultimate detection limit. We showed that this algorithm is able to find planets in time series of simulated images of the SPHERE InfraRed Dual-band Imager and Spectrograph (IRDIS) even when a planet remains undetected at one epoch. <BR /> Aims: Our goal is to test and validate the K-Stacker algorithm performances on real SPHERE datasets to demonstrate the resilience of this algorithm to instrumental speckles and the gain offered in terms of true detection. This will motivate future dedicated multi-epoch observation campaigns of well- chosen, young, nearby systems and very nearby stars carefully selected to search for planets in emitted and reflected light, respectively, to open a new path concerning the observing strategy used with current and future planet imagers. <BR /> Methods: To test K-Stacker, we injected fake planets and scanned the low signal-to-noise ratio (S/N) regime in a series of raw observations obtained by the SPHERE/IRDIS instrument in the course of the SPHERE High-contrast ImagiNg survey for Exoplanets. We also considered the cases of two specific targets intensively monitored during this campaign: β Pictoris and HD 95086. For each target and epoch, the data were reduced using standard angular differential imaging processing techniques and then recombined with K-Stacker to recover the fake planetary signals. In addition, the known exoplanets β Pictoris b and HD 95086 b previously identified at lower S/N in single epochs have also been recovered by K-Stacker. <BR /> Results: We show that K-Stacker achieves a high success rate of ≈100% when the S/N of the planet in the stacked image reaches ≈9. The improvement of the S/N is given as the square root of the total exposure time contained in the data being combined. At S/N < 6-7, the number of false positives is high near the coronagraphic mask, but a chromatic study or astrophysical criteria can help to disentangle between a bright speckle and a true detection. During the blind test and the redetection of HD 95086 b, and β Pic b, we highlightthe ability of K-Stacker to find orbital solutions consistent with those derived by the current Markov chain Monte Carlo orbital fitting techniques. This confirms that in addition to the detection gain, K-Stacker offers the opportunity to characterize the most probable orbital solutions of the exoplanets recovered at low S/N. <P />Based on observations collected at the European Southern Observatory under programs: 095.C-0298, 096.C-0241, 097.C-0865, 198.C-0209, 099.C-0127. [less ▲]

Detailed reference viewed: 32 (1 ULiège)
Full Text
Peer Reviewed
See detailOrbital and spectral characterization of the benchmark T-type brown dwarf HD 19467B
Maire, Anne-Lise ULiege; Molaverdikhani, K.; Desidera, S. et al

in Astronomy and Astrophysics (2020), 639

Context. Detecting and characterizing substellar companions for which the luminosity, mass, and age can be determined independently is of utter importance to test and calibrate the evolutionary models due ... [more ▼]

Context. Detecting and characterizing substellar companions for which the luminosity, mass, and age can be determined independently is of utter importance to test and calibrate the evolutionary models due to uncertainties in their formation mechanisms. HD 19467 is a bright and nearby star hosting a cool brown dwarf companion detected with radial velocities and imaging, making it a valuable object for such studies. <BR /> Aims: We aim to further characterize the orbital, spectral, and physical properties of the HD 19467 system. <BR /> Methods: We present new high-contrast imaging data with the SPHERE and NaCo instruments. We also analyze archival data from the instruments HARPS, NaCo, HIRES, UVES, and ASAS. Furthermore, we use proper motion data of the star from HIPPARCOS and Gaia. <BR /> Results: We refined the properties of the host star and derived an age of 8.0[SUP]+2.0[/SUP][SUB]-1.0[/SUB] Gyr based on isochrones, gyrochronology, and chemical and kinematic arguments. This age estimate is slightly younger than previous age estimates of ~9-11 Gyr based on isochrones. No orbital curvature is seen in the current imaging, radial velocity, and astrometric data. From a joint fit of the data, we refined the orbital parameters for HD 19467B, including: a period of 398[SUP]+95[/SUP][SUB]-93[/SUB] yr, an inclination of 129.8[SUP]+8.1[/SUP][SUB]-5.1[/SUB] deg, an eccentricity of 0.56 ± 0.09, a longitude of the ascending node of 134.8 ± 4.5 deg, and an argument of the periastron of 64.2[SUP]+5.5[/SUP][SUB]-6.3[/SUB] deg. We assess a dynamical mass of 74[SUP]+12[/SUP][SUB]-9[/SUB] M[SUB]J[/SUB]. The fit with atmospheric models of the spectrophotometric data of the companion indicates an atmosphere without clouds or with very thin clouds, an effective temperature of 1042[SUP]+77[/SUP][SUB]-71[/SUB] K, and a high surface gravity of 5.34[SUP]+0.8[/SUP][SUB]-0.9[/SUB] dex. The comparison to model predictions of the bolometric luminosity and dynamical mass of HD 19467B, assuming our system age estimate, indicates a better agreement with the Burrows et al. (1997, ApJ, 491, 856) models; whereas, the other evolutionary models used tend to underestimate its cooling rate. <P />The reduced images shown in Fig. 3 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/639/A47">http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/639/A47</A> <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 1100.C-0481, 0100.C-0234, 096.C-0602, 072.C-0488, 183.C-0972, 084.D-0965, 188.C-0265, 192.C-0852, and 0100.D-0444. [less ▲]

