References of "Augereau, J.-C"
     in
Bookmark and Share    
Full Text
See detailSPHERE+: Imaging young Jupiters down to the snowline
Boccaletti, A.; Chauvin, G.; Mouillet, D. et al

E-print/Working paper (2020)

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating ... [more ▼]

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHERE's scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei. [less ▲]

Detailed reference viewed: 25 (1 ULiège)
Full Text
Peer Reviewed
See detailSpatially resolved spectroscopy of the debris disk HD 32297. Further evidence of small dust grains
Bhowmik, T.; Boccaletti, A.; Thébault, P. et al

in Astronomy and Astrophysics (2019), 630

Context. Spectro-photometry of debris disks in total intensity and polarimetry can provide new insight into the properties of the dust grains therein (size distribution and optical properties). <BR ... [more ▼]

Context. Spectro-photometry of debris disks in total intensity and polarimetry can provide new insight into the properties of the dust grains therein (size distribution and optical properties). <BR /> Aims: We aim to constrain the morphology of the highly inclined debris disk HD 32297. We also intend to obtain spectroscopic and polarimetric measurements to retrieve information on the particle size distribution within the disk for certain grain compositions. <BR /> Methods: We observed HD 32297 with SPHERE in Y, J, and H bands in total intensity and in J band in polarimetry. The observations are compared to synthetic models of debris disks and we developed methods to extract the photometry in total intensity overcoming the data-reduction artifacts, namely the self-subtraction. The spectro-photometric measurements averaged along the disk mid-plane are then compared to model spectra of various grain compositions. <BR /> Results: These new images reveal the very inner part of the system as close as 0.15″. The disk image is mostly dominated by the forward scattering making one side (half- ellipse) of the disk more visible, but observations in total intensity are deep enough to also detect the back side for the very first time. The images as well as the surface brightness profiles of the disk rule out the presence of a gap as previously proposed. We do not detect any significant asymmetry between the northeast and southwest sides of the disk. The spectral reflectance features a "gray to blue" color which is interpreted as the presence of grains far below the blowout size. <BR /> Conclusions: The presence of sub-micron grains in the disk is suspected to be the result of gas drag and/or "avalanche mechanisms". The blue color of the disk could be further investigated with additional total intensity and polarimetric observations in K and H bands respectively to confirm the spectral slope and the fraction of polarization. <P />Reduced images are also available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/630/A85">http://cdsarc.u-strasbg.fr/viz- bin/cat/J/A+A/630/A85</A>Based on data collected at the European Southern Observatory, Chile under the programs 098.C-0686(A) and 098.C-0686(B). [less ▲]

Detailed reference viewed: 13 (1 ULiège)
Full Text
Peer Reviewed
See detailTwo cold belts in the debris disk around the G-type star NZ Lupi
Boccaletti, A.; Thébault, P.; Pawellek, N. et al

in Astronomy and Astrophysics (2019), 625

Context. Planetary systems hold the imprint of the formation and of the evolution of planets especially at young ages, and in particular at the stage when the gas has dissipated leaving mostly secondary ... [more ▼]

Context. Planetary systems hold the imprint of the formation and of the evolution of planets especially at young ages, and in particular at the stage when the gas has dissipated leaving mostly secondary dust grains. The dynamical perturbation of planets in the dust distribution can be revealed with high-contrast imaging in a variety of structures. <BR /> Aims: SPHERE, the high-contrast imaging device installed at the VLT, was designed to search for young giant planets in long period, but is also able to resolve fine details of planetary systems at the scale of astronomical units in the scattered-light regime. As a young and nearby star, NZ Lup was observed in the course of the SPHERE survey. A debris disk had been formerly identified with HST/NICMOS. <BR /> Methods: We observed this system in the near-infrared with the camera in narrow and broad band filters and with the integral field spectrograph. High contrasts are achieved by the mean of pupil tracking combined with angular differential imaging algorithms. <BR /> Results: The high angular resolution provided by SPHERE allows us to reveal a new feature in the disk which is interpreted as a superimposition of two belts of planetesimals located at stellocentric distances of 85 and 115 au, and with a mutual inclination of about 5°. Despite the very high inclination of the disk with respect to the line of sight, we conclude that the presence of a gap, that is, a void in the dust distribution between the belts, is likely. <BR /> Conclusions: We discuss the implication of the existence of two belts and their relative inclination with respect to the presence of planets. <P />Reduced images of Fig. 1 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-stras bg.fr">http://cdsarc.u-strasbg.fr</A>(ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/625/A21">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/625/A21</A>Based on data collected at the European Southern Observatory, Chile under programs 097.C-0523, 097.C-0865, 198.C-0209. [less ▲]

