References of "Baron, Damien"
     in
Bookmark and Share    
See detailOpal-like photoanodes with photonic effects in macroporous perovskite solar cells
Dewalque, Jennifer ULiege; Baron, Damien ULiege; Spronck, Gilles ULiege et al

Poster (2018, February 28)

Organic-inorganic metal halide perovskite compounds, used either in mesoscopic or planar solar cells architectures, have allowed preparing highly efficient solid-state devices (>20%). In mesoscopic solar ... [more ▼]

Organic-inorganic metal halide perovskite compounds, used either in mesoscopic or planar solar cells architectures, have allowed preparing highly efficient solid-state devices (>20%). In mesoscopic solar cells, a mesoporous TiO2 scaffold is incorporated into the cells. However, because of the small pore size compared to the wavelengths of visible light, the scaffold barely scatters light. In this work, we propose to design periodically structured TiO2 scaffold from colloidal crystal templating fabrication method. Polystyrene beads with diameters comparable to visible light wavelengths are used as structuring agent. The resulting opal-like photonic structure will strongly interact with light and increase light harvesting. The photoanode microstructure is characterized by scanning electron microscopy (SEM) and X-Ray diffraction (XRD). In parallel, light interaction is modeled in order to find the best compromise in terms of photonic architecture. Sunlight absorption by the solar cells is presented and discussed with dependency of pore sizes and number of opal-like layers. [less ▲]

Detailed reference viewed: 30 (3 ULiège)
Full Text
See detailInverse opal photoanodes: preparation and optical properties
Dewalque, Jennifer ULiege; Spronck, Gilles ULiege; Baron, Damien ULiege et al

Conference (2017, March 01)

Perovskite compounds, used either in mesoscopic or planar solar cells, have allowed preparing highly efficient solid-state devices (>20%). In this study, we propose to design photoanodes with photonic ... [more ▼]

Perovskite compounds, used either in mesoscopic or planar solar cells, have allowed preparing highly efficient solid-state devices (>20%). In this study, we propose to design photoanodes with photonic structure in order to modulate light interaction. The periodic structure of porosity could add specific optical properties likely to increase light harvesting and reduce reflexion losses. Besides, current efficiencies reported for mesoscopic perovskite solar cells using an inorganic porous scaffold are slightly lower than those reported for planar perovskite cells mainly due to issues in perovskite infiltration. The control of the porous network architecture in terms of pore organization, size and connectivity could overcome this limitation. TiO2/perovskite and perovskite-only photoanodes with an inverse opal porous structure are prepared from templating techniques, using polystyrene beads as structuring agent. The photoanode microstructure is further characterized by scanning electron microscopy (SEM) and X-Ray diffraction (XRD). In parallel, light interaction is modeled in order to find the best compromise in terms of photonic architecture (pore size, organization, thickness…). [less ▲]

Detailed reference viewed: 57 (12 ULiège)
Full Text
See detailPhotonic photoanode for macroporous perovskite solar cells
Baron, Damien ULiege; Dewalque, Jennifer ULiege; Henrist, Catherine ULiege et al

Poster (2017, March 01)

Organic-inorganic metal halide perovskite solar cells (PSCs) have reached power conversion efficiencies over 20%. Two archetypal PSC architectures are reported in the literature: mesoporous and planar ... [more ▼]

Organic-inorganic metal halide perovskite solar cells (PSCs) have reached power conversion efficiencies over 20%. Two archetypal PSC architectures are reported in the literature: mesoporous and planar PSCs. In the former one, a mesoporous TiO2 scaffold is incorporated into the cell. Because sizes of the mesopores are typically small compared to wavelengths of visible light, the scaffold barely scatters light. In this work, we propose to periodically structure a porous TiO2 scaffold incorporating pores with diameters comparable to wavelengths of visible light thanks to the use of colloidal crystal templating fabrication method. The resulting TiO2 scaffold filled with perovskite will constitute an opal-like photonic crystal incorporated in the solar cell, which will strongly interact with light. Through Finite Difference Time Domain (FDTD) simulations, we demonstrate that the photonic crystal induces resonances that can be exploited to modulate light harvesting in the macroporous TiO2 layer. Sunlight absorption by the PSC will be presented and discussed with dependency of pore sizes and number of opal layers. [less ▲]

Detailed reference viewed: 148 (19 ULiège)