Detailed reference viewed: 24 (2 ULiège)
Full Text
See detailSPHERE+: Imaging young Jupiters down to the snowline
Boccaletti, A.; Chauvin, G.; Mouillet, D. et al

E-print/Working paper (2020)

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating ... [more ▼]

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHERE's scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei. [less ▲]

Detailed reference viewed: 25 (1 ULiège)
Full Text
Peer Reviewed
See detailHint of curvature in the orbital motion of the exoplanet 51 Eridani b using 3 yr of VLT/SPHERE monitoring
Maire, Anne-Lise ULiege; Rodet, L.; Cantalloube, F. et al

in Astronomy and Astrophysics (2019), 624

Context. The 51 Eridani system harbors a complex architecture with its primary star forming a hierarchical system with the binary GJ 3305AB at a projected separation of 2000 au, a giant planet orbiting ... [more ▼]

Context. The 51 Eridani system harbors a complex architecture with its primary star forming a hierarchical system with the binary GJ 3305AB at a projected separation of 2000 au, a giant planet orbiting the primary star at 13 au, and a low-mass debris disk around the primary star with possible cold and warm components inferred from the spectral energy distribution. <BR /> Aims: We aim to better constrain the orbital parameters of the known giant planet. <BR /> Methods: We monitored the system over three years from 2015 to 2018 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument at the Very Large Telescope (VLT). <BR /> Results: We measure an orbital motion for the planet of 130 mas with a slightly decreasing separation ( 10 mas) and find a hint of curvature. This potential curvature is further supported at 3σ significance when including literature Gemini Planet Imager (GPI) astrometry corrected for calibration systematics. Fits of the SPHERE and GPI data using three complementary approaches provide broadly similar results. The data suggest an orbital period of 32[SUB]-9[/SUB][SUP]+17[/SUP] yr (i.e., 12[SUB]-2[/SUB][SUP]+4[/SUP] au in semi-major axis), an inclination of 133[SUB]-7[/SUB][SUP]+14[/SUP] deg, an eccentricity of 0.45[SUB]-0.15[/SUB][SUP]+0.10[/SUP], and an argument of periastron passage of 87[SUB]-30[/SUB][SUP]+34[/SUP] deg [mod 180°]. The time at periastron passage and the longitude of node exhibit bimodal distributions because we do not yet detect whether the planet is accelerating or decelerating along its orbit. Given the inclinations of the orbit and of the stellar rotation axis (134-144°), we infer alignment or misalignment within 18° for the star-planet spin- orbit. Further astrometric monitoring in the next 3-4 yr is required to confirm at a higher significance the curvature in the motion of the planet, determine if the planet is accelerating or decelerating on its orbit, and further constrain its orbital parameters and the star-planet spin-orbit. <P />The fitted orbits and the histogram distributions of the orbital parameters are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/624/A118">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/624/A118</A>Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 095.C-0298, 096.C-0241, 198.C-0209, and 1100.C-0481. [less ▲]

Detailed reference viewed: 24 (2 ULiège)
Full Text
Peer Reviewed
See detailPost-conjunction detection of β Pictoris b with VLT/SPHERE
Lagrange, A.-M.; Boccaletti, A.; Langlois, M. et al

in Astronomy and Astrophysics (2019), 621

Context. With an orbital distance comparable to that of Saturn in the solar system, β Pictoris b is the closest (semi-major axis ≃9 au) exoplanet that has been imaged to orbit a star. Thus it offers ... [more ▼]

Context. With an orbital distance comparable to that of Saturn in the solar system, β Pictoris b is the closest (semi-major axis ≃9 au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to β Pictoris have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters. <BR /> Aims: We aimed at further constraining β Pictoris b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit. <BR /> Methods: We used SPHERE at the VLT to precisely monitor the orbital motion of beta β Pictoris b since first light of the instrument in 2014. <BR /> Results: We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6 au) and prevented further detection. We redetected β Pictoris b on the northeast side of the disk at a separation of 139 mas and a PA of 30° in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a = 9.0 ± 0.5 au (1σ), it definitely excludes previously reported possible long orbital periods, and excludes β Pictoris b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away. <P />Based on observations collected at the European Southern Observatory under programmes 198.C-0209, 1100.C-0481. [less ▲]