Detailed reference viewed: 19 (2 ULiège)
Full Text
Peer Reviewed
See detailInvestigating the presence of two belts in the HD 15115 system
Engler, N.; Boccaletti, A.; Schmid, H. M. et al

in Astronomy and Astrophysics (2019), 622

Context. High-contrast instruments like SPHERE (Spectro- Polarimetric High-contrast Exoplanet REsearch) enable spatial resolution of young planetary systems and allow us to study the connection between ... [more ▼]

Context. High-contrast instruments like SPHERE (Spectro- Polarimetric High-contrast Exoplanet REsearch) enable spatial resolution of young planetary systems and allow us to study the connection between planets and the dust contained in debris discs by the gravitational influence a planet can have on its environment. <BR /> Aims: We present new observations of the edge-on debris disc around HD 15115 (F star at 48.2 pc) obtained in the near-IR. We search for observational evidence for a second inner planetesimal ring in the system. <BR /> Methods: We obtained total intensity and polarimetric data in the broad bands J and H and processed the data with differential imaging techniques achieving an angular resolution of about 40 mas. A grid of models describing the spatial distribution of the grains in the disc is generated to constrain the geometric parameters of the disc and to explore the presence of a second belt. We perform a photometric analysis of the data and compare disc brightness in two bands in scattered and in polarized light. <BR /> Results: We observe an axisymmetric planetesimal belt with a radius of 2'', an inclination of 85.8° ± 0.7° and position angle of 278.9° ± 0.1°. The photometric analysis shows that the west side is 2.5 times brighter in total intensity than the east side in both bands, while for polarized light in the J band this ratio is only 1.25. We also find that the J-H colour of the disc appears to be red for the radial separations r ≲ 2'' and is getting bluer for the larger separations. The maximum polarization fraction is 15-20% at r 2.5''. The polarized intensity image shows some structural features inside the belt which can be interpreted as an additional inner belt. <BR /> Conclusions: The apparent change of disc colour from red to blue with an increasing radial separation from the star could be explained by the decreasing average grain size with distance. The presence of an inner belt slightly inclined with respect to the main planetesimal belt is suspected from the data but the analysis and modelling presented here cannot establish a firm conclusion due to the faintness of the disc and its high inclination. <P />Based on data collected at the European Southern Observatory, Chile under programs 098.C-0686 and 096.C-0640. [less ▲]

Detailed reference viewed: 17 (2 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a planetary-mass companion within the gap of the transition disk around PDS 70
Keppler, M.; Benisty, M.; Müller, A. et al

in Astronomy and Astrophysics (2018), 617

Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very ... [more ▼]

Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features. <BR /> Aims: In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk-planet interactions and other evolutionary processes. <BR /> Methods: We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes. <BR /> Results: We detect a point source within the gap of the disk at about 195 mas ( 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than 17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains. <BR /> Conclusions: The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres, and evolutionary models. <P />Based on observations performed with ESO Telescopes at the Paranal Observatory under programmes 095.C-0298, 095.C-0404, 096.C-0333, 097.C-0206, 097.C-1001, and 099.C-0891.The reduced images and datacubes are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/617/A44">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/617/A44</A> [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailResolving faint structures in the debris disk around TWA 7. Tentative detections of an outer belt, a spiral arm, and a dusty cloud
Olofsson, J.; van Holstein, R. G.; Boccaletti, A. et al

in Astronomy and Astrophysics (2018), 617

Context. Debris disks are the intrinsic by-products of the star and planet formation processes. Most likely due to instrumental limitations and their natural faintness, little is known about debris disks ... [more ▼]

Context. Debris disks are the intrinsic by-products of the star and planet formation processes. Most likely due to instrumental limitations and their natural faintness, little is known about debris disks around low mass stars, especially when it comes to spatially resolved observations. <BR /> Aims: We present new VLT/SPHERE IRDIS dual- polarization imaging (DPI) observations in which we detect the dust ring around the M2 spectral type star TWA 7. Combined with additional angular differential imaging observations we aim at a fine characterization of the debris disk and setting constraints on the presence of low-mass planets. <BR /> Methods: We modeled the SPHERE DPI observations and constrain the location of the small dust grains, as well as the spectral energy distribution of the debris disk, using the results inferred from the observations, and performed simple N-body simulations. <BR /> Results: We find that the dust density distribution peaks at 0.72'' (25 au), with a very shallow outer power-law slope, and that the disk has an inclination of 13° with a position angle of 91° east of north. We also report low signal-to-noise ratio detections of an outer belt at a distance of 1.5'' ( 52 au) from the star, of a spiral arm in the southern side of the star, and of a possible dusty clump at 0.11''. These findings seem to persist over timescales of at least a year. Using the intensity images, we do not detect any planets in the close vicinity of the star, but the sensitivity reaches Jovian planet mass upper limits. We find that the SED is best reproduced with an inner disk at 0.2'' ( 7 au) and another belt at 0.72'' (25 au). <BR /> Conclusions: We report the detections of several unexpected features in the disk around TWA 7. A yet undetected 100M[SUB]⊕[/SUB] planet with a semi-major axis at 20-30 au could possibly explain the outer belt as well as the spiral arm. We conclude that stellar winds are unlikely to be responsible for the spiral arm. <P />Based on observations made with ESO Telescopes at the Paranal Observatory under programs ID 095.C-0298, 097.C-0319, 098.C-0155, and 198.C-0209. [less ▲]

Detailed reference viewed: 24 (2 ULiège)
Full Text
Peer Reviewed
See detailProspects for the characterisation of exo-zodiacal dust with the VLTI
Ertel, S.; Absil, Olivier ULiege; Defrere, Denis ULiege et al

in Experimental Astronomy (2018), 46(3), 401411

Exo-zodiacal dust, exozodi for short, is warm (∼300 K) or hot (up to ∼2000 K) dust found in the inner regions of planetary systems around main sequence stars. In analogy to our own zodiacal dust, it may ... [more ▼]

Exo-zodiacal dust, exozodi for short, is warm (∼300 K) or hot (up to ∼2000 K) dust found in the inner regions of planetary systems around main sequence stars. In analogy to our own zodiacal dust, it may be located in or near the habitable zone or closer in, down to the dust sublimation distance. The study of the properties, distribution, and evolution of exozodis can inform about the architecture and dynamics of the innermost regions of planetary systems, close to their habitable zones. On the other hand, the presence of large amounts of exo-zodiacal dust may be an obstacle for future space missions aiming to image Earth-like exoplanets. The dust can be the most luminous component of extrasolar planetary systems, but predominantly emits in the near- to mid-infrared where it is outshone by the host star. Interferometry provides a unique method of separating the dusty from the stellar emission. We discuss the prospects of exozodi observations with the next generation VLTI instruments and summarize critical instrument specifications. © 2018, Springer Nature B.V. [less ▲]

Detailed reference viewed: 24 (4 ULiège)
Full Text
Peer Reviewed
See detailVLT/SPHERE astrometric confirmation and orbital analysis of the brown dwarf companion HR 2562 B
Maire, Anne-Lise ULiege; Rodet, L.; Lazzoni, C. et al

in Astronomy and Astrophysics (2018), 615

Context. A low-mass brown dwarf has recently been imaged around HR 2562 (HD 50571), a star hosting a debris disk resolved in the far infrared. Interestingly, the companion location is compatible with an ... [more ▼]

Context. A low-mass brown dwarf has recently been imaged around HR 2562 (HD 50571), a star hosting a debris disk resolved in the far infrared. Interestingly, the companion location is compatible with an orbit coplanar with the disk and interior to the debris belt. This feature makes the system a valuable laboratory to analyze the formation of substellar companions in a circumstellar disk and potential disk- companion dynamical interactions. <BR /> Aims: We aim to further characterize the orbital motion of HR 2562 B and its interactions with the host star debris disk. <BR /> Methods: We performed a monitoring of the system over 10 months in 2016 and 2017 with the VLT/SPHERE exoplanet imager. <BR /> Results: We confirm that the companion is comoving with the star and detect for the first time an orbital motion at high significance, with a current orbital motion projected in the plane of the sky of 25 mas ( 0.85 au) per year. No orbital curvature is seen in the measurements. An orbital fit of the SPHERE and literature astrometry of the companion without priors on the orbital plane clearly indicates that its orbit is (quasi-)coplanar with the disk. To further constrain the other orbital parameters, we used empirical laws for a companion chaotic zone validated by N-body simulations to test the orbital solutions that are compatible with the estimated disk cavity size. Non- zero eccentricities (>0.15) are allowed for orbital periods shorter than 100 yr, while only moderate eccentricities up to 0.3 for orbital periods longer than 200 yr are compatible with the disk observations. A comparison of synthetic Herschel images to the real data does not allow us to constrain the upper eccentricity of the companion. <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 198.C-0209. [less ▲]