Detailed reference viewed: 23 (1 ULiège)
Full Text
Peer Reviewed
See detailHigh-contrast study of the candidate planets and protoplanetary disk around HD 100546
Sissa, E.; Gratton, R.; Garufi, Antonio et al

in Astronomy and Astrophysics (2018), 619

The nearby Herbig Be star HD 100546 is known to be a laboratory for the study of protoplanets and their relation with the circumstellar disk, which is carved by at least two gaps. We observed the HD ... [more ▼]

The nearby Herbig Be star HD 100546 is known to be a laboratory for the study of protoplanets and their relation with the circumstellar disk, which is carved by at least two gaps. We observed the HD 100546 environment with high-contrast imaging exploiting several different observing modes of SPHERE, including data sets with and without coronagraphs, dual band imaging, integral field spectroscopy and polarimetry. The picture emerging from these different data sets is complex. Flux-conservative algorithm images clearly show the disk up to 200 au. More aggressive algorithms reveal several rings and warped arms that are seen overlapping the main disk. Some of these structures are found to lie at considerable height over the disk mid-plane at about 30 au. Our images demonstrate that the brightest wings close to the star in the near side of the disk are a unique structure, corresponding to the outer edge of the intermediate disk at 40 au. Modeling of the scattered light from the disk with a geometrical algorithm reveals that a moderately thin structure (H/r = 0.18 at 40 au) can well reproduce the light distribution in the flux-conservative images. We suggest that the gap between 44 and 113 au spans between the 1:2 and 3:2 resonance orbits of a massive body located at 70 au, which mightcoincide with the candidate planet HD 100546b detected with previous thermal infrared (IR) observations. In this picture, the two wings can be the near side of a ring formed by disk material brought out of the disk at the 1:2 resonance with the same massive object. While we find no clear evidence confirming detection of the planet candidate HD 100546c in our data, we find a diffuse emission close to the expected position of HD 100546b. This source can be described as an extremely reddened substellar object surrounded by a dust cloud or its circumplanetary disk. Its astrometry is broadly consistent with a circular orbital motion on the disk plane, a result that could be confirmed with new observations. Further observations at various wavelengths are required to fully understand the complex phenomenology of HD 100546. <P />Based on data collected at the European Southern Observatory, Chile (ESO Programs 095.C-0298, 096.C-0241, 096.C-0248, 097.C-0523, 097.C-0865, and 098.C-0209). [less ▲]

Detailed reference viewed: 23 (2 ULiège)
Full Text
Peer Reviewed
See detailThe GJ 504 system revisited. Combining interferometric, radial velocity, and high contrast imaging data
Bonnefoy, M.; Perraut, K.; Lagrange, A.-M. et al

in Astronomy and Astrophysics (2018), 618

Context. The G-type star GJ504A is known to host a 3-35 M[SUB]Jup[/SUB] companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories ... [more ▼]

Context. The G-type star GJ504A is known to host a 3-35 M[SUB]Jup[/SUB] companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. <BR /> Aims: We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. <BR /> Methods: We used the CHARA interferometer to measure GJ504A's angular diameter and obtained an estimation of its radius in combinationwith the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.02-2.25 μm) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE,Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-to-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion'sorbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. <BR /> Results: We report a radius of 1.35 ± 0.04 R[SUB]☉[/SUB] for GJ504A. The radius yields isochronal ages of 21 ± 2 Myr or 4.0 ± 1.8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162.4[SUB]-4.3[/SUB][SUP]+3.8[/SUP] degrees or 186.6[SUB]-3.8[/SUB][SUP]+4.3[/SUP] degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 1-4 μm SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (≤ 1.5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield T[SUB]eff[/SUB] = 550 ± 50 K for GJ504b and point toward a low surface gravity (3.5-4.0 dex). The accuracy on the metallicity value is limited by model-to-model systematics; it is not degenerate with the C/O ratio. We derive log L/L[SUB]☉[/SUB] = -6.15 ± 0.15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and T[SUB]eff[/SUB] yield masses of M = 1.3[SUB]-0.3[/SUB][SUP]+0.6[/SUP] M[SUB]Jup[/SUB] and M = 23[SUB]-9[/SUB][SUP]+10[/SUP] M[SUB]Jup[/SUB] for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b's orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90% prob.) more massive than 2.5 and 30 M[SUB]Jup[/SUB] with semi-major axes in the range 0.01-80 au for the young and old isochronal ages, respectively. <BR /> Conclusions: The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition. <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 093.C-0500, 095.C-0298, 096.C-0241, and 198.C-0209, and on interferometric observations obtained with the VEGA instrument on the CHARA Array. [less ▲]