Detailed reference viewed: 23 (2 ULiège)
Full Text
Peer Reviewed
See detailObservations of fast-moving features in the debris disk of AU Mic on a three-year timescale: Confirmation and new discoveries
Boccaletti, A.; Sezestre, E.; Lagrange, A.-M. et al

in Astronomy and Astrophysics (2018), 614

Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other ... [more ▼]

Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other debris disk and that move outward at high velocities. <BR /> Aims: We initiated a monitoring program with the following objectives: (1) track the location of the structures and better constrain their projected speeds, (2) search for new features emerging closer in, and ultimately (3) understand the mechanism responsible for the motion and production of the disk features. <BR /> Methods: AU Mic was observed at 11 different epochs between August 2014 and October 2017 with the IR camera and spectrograph of SPHERE. These high-contrast imaging data were processed with a variety of angular, spectral, and polarimetric differential imaging techniques to reveal the faintest structures in the disk. We measured the projected separations of the features in a systematic way for all epochs. We also applied the very same measurements to older observations from the Hubble Space Telescope (HST) with the visible cameras STIS and ACS. <BR /> Results: The main outcomes of this work are (1) the recovery of the five southeastern broad arch-like structures we identified in our first study, and confirmation of their fast motion (projected speed in the range 4-12 km s[SUP]-1[/SUP]); (2) the confirmation that the very first structures observed in 2004 with ACS are indeed connected to those observed later with STIS and now SPHERE; (3) the discovery of two new very compact structures at the northwest side of the disk (at 0.40'' and 0.55'' in May 2015) that move to the southeast at low speed; and (4) the identification of a new arch-like structure that might be emerging at the southeast side at about 0.4'' from the star (as of May 2016). <BR /> Conclusions: Although the exquisite sensitivity of SPHERE allows one to follow the evolution not only of the projected separation, but also of the specific morphology of each individual feature, it remains difficult to distinguish between possible dynamical scenarios that may explain the observations. Understanding the exact origin of these features, the way they are generated, and their evolution over time is certainly a significant challenge in the context of planetary system formation around M stars. <P />Based on data collected at the European Southern Observatory, Chile under programs 060.A-9249, 095.C-0298, 096.C-0625, 097.C-0865, 097.C-0813, 598.C-0359.A movie associated to Fig. 6 is available at <A h ref="https://www.aanda.org/10.1051/0004-6361/201732462/olm">http://https ://www.aanda.org</A> [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailA near-infrared interferometric survey of debris-disc stars. VI. Extending the exozodiacal light survey with CHARA/JouFLU
Nuñez, P. D.; Scott, N. J.; Mennesson, B. et al

in Astronomy and Astrophysics (2017), 608

We report the results of high-angular-resolution observations that search for exozodiacal light in a sample of main sequence stars and sub-giants. Using the "jouvence" of the fiber linked unit for optical ... [more ▼]

We report the results of high-angular-resolution observations that search for exozodiacal light in a sample of main sequence stars and sub-giants. Using the "jouvence" of the fiber linked unit for optical recombination (JouFLU) at the center for high angular resolution astronomy (CHARA) telescope array, we have observed a total of 44 stars. Out of the 44 stars, 33 are new stars added to the initial, previously published survey of 42 stars performed at CHARA with the fiber linked unit for optical recombination (FLUOR). Since the start of the survey extension, we have detected a K-band circumstellar excess for six new stars at the 1% level or higher, four of which are known or candidate binaries, and two for which the excess could be attributed to exozodiacal dust. We have also performed follow-up observations of 11 of the stars observed in the previously published survey and found generally consistent results. We do however detect a significantly larger excess on three of these follow-up targets: Altair, υ And and κ CrB. Interestingly, the last two are known exoplanet host stars. We perform a statistical analysis of the JouFLU and FLUOR samples combined, which yields an overall exozodi detection rate of . We also find that the K-band excess in FGK-type stars correlates with the existence of an outer reservoir of cold (≲100 K) dust at the 99% confidence level, while the same cannot be said for A-type stars. [less ▲]

Detailed reference viewed: 23 (2 ULiège)
Full Text
Peer Reviewed
See detailThe Circumstellar Disk HD 169142: Gas, Dust, and Planets Acting in Concert?
Pohl, A.; Benisty, M.; Pinilla, P. et al

in Astrophysical Journal (2017), 850

HD 169142 is an excellent target for investigating signs of planet-disk interaction due to previous evidence of gap structures. We perform J-band (̃1.2 μm) polarized intensity imaging of HD 169142 with ... [more ▼]

HD 169142 is an excellent target for investigating signs of planet-disk interaction due to previous evidence of gap structures. We perform J-band (̃1.2 μm) polarized intensity imaging of HD 169142 with VLT/SPHERE. We observe polarized scattered light down to 0.″16 (̃19 au) and find an inner gap with a significantly reduced scattered-light flux. We confirm the previously detected double-ring structure peaking at 0.″18 (̃21 au) and 0.″56 (̃66 au) and marginally detect a faint third gap at 0.″70-0.″73 (̃82-85 au). We explore dust evolution models in a disk perturbed by two giant planets, as well as models with a parameterized dust size distribution. The dust evolution model is able to reproduce the ring locations and gap widths in polarized intensity but fails to reproduce their depths. However, it gives a good match with the ALMA dust continuum image at 1.3 mm. Models with a parameterized dust size distribution better reproduce the gap depth in scattered light, suggesting that dust filtration at the outer edges of the gaps is less effective. The pileup of millimeter grains in a dust trap and the continuous distribution of small grains throughout the gap likely require more efficient dust fragmentation and dust diffusion in the dust trap. Alternatively, turbulence or charging effects might lead to a reservoir of small grains at the surface layer that is not affected by the dust growth and fragmentation cycle dominating the dense disk midplane. The exploration of models shows that extracting planet properties such as mass from observed gap profiles is highly degenerate. <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO program 095.C-0273. [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a warm, dusty giant planet around HIP 65426
Chauvin, G.; Desidera, S.; Lagrange, A.-M. et al

in Astronomy and Astrophysics (2017), 605

<BR /> Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high ... [more ▼]

<BR /> Aims: The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories. <BR /> Methods: We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the 17 Myr old Lower Centaurus-Crux association. <BR /> Results: At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 μm indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M[SUB]Jup[/SUB], T[SUB]eff[/SUB] = 1300-1600 K and R = 1.5 ± 0.1 R[SUB]Jup[/SUB] giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log (g) = 4.0-5.0 with smaller radii (1.0-1.3 R[SUB]Jup[/SUB]). <BR /> Conclusions: Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution. <P />Based on observations collected at La Silla and Paranal Observatory, ESO (Chile) Program ID: 097.C-0865 and 098.C-0209 (SPHERE).The planet spectrum is only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/605/L9">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/605/L9</A> [less ▲]

Detailed reference viewed: 21 (0 ULiège)
Full Text
Peer Reviewed
See detailNear-infrared scattered light properties of the HR 4796 A dust ring. A measured scattering phase function from 13.6° to 166.6°
Milli, J.; Vigan, A.; Mouillet, D. et al

in Astronomy and Astrophysics (2017), 599

Context. HR 4796 A is surrounded by a debris disc, observed in scattered light as an inclined ring with a high surface brightness. Past observations have raised several questions. First, a strong ... [more ▼]

Context. HR 4796 A is surrounded by a debris disc, observed in scattered light as an inclined ring with a high surface brightness. Past observations have raised several questions. First, a strong brightness asymmetry detected in polarised reflected light has recently challenged our understanding of scattering by the dust particles in this system. Secondly, the morphology of the ring strongly suggests the presence of planets, although no planets have been detected to date. <BR /> Aims: We aim here at measuring with high accuracy the morphology and photometry of the ring in scattered light, in order to derive the phase function of the dust and constrain its near-infrared spectral properties. We also want to constrain the presence of planets and set improved constraints on the origin of the observed ring morphology. <BR /> Methods: We obtained high-angular resolution coronagraphic images of the circumstellar environment around HR 4796 A with VLT/SPHERE during the commissioning of the instrument in May 2014 and during guaranteed-time observations in February 2015. The observations reveal for the first time the entire ring of dust, including the semi-minor axis that was previously hidden either behind the coronagraphic spot or in the speckle noise. <BR /> Results: We determine empirically the scattering phase function of the dust in the H band from 13.6° to 166.6°. It shows a prominent peak of forward scattering, never detected before, for scattering angles below 30°. We analyse the reflectance spectra of the disc from the 0.95 μm to 1.6 μm, confirming the red colour of the dust, and derive detection limits on the presence of planetary mass objects. <BR /> Conclusions: We confirm which side of the disc is inclined towards the Earth. The analysis of the phase function, especially below 45°, suggests that the dust population is dominated by particles much larger than the observation wavelength, of about 20 μm. Compact Mie grains of this size are incompatible with the spectral energy distribution of the disc, however the observed rise in scattering efficiency beyond 50° points towards aggregates which could reconcile both observables. We do not detect companions orbiting the star, but our high-contrast observations provide the most stringent constraints yet on the presence of planets responsible for the morphology of the dust. [less ▲]