Detailed reference viewed: 23 (1 ULiège)
Full Text
Peer Reviewed
See detailDynamical masses of M-dwarf binaries in young moving groups. I. The case of TWA 22 and GJ 2060
Rodet, L.; Bonnefoy, M.; Durkan, S. et al

in Astronomy and Astrophysics (2018), 618

Context. Evolutionary models are widely used to infer the mass of stars, brown dwarfs, and giant planets. Their predictions are thought to be less reliable at young ages (< 200 Myr) and in the low-mass ... [more ▼]

Context. Evolutionary models are widely used to infer the mass of stars, brown dwarfs, and giant planets. Their predictions are thought to be less reliable at young ages (< 200 Myr) and in the low-mass regime (< 1 M[SUB]☉[/SUB]). GJ 2060 AB and TWA 22 AB are two rare astrometric M-dwarf binaries, respectively members of the AB Doradus (AB Dor) and Beta Pictoris (β Pic) moving groups. As their dynamical mass can be measured to within a few years, they can be used to calibrate the evolutionary tracks and set new constraints on the age of young moving groups. <BR /> Aims: We provide the first dynamical mass measurement of GJ 2060 and a refined measurement of the total mass of TWA 22. We also characterize the atmospheric properties of the individual components of GJ 2060 that can be used as inputs to the evolutionary models. <BR /> Methods: We used NaCo and SPHERE observations at VLT and archival Keck/NIRC2 data to complement the astrometric monitoring of the binaries. We combined the astrometry with new HARPS radial velocities (RVs) and FEROS RVs of GJ 2060. We used a Markov chain Monte-Carlo (MCMC) module to estimate posteriors on the orbital parameters and dynamical masses of GJ 2060 AB and TWA 22 AB from the astrometry and RVs. Complementary data obtained with the integral field spectrograph VLT/SINFONI were gathered to extract the individual near-infrared (1.1-2.5 μm) medium-resolution (R ̃ 1500 - 2000) spectra of GJ 2060 A and B. We compared the spectra to those of known objects and to grids of BT-SETTL model spectra to infer the spectral type, bolometric luminosities, and temperatures of those objects. <BR /> Results: We find a total mass of 0.18 ± 0.02 M[SUB]☉[/SUB] for TWA 22, which is in good agreement with model predictions at the age of the β Pic moving group. We obtain a total mass of 1.09 ± 0.10 M[SUB]☉[/SUB] for GJ 2060. We estimate a spectral type of M1 ± 0.5, L/L[SUB]☉[/SUB] = -1.20 ± 0.05 dex, and T[SUB]eff[/SUB] = 3700 ± 100 K for GJ 2060 A. The B component is a M3 ± 0.5 dwarf with L/L[SUB]☉[/SUB] = -1.63 ± 0.05 dex and T[SUB]eff[/SUB] = 3400 ± 100 K. The dynamical mass of GJ 2060 AB is inconsistent with the most recent models predictions (BCAH15, PARSEC) for an AB Dor age in the range 50-150 Myr. It is 10%-20% (1-2σ, depending on the assumed age) above the model's predictions, corresponding to an underestimation of 0.10-0.20 M[SUB]☉[/SUB]. Coevality suggests a young age for the system (̃50 Myr) according to most evolutionary models. <BR /> Conclusions: TWA 22 validates the predictions of recent evolutionary tracks at ̃20 Myr. On the other hand, we evidence a 1-2σ mismatch between the predicted and observed mass of GJ 2060 AB. This slight departure may indicate that one of the stars hosts a tight companion. Alternatively, this would confirm the model's tendency to underestimate the mass of young low-mass stars. [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailImaging radial velocity planets with SPHERE
Zurlo, A.; Mesa, D.; Desidera, S. et al

in Monthly Notices of the Royal Astronomical Society (2018), 480

We present observations with the planet finder Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) of a selected sample of the most promising radial velocity (RV) companions for high-contrast ... [more ▼]