Detailed reference viewed: 24 (1 ULiège)
Full Text
Peer Reviewed
See detailFirst scattered-light images of the gas-rich debris disk around 49 Ceti
Choquet, É.; Milli, J.; Wahhaj, Z. et al

in Astrophysical Journal. Letters (2017), 834(2), 12

We present the first scattered-light images of the debris disk around 49 ceti, a ~40 Myr A1 main sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and ... [more ▼]

We present the first scattered-light images of the debris disk around 49 ceti, a ~40 Myr A1 main sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS F110W images, as well as new coronagraphic H band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.1" (65 AU) to 4.6" (250 AU), and is seen at an inclination of 73degr, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M_Jup at projected separations beyond 20 AU from the star (0.34"). Comparison between the F110W and H-band images is consistent with a grey color of 49 ceti's dust, indicating grains larger than >2microns. Our photometric measurements indicate a scattering efficiency / infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 ceti and hypothetic scenarios for the gas nature and origin. [less ▲]

Detailed reference viewed: 27 (3 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a low-mass companion inside the debris ring surrounding the F5V star HD 206893
Milli, J.; Hibon, P.; Christiaens, Valentin ULiege et al

in Astronomy and Astrophysics (2017), 597

<BR /> Aims: Uncovering the ingredients and the architecture of planetary systems is a very active field of research that has fuelled many new theories on giant planet formation, migration, composition ... [more ▼]

<BR /> Aims: Uncovering the ingredients and the architecture of planetary systems is a very active field of research that has fuelled many new theories on giant planet formation, migration, composition, and interaction with the circumstellar environment. We aim at discovering and studying new such systems, to further expand our knowledge of how low-mass companions form and evolve. <BR /> Methods: We obtained high-contrast H-band images of the circumstellar environment of the F5V star HD 206893, known to host a debris disc never detected in scattered light. These observations are part of the SPHERE High Angular Resolution Debris Disc Survey (SHARDDS) using the InfraRed Dual-band Imager and Spectrograph (IRDIS) installed on VLT/SPHERE. <BR /> Results: We report the detection of a source with a contrast of 3.6 × 10[SUP]-5[/SUP] in the H-band, orbiting at a projected separation of 270 milliarcsec or 10 au, corresponding to a mass in the range 24 to 73 M[SUB]Jup[/SUB] for an age of the system in the range 0.2 to 2 Gyr. The detection was confirmed ten months later with VLT/NaCo, ruling out a background object with no proper motion. A faint extended emission compatible with the disc scattered light signal is also observed. <BR /> Conclusions: The detection of a low-mass companion inside a massive debris disc makes this system an analog of other young planetary systems such as β Pictoris, HR 8799 or HD 95086 and requires now further characterisation of both components to understand their interactions. [less ▲]

Detailed reference viewed: 76 (10 ULiège)
Full Text
Peer Reviewed
See detailShadows cast on the transition disk of HD 135344B. Multiwavelength VLT/SPHERE polarimetric differential imaging
Stolker, T.; Dominik, C.; Avenhaus, H. et al

in Astronomy and Astrophysics (2016), 595

Context. The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission ... [more ▼]

Context. The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. <BR /> Aims: We aim to study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. <BR /> Methods: We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in the R and I-bands and with IRDIS in the Y and J-bands. The scattered light images and surface brightness profiles are used to study in detail structures in the disk surface and brightness variations. We have constructed a 3D radiative transfer model to support the interpretation of several detected shadow features. <BR /> Results: The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected (r[SUP]2[/SUP]-scaled) images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large (2πa ≳ λ) aggregate dust grains in the disk surface. Part of the non- azimuthal polarization signal in the U[SUB]φ[/SUB] image of the J-band observation can be attributed to multiple scattering in the disk. <BR /> Conclusions: The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions. Possible explanations for the presence of the shadows include a 22° misaligned inner disk, a warped disk region that connects the inner disk with the outer disk, and variable or transient phenomena such as a perturbation of the inner disk or an asymmetric accretion flow. The spiral arms are best explained by one or multiple protoplanets in the exterior of the disk although no gap is detected beyond the spiral arms up to 1.''0. <P />Based on observations collected at the European Southern Observatory, Chile, ESO No. 095.C-0273(A) and 095.C-0273(D). [less ▲]

Detailed reference viewed: 23 (1 ULiège)
Full Text
Peer Reviewed
See detailA near-infrared interferometric survey of debris-disc stars. V. PIONIER search for variability
Ertel, S.; Defrere, Denis ULiege; Absil, Olivier ULiege et al

in Astronomy and Astrophysics (2016), 595

Context. Extended circumstellar emission has been detected within a few 100 milli-arcsec around ≳10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other ... [more ▼]

Context. Extended circumstellar emission has been detected within a few 100 milli-arcsec around ≳10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results or non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon. Aims: We aim to demonstrate the persistence of the phenomenon over the timescale of a few years and to search for variability of our previously detected excesses. Methods: Using Very Large Telescope Interferometer (VLTI)/Precision Integrated Optics Near Infrared ExpeRiment (PIONIER) in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected using the same observation technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses. Results: In 12 of 16 follow-up observations, an excess is re-detected with a significance of > 2σ, and in 7 of 16 follow-up observations significant excess (> 3σ) is re-detected. We statistically demonstrate with very high confidence that the phenomenon persists for the majority of the systems. We also present the first detection of potential variability in two sources. Conclusions: We conclude that the phenomenon responsible for the excesses persists over the timescale of a few years for the majority of the systems. However, we also find that variability intrinsic to a target can cause it to have no significant excess at the time of a specific observation. [less ▲]

Detailed reference viewed: 24 (10 ULiège)
Full Text
Peer Reviewed
See detailAzimuthal asymmetries in the debris disk around HD 61005. A massive collision of planetesimals?
Olofsson, J.; Samland, M.; Avenhaus, H. et al

in Astronomy and Astrophysics (2016), 591

Context. Debris disks offer valuable insights into the latest stages of circumstellar disk evolution, and can possibly help us to trace the outcomes of planetary formation processes. In the age range 10 ... [more ▼]

Context. Debris disks offer valuable insights into the latest stages of circumstellar disk evolution, and can possibly help us to trace the outcomes of planetary formation processes. In the age range 10 to 100 Myr, most of the gas is expected to have been removed from the system, giant planets (if any) must have already been formed, and the formation of terrestrial planets may be on-going. Pluto-sized planetesimals, and their debris released in a collisional cascade, are under their mutual gravitational influence, which may result into non-axisymmetric structures in the debris disk. <BR /> Aims: High angular resolution observations are required to investigate these effects and constrain the dynamical evolution of debris disks. Furthermore, multi-wavelength observations can provide information about the dust dynamics by probing different grain sizes. <BR /> Methods: Here we present new VLT/SPHERE and ALMA observations of the debris disk around the 40 Myr-old solar- type star HD 61005. We resolve the disk at unprecedented resolution both in the near-infrared (in scattered and polarized light) and at millimeter wavelengths. We perform a detailed modeling of these observations, including the spectral energy distribution. <BR /> Results: Thanks to the new observations, we propose a solution for both the radial and azimuthal distribution of the dust grains in the debris disk. We find that the disk has a moderate eccentricity (e ~ 0.1) and that the dust density is two times larger at the pericenter compared to the apocenter. <BR /> Conclusions: With no giant planets detected in our observations, we investigate alternative explanations besides planet- disk interactions to interpret the inferred disk morphology. We postulate that the morphology of the disk could be the consequence of a massive collision between ~1000 km-sized bodies at ~61 au. If this interpretation holds, it would put stringent constraints on the formation of massive planetesimals at large distances from the star. <P />Based on observations made with ESO Telescopes at the Paranal Observatory under programs ID 095.C-0298 and 095.C-0273. Based on Herschel observations, OBSIDs: 1342270977, 1342270978, 1342270979, 1342270989, and 1342255147. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The reduced images as FITS files, and data of Fig. 1 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/591/A108">http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/591/A108</A> [less ▲]