We present observations with the planet finder Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) of a selected sample of the most promising radial velocity (RV) companions for high-contrast imaging. Using a Monte Carlo simulation to explore all the possible inclinations of the orbit of wide RV companions, we identified the systems with companions that could potentially be detected with SPHERE. We found the most favourable RV systems to observe are: HD 142, GJ 676, HD 39091, HIP 70849, and HD 30177 and carried out observations of these systems during SPHERE Guaranteed Time Observing. To reduce the intensity of the starlight and reveal faint companions, we used principal component analysis algorithms alongside angular and spectral differential imaging. We injected synthetic planets with known flux to evaluate the self-subtraction caused by our data reduction and to determine the 5σ contrast in the J band versus separation for our reduced images. We estimated the upper limit on detectable companion mass around the selected stars from the contrast plot obtained from our data reduction. Although our observations enabled contrasts larger than 15 mag at a few tenths of arcsec from the host stars, we detected no planets. However, we were able to set upper mass limits around the stars using AMES-COND evolutionary models. We can exclude the presence of companions more massive than 25-28 M[SUB]Jup[/SUB] around these stars, confirming the substellar nature of these RV companions. [less ▲]

Detailed reference viewed: 26 (0 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a planetary-mass companion within the gap of the transition disk around PDS 70
Keppler, M.; Benisty, M.; Müller, A. et al

in Astronomy and Astrophysics (2018), 617

Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very ... [more ▼]

Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features. <BR /> Aims: In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk-planet interactions and other evolutionary processes. <BR /> Methods: We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes. <BR /> Results: We detect a point source within the gap of the disk at about 195 mas ( 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than 17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains. <BR /> Conclusions: The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres, and evolutionary models. <P />Based on observations performed with ESO Telescopes at the Paranal Observatory under programmes 095.C-0298, 095.C-0404, 096.C-0333, 097.C-0206, 097.C-1001, and 099.C-0891.The reduced images and datacubes are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/617/A44">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/617/A44</A> [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailInvestigating the young solar system analog HD 95086. A combined HARPS and SPHERE exploration
Chauvin, G.; Gratton, R.; Bonnefoy, M. et al

in Astronomy and Astrophysics (2018), 617

Context. HD 95086 (A8V, 17 Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4-5 M[SUB]Jup[/SUB] have been directly imaged. <BR /> Aims: Our study aims to ... [more ▼]

Context. HD 95086 (A8V, 17 Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4-5 M[SUB]Jup[/SUB] have been directly imaged. <BR /> Aims: Our study aims to characterize the global architecture of this young system using the combination of radial velocity and direct imaging observations. We want to characterize the physical and orbital properties of HD 95086 b, search for additional planets at short and wide orbits and image the cold outer debris belt in scattered light. <BR /> Methods: We used HARPS at the ESO 3.6 m telescope to monitor the radial velocity of HD 95086 over two years and investigate the existence of giant planets at less than 3 au orbital distance. With the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE at VLT, we imaged the faint circumstellar environment beyond 10 au at six epochs between 2015 and 2017. <BR /> Results: We do not detect additional giant planets around HD 95086. We identify the nature (bound companion or background contaminant) of all point-like sources detected in the IRDIS field of view. None of them correspond to the ones recently discovered near the edge of the cold outer belt by ALMA. HD 95086 b is resolved for the first time in J-band with IFS. Its near-infrared spectral energy distribution is well fitted by a few dusty and/or young L7-L9 dwarf spectral templates. The extremely red 1-4 μm spectral distribution is typical of low-gravity objects at the L/T spectral type transition. The planet's orbital motion is resolved between January 2015 and May 2017. Together with past NaCo measurements properly re-calibrated, our orbital fitting solutions favor a retrograde low to moderate-eccentricity orbit e = 0.2[SUP]+0.3[/SUP][SUB]-0.2[/SUB], with a semi-major axis 52 au corresponding to orbital periods of 288 yr and an inclination that peaks at i = 141°, which is compatible with a planet-disk coplanar configuration. Finally, we report the detection in polarimetric differential imaging of the cold outer debris belt between 100 and 300 au, consistent in radial extent with recent ALMA 1.3 mm resolved observations. <P />Based on observations collected at the European Southern Observatory, Chile (ESO SPHERE Guaranteed Time Observation Program 095.C-0273, 095.C-0298, 096.C-0241, 097.C-0865, 198.C-0209) and ESO HARPS Open Time Observation Program 099.C-0205, 192. C-0224. [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a brown dwarf companion to the star HIP 64892
Cheetham, A.; Bonnefoy, M.; Desidera, S. et al

in Astronomy and Astrophysics (2018), 615

We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup ... [more ▼]