Detailed reference viewed: 18 (0 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of concentric broken rings at sub-arcsec separations in the HD 141569A gas-rich, debris disk with VLT/SPHERE
Perrot, C.; Boccaletti, A.; Pantin, E. et al

in Astronomy and Astrophysics (2016), 590

Context. Transition disks correspond to a short stage between the young protoplanetary phase and older debris phase. Along this evolutionary sequence, the gas component disappears leaving room for a dust ... [more ▼]

Context. Transition disks correspond to a short stage between the young protoplanetary phase and older debris phase. Along this evolutionary sequence, the gas component disappears leaving room for a dust-dominated environment where already-formed planets signpost their gravitational perturbations. <BR /> Aims: We endeavor to study the very inner region of the well-known and complex debris, but still gas-rich disk, around HD 141569A using the exquisite high-contrast capability of SPHERE at the VLT. Recent near-infrared (IR) images suggest a relatively depleted cavity within ~200 au, while former mid-IR data indicate the presence of dust at separations shorter than ~100 au. <BR /> Methods: We obtained multi-wavelength images in the near-IR in J, H2, H3 and Ks-bands with the IRDIS camera and a 0.95-1.35 μm spectral data cube with the IFS. Data were acquired in pupil-tracking mode, thus allowing for angular differential imaging. <BR /> Results: We discovered several new structures inside 1'', of which the most prominent is a bright ring with sharp edges (semi-major axis: 0.4'') featuring a strong north-south brightness asymmetry. Other faint structures are also detected from 0.4'' to 1'' in the form of concentric ringlets and at least one spiral arm. Finally, the VISIR data at 8.6 μm suggests the presence of an additional dust population closer in. Besides, we do not detect companions more massive than 1-3 mass of Jupiter. <BR /> Conclusions: The performance of SPHERE allows us to resolve the extended dust component, which was previously detected at thermal and visible wavelengths, into very complex patterns with strong asymmetries; the nature of these asymmetries remains to be understood. Scenarios involving shepherding by planets or dust-gas interactions will have to be tested against these observations. Based on data collected at the European Southern Observatory, Chile, ESO programs 095.C-0381 and 095.C-0298. [less ▲]

Detailed reference viewed: 54 (5 ULiège)
Full Text
Peer Reviewed
See detailThe SPHERE view of the planet-forming disk around HD 100546
Garufi, Antonio; Quanz, S. P.; Schmid, H. M. et al

in Astronomy and Astrophysics (2016), 588

Context. The mechanisms governing planet formation are not fully understood. A new era of high-resolution imaging of protoplanetary disks has recently started, thanks to new instruments such as SPHERE ... [more ▼]

Context. The mechanisms governing planet formation are not fully understood. A new era of high-resolution imaging of protoplanetary disks has recently started, thanks to new instruments such as SPHERE, GPI, and ALMA. The planet formation process can now be directly studied by imaging both planetary companions embedded in disks and their effect on disk morphology. <BR /> Aims: We image disk features that could be potential signs of planet-disk interaction with unprecedented spatial resolution and sensitivity. Two companion candidates have been claimed in the disk around the young Herbig Ae/Be star HD 100546. Thus, this object serves as an excellent target for our investigation of the natal environment of giant planets. <BR /> Methods: We exploit the power of extreme adaptive optics operating in conjunction with the new high- contrast imager SPHERE to image HD 100546 in scattered light. We obtained the first polarized light observations of this source in the visible (with resolution as fine as 2 AU) and new H and K band total intensity images that we analyzed with the pynpoint package. <BR /> Results: The disk shows a complex azimuthal morphology, where multiple scattering of photons most likely plays an important role. High brightness contrasts and arm-like structures are ubiquitous in the disk. A double-wing structure (partly due to angular differential imaging processing) resembles a morphology newly observed in inclined disks. Given the cavity size in the visible (11 AU), the CO emission associated to the planet candidate c might arise from within the circumstellar disk. We find an extended emission in the K band at the expected location of b. The surrounding large-scale region is the brightest in scattered light. There is no sign of any disk gap associated to b. <P />Based on data collected at the European Southern Observatory, Chile (ESO Programs 095.C-0273(A) and 095.C-0298(A)). [less ▲]

Detailed reference viewed: 28 (1 ULiège)