We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup of the Scorpius Centaurus OB association. The measured angular separation of the companion (1.2705 ± 0.0023") corresponds to a projected distance of 159 ± 12 AU. We observed the target with the dual-band imaging and long- slit spectroscopy modes of the IRDIS imager to obtain its spectral energy distribution (SED) and astrometry. In addition, we reprocessed archival NACO L-band data, from which we also recover the companion. Its SED is consistent with a young (<30 Myr), low surface gravity object with a spectral type of M9[SUB]γ[/SUB] ± 1. From comparison with the BT- Settl atmospheric models we estimate an effective temperature of T[SUB]eff[/SUB] = 2600 ± 100 K, and comparison of the companion photometry to the COND evolutionary models yields a mass of 29-37 M[SUB]J[/SUB] at the estimated age of 16[SUB]-7[/SUB][SUP]+15[/SUP] Myr for the system. The star HIP 64892 is a rare example of an extreme-mass ratio system (q 0.01) and will be useful for testing models relating to the formation and evolution of such low-mass objects. <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 096.C-0241 and 198.C-0209 (PI: J.-L. Beuzit), 098.A-9007(A) (PI: P. Sarkis), and 087.C-0790(A) (PI: M. Ireland). [less ▲]

Detailed reference viewed: 23 (0 ULiège)
Full Text
Peer Reviewed
See detailObservations of fast-moving features in the debris disk of AU Mic on a three-year timescale: Confirmation and new discoveries
Boccaletti, A.; Sezestre, E.; Lagrange, A.-M. et al

in Astronomy and Astrophysics (2018), 614

Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other ... [more ▼]

Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other debris disk and that move outward at high velocities. <BR /> Aims: We initiated a monitoring program with the following objectives: (1) track the location of the structures and better constrain their projected speeds, (2) search for new features emerging closer in, and ultimately (3) understand the mechanism responsible for the motion and production of the disk features. <BR /> Methods: AU Mic was observed at 11 different epochs between August 2014 and October 2017 with the IR camera and spectrograph of SPHERE. These high-contrast imaging data were processed with a variety of angular, spectral, and polarimetric differential imaging techniques to reveal the faintest structures in the disk. We measured the projected separations of the features in a systematic way for all epochs. We also applied the very same measurements to older observations from the Hubble Space Telescope (HST) with the visible cameras STIS and ACS. <BR /> Results: The main outcomes of this work are (1) the recovery of the five southeastern broad arch-like structures we identified in our first study, and confirmation of their fast motion (projected speed in the range 4-12 km s[SUP]-1[/SUP]); (2) the confirmation that the very first structures observed in 2004 with ACS are indeed connected to those observed later with STIS and now SPHERE; (3) the discovery of two new very compact structures at the northwest side of the disk (at 0.40'' and 0.55'' in May 2015) that move to the southeast at low speed; and (4) the identification of a new arch-like structure that might be emerging at the southeast side at about 0.4'' from the star (as of May 2016). <BR /> Conclusions: Although the exquisite sensitivity of SPHERE allows one to follow the evolution not only of the projected separation, but also of the specific morphology of each individual feature, it remains difficult to distinguish between possible dynamical scenarios that may explain the observations. Understanding the exact origin of these features, the way they are generated, and their evolution over time is certainly a significant challenge in the context of planetary system formation around M stars. <P />Based on data collected at the European Southern Observatory, Chile under programs 060.A-9249, 095.C-0298, 096.C-0625, 097.C-0865, 097.C-0813, 598.C-0359.A movie associated to Fig. 6 is available at <A h ref="https://www.aanda.org/10.1051/0004-6361/201732462/olm">http://https ://www.aanda.org</A> [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailInvestigation of the inner structures around HD 169142 with VLT/SPHERE
Ligi, R.; Vigan, A.; Gratton, R. et al

in Monthly Notices of the Royal Astronomical Society (2018), 473

We present observations of the Herbig Ae star HD 169142 with the VLT/SPHERE instruments InfraRed Dual-band Imager and Spectrograph (IRDIS) (K1K2 and H2H3 bands) and the Integral Field Spectrograph (IFS ... [more ▼]

We present observations of the Herbig Ae star HD 169142 with the VLT/SPHERE instruments InfraRed Dual-band Imager and Spectrograph (IRDIS) (K1K2 and H2H3 bands) and the Integral Field Spectrograph (IFS) (Y, J and H bands). We detect several bright blobs at ̃180 mas separation from the star, and a faint arc-like structure in the IFS data. Our reference differential imaging (RDI) data analysis also finds a bright ring at the same separation. We show, using a simulation based on polarized light data, that these blobs are actually part of the ring at 180 mas. These results demonstrate that the earlier detections of blobs in the H and K[SUB]S[/SUB] bands at these separations in Biller et al. as potential planet/substellar companions are actually tracing a bright ring with a Keplerian motion. Moreover, we detect in the images an additional bright structure at ̃93 mas separation and position angle of 355°, at a location very close to previous detections. It appears point-like in the YJ and K bands but is more extended in the H band. We also marginally detect an inner ring in the RDI data at ̃100 mas. Follow-up observations are necessary to confirm the detection and the nature of this source and structure. [less ▲]

Detailed reference viewed: 20 (1 ULiège)
Full Text
Peer Reviewed
See detailIn-depth study of moderately young but extremely red, very dusty substellar companion HD 206893B
Delorme, Philippe; Schmidt, Tobias; Bonnefoy, Mickaël et al

in Astronomy and Astrophysics (2017), 608

Context. The substellar companion HD 206893b has recently been discovered by direct imaging of its disc-bearing host star with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument ... [more ▼]

Context. The substellar companion HD 206893b has recently been discovered by direct imaging of its disc-bearing host star with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument. <BR /> Aims: We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. <BR /> Methods: We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multi-instrument follow-up of its host star. We obtain a R = 30 spectrum from 0.95 to 1.64 μm of the companion and additional photometry at 2.11 and 2.25 μm. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. <BR /> Results: We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6 M[SUB]Jup[/SUB] (2 M[SUB]Jup[/SUB]) at 0.5'' for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. <BR /> Conclusions: Though our best fit corresponds to a brown dwarf of 15-30 M[SUB]Jup[/SUB] aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12 M[SUB]Jup[/SUB] planetary-mass object to a 50 M[SUB]Jup[/SUB] Hyades-age brown dwarf. Even though this companion is extremely red, we note that it is more probable that it has an intermediate gravity rather than the very low gravity that is often associated with very red L dwarfs. We also find that the detected companion cannot shape the observed outer debris disc, hinting that one or several additional planetary mass objects in the system might be necessary to explain the position of the disc inner edge. Based on observations made with ESO Telescopes at the Paranal Observatory under Programs ID 097.C-0865(D) (SPHERE GTO, SHINE Program) and Program ID: 082.A-9007(A) (FEROS) 098.C-0739(A), 192.C-0224(C) (HARPS). This work has made use of the SPHERE Data Centre. [less ▲]

Detailed reference viewed: 51 (11 ULiège)
Full Text
See detailThe SPHERE Data Center: a reference for high contrast imaging processing
Delorme, Philippe; Meunier, Nadège; Albert, D. et al

in SF2A-2017: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (2017, December 01)

The objective of the SPHERE Data Center is to optimize the scientific return of SPHERE at the VLT, by providing optimized reduction procedures, services to users and publicly available reduced data. This ... [more ▼]

The objective of the SPHERE Data Center is to optimize the scientific return of SPHERE at the VLT, by providing optimized reduction procedures, services to users and publicly available reduced data. This paper describes our motivation, the implementation of the service (partners, infrastructure and developments), services, description of the on-line data, and future developments. The SPHERE Data Center is operational and has already provided reduced data with a good reactivity to many observers. The first public reduced data have been made available in 2017. The SPHERE Data Center is gathering a strong expertise on SPHERE data and is in a very good position to propose new reduced data in the future, as well as improved reduction procedures. [less ▲]

Detailed reference viewed: 15 (1 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a warm, dusty giant planet around HIP 65426
Chauvin, G.; Desidera, S.; Lagrange, A.-M. et al

in Astronomy and Astrophysics (2017), 605

<BR /> Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high ... [more ▼]

<BR /> Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories. <BR /> Methods: We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the 17 Myr old Lower Centaurus-Crux association. <BR /> Results: At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 μm indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M[SUB]Jup[/SUB], T[SUB]eff[/SUB] = 1300-1600 K and R = 1.5 ± 0.1 R[SUB]Jup[/SUB] giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log (g) = 4.0-5.0 with smaller radii (1.0-1.3 R[SUB]Jup[/SUB]). <BR /> Conclusions: Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution. <P />Based on observations collected at La Silla and Paranal Observatory, ESO (Chile) Program ID: 097.C-0865 and 098.C-0209 (SPHERE).The planet spectrum is only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/605/L9">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/605/L9</A> [less ▲]

Detailed reference viewed: 21 (0 ULiège)
Full Text
Peer Reviewed
See detailSpectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE
Samland, M.; Mollière, P.; Bonnefoy, M. et al

in Astronomy and Astrophysics (2017), 603

Context. 51 Eridani b is an exoplanet around a young (20 Myr) nearby (29.4 pc) F0-type star, which was recently discovered by direct imaging. It is one of the closest direct imaging planets in angular and ... [more ▼]

Context. 51 Eridani b is an exoplanet around a young (20 Myr) nearby (29.4 pc) F0-type star, which was recently discovered by direct imaging. It is one of the closest direct imaging planets in angular and physical separation ( 0.5'', 13 au) and is well suited for spectroscopic analysis using integral field spectrographs. <BR /> Aims: We aim to refine the atmospheric properties of the known giant planet and to constrain the architecture of the system further by searching for additional companions. <BR /> Methods: We used the extreme adaptive optics instrument SPHERE at the Very Large Telescope (VLT) to obtain simultaneous dual-band imaging with IRDIS and integral field spectra with IFS, extending the spectral coverage of the planet to the complete Y- to H-band range and providing additional photometry in the K12-bands (2.11, 2.25 μm). The object is compared to other known cool and peculiar dwarfs. The posterior probability distributions for parameters of cloudy and clear atmospheric models are explored using MCMC. We verified our methods by determining atmospheric parameters for the two benchmark brown dwarfs Gl 570D and HD 3651B. We used archival VLT-NACO (L') Sparse Aperture Masking data to probe the innermost region for additional companions. <BR /> Results: We present the first spectrophotometric measurements in the Y and K bands for the planet and revise its J-band flux to values 40% fainter than previous measurements. Cloudy models with uniform cloud coverage provide a good match to the data. We derive the temperature, radius, surface gravity, metallicity, and cloud sedimentation parameter f[SUB]sed[/SUB]. We find that the atmosphere is highly super-solar ([Fe/H] = 1.0 ± 0.1 dex), and the low f[SUB]sed[/SUB] = 1.26[SUP]+0.36[/SUP][SUB]-0.29[/SUB] value is indicative of a vertically extended, optically thick cloud cover with small sized particles. The model radius and surface gravity estimates suggest higher planetary masses of M[SUB]gravity[/SUB] = 9.1[SUP]+4.9[/SUP][SUB]-3.3[/SUB] M[SUB]J[/SUB]. The evolutionary model only provides a lower mass limit of > 2 M[SUB]J[/SUB] (for pure hot- start). The cold-start model cannot explain the luminosity of the planet. The SPHERE and NACO/SAM detection limits probe the 51 Eri system at solar system scales and exclude brown-dwarf companions more massive than 20 M[SUB]J[/SUB] beyond separations of 2.5 au and giant planets more massive than 2 M[SUB]J[/SUB] beyond 9 au. <P />Based on observations made with ESO Telescopes at the Paranal Observatory under program ID 095.C-0298, 096.C-0241 and 084.C-0739(A).Spectra, covariances, and petitCODE (fits files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A57 [less ▲]

Detailed reference viewed: 23 (0 ULiège)
Full Text
Peer Reviewed
See detailThe VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. IV. Gravitational instability rarely forms wide, giant planets
Vigan, A.; Bonavita, M.; Biller, B. et al

in Astronomy and Astrophysics (2017), 603

Understanding the formation and evolution of giant planets (≥1 M[SUB]Jup[/SUB]) at wide orbital separation (≥5 AU) is one of the goals of direct imaging. Over the past 15 yr, many surveys have placed ... [more ▼]

Understanding the formation and evolution of giant planets (≥1 M[SUB]Jup[/SUB]) at wide orbital separation (≥5 AU) is one of the goals of direct imaging. Over the past 15 yr, many surveys have placed strong constraints on the occurrence rate of wide-orbit giants, mostly based on non-detections, but very few have tried to make a direct link with planet formation theories. In the present work, we combine the results of our previously published VLT/NaCo large program with the results of 12 past imaging surveys to constitute a statistical sample of 199 FGK stars within 100 pc, including three stars with sub-stellar companions. Using Monte Carlo simulations and assuming linear flat distributions for the mass and semi-major axis of planets, we estimate the sub-stellar companion frequency to be within 0.75-5.70% at the 68% confidence level (CL) within 20-300 AU and 0.5-75 M[SUB]Jup[/SUB], which is compatible with previously published results. We also compare our results with the predictions of state-of-the-art population synthesis models based on the gravitational instability (GI) formation scenario with and without scattering. We estimate that in both the scattered and non-scattered populations, we would be able to detect more than 30% of companions in the 1-75 M[SUB]Jup[/SUB] range (95% CL). With the threesub-stellar detections in our sample, we estimate the fraction of stars that host a planetary system formed by GI to be within 1.0-8.6% (95% CL). We also conclude that even though GI is not common, it predicts a mass distribution of wide-orbit massive companions that is much closer to what is observed than what the core accretion scenario predicts. Finally, we associate the present paper with the release of the Direct Imaging Virtual Archive (DIVA), a public database that aims at gathering the results of past, present, and future direct imaging surveys. Based on observations collected at the European Southern Observatory, Chile (ESO Large Program 184.C-0157 and Open Time 089.C-0137A and 090.C-0252A). [less ▲]

Detailed reference viewed: 113 (4 ULiège)