References of "Allard, F"
     in
Bookmark and Share    
Full Text
See detailSPHERE+: Imaging young Jupiters down to the snowline
Boccaletti, A.; Chauvin, G.; Mouillet, D. et al

E-print/Working paper (2020)

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating ... [more ▼]

SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging of exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHERE's scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei. [less ▲]

Detailed reference viewed: 25 (1 ULiège)
Full Text
Peer Reviewed
See detailThe GJ 504 system revisited. Combining interferometric, radial velocity, and high contrast imaging data
Bonnefoy, M.; Perraut, K.; Lagrange, A.-M. et al

in Astronomy and Astrophysics (2018), 618

Context. The G-type star GJ504A is known to host a 3-35 M[SUB]Jup[/SUB] companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories ... [more ▼]

Context. The G-type star GJ504A is known to host a 3-35 M[SUB]Jup[/SUB] companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. <BR /> Aims: We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. <BR /> Methods: We used the CHARA interferometer to measure GJ504A's angular diameter and obtained an estimation of its radius in combinationwith the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.02-2.25 μm) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE,Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-to-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion'sorbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. <BR /> Results: We report a radius of 1.35 ± 0.04 R[SUB]☉[/SUB] for GJ504A. The radius yields isochronal ages of 21 ± 2 Myr or 4.0 ± 1.8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162.4[SUB]-4.3[/SUB][SUP]+3.8[/SUP] degrees or 186.6[SUB]-3.8[/SUB][SUP]+4.3[/SUP] degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 1-4 μm SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (≤ 1.5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield T[SUB]eff[/SUB] = 550 ± 50 K for GJ504b and point toward a low surface gravity (3.5-4.0 dex). The accuracy on the metallicity value is limited by model-to-model systematics; it is not degenerate with the C/O ratio. We derive log L/L[SUB]☉[/SUB] = -6.15 ± 0.15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and T[SUB]eff[/SUB] yield masses of M = 1.3[SUB]-0.3[/SUB][SUP]+0.6[/SUP] M[SUB]Jup[/SUB] and M = 23[SUB]-9[/SUB][SUP]+10[/SUP] M[SUB]Jup[/SUB] for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b's orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90% prob.) more massive than 2.5 and 30 M[SUB]Jup[/SUB] with semi-major axes in the range 0.01-80 au for the young and old isochronal ages, respectively. <BR /> Conclusions: The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition. <P />Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs 093.C-0500, 095.C-0298, 096.C-0241, and 198.C-0209, and on interferometric observations obtained with the VEGA instrument on the CHARA Array. [less ▲]

Detailed reference viewed: 23 (1 ULiège)
Full Text
Peer Reviewed
See detailDynamical masses of M-dwarf binaries in young moving groups. I. The case of TWA 22 and GJ 2060
Rodet, L.; Bonnefoy, M.; Durkan, S. et al

in Astronomy and Astrophysics (2018), 618

Context. Evolutionary models are widely used to infer the mass of stars, brown dwarfs, and giant planets. Their predictions are thought to be less reliable at young ages (< 200 Myr) and in the low-mass ... [more ▼]

Context. Evolutionary models are widely used to infer the mass of stars, brown dwarfs, and giant planets. Their predictions are thought to be less reliable at young ages (< 200 Myr) and in the low-mass regime (< 1 M[SUB]☉[/SUB]). GJ 2060 AB and TWA 22 AB are two rare astrometric M-dwarf binaries, respectively members of the AB Doradus (AB Dor) and Beta Pictoris (β Pic) moving groups. As their dynamical mass can be measured to within a few years, they can be used to calibrate the evolutionary tracks and set new constraints on the age of young moving groups. <BR /> Aims: We provide the first dynamical mass measurement of GJ 2060 and a refined measurement of the total mass of TWA 22. We also characterize the atmospheric properties of the individual components of GJ 2060 that can be used as inputs to the evolutionary models. <BR /> Methods: We used NaCo and SPHERE observations at VLT and archival Keck/NIRC2 data to complement the astrometric monitoring of the binaries. We combined the astrometry with new HARPS radial velocities (RVs) and FEROS RVs of GJ 2060. We used a Markov chain Monte-Carlo (MCMC) module to estimate posteriors on the orbital parameters and dynamical masses of GJ 2060 AB and TWA 22 AB from the astrometry and RVs. Complementary data obtained with the integral field spectrograph VLT/SINFONI were gathered to extract the individual near-infrared (1.1-2.5 μm) medium-resolution (R ̃ 1500 - 2000) spectra of GJ 2060 A and B. We compared the spectra to those of known objects and to grids of BT-SETTL model spectra to infer the spectral type, bolometric luminosities, and temperatures of those objects. <BR /> Results: We find a total mass of 0.18 ± 0.02 M[SUB]☉[/SUB] for TWA 22, which is in good agreement with model predictions at the age of the β Pic moving group. We obtain a total mass of 1.09 ± 0.10 M[SUB]☉[/SUB] for GJ 2060. We estimate a spectral type of M1 ± 0.5, L/L[SUB]☉[/SUB] = -1.20 ± 0.05 dex, and T[SUB]eff[/SUB] = 3700 ± 100 K for GJ 2060 A. The B component is a M3 ± 0.5 dwarf with L/L[SUB]☉[/SUB] = -1.63 ± 0.05 dex and T[SUB]eff[/SUB] = 3400 ± 100 K. The dynamical mass of GJ 2060 AB is inconsistent with the most recent models predictions (BCAH15, PARSEC) for an AB Dor age in the range 50-150 Myr. It is 10%-20% (1-2σ, depending on the assumed age) above the model's predictions, corresponding to an underestimation of 0.10-0.20 M[SUB]☉[/SUB]. Coevality suggests a young age for the system (̃50 Myr) according to most evolutionary models. <BR /> Conclusions: TWA 22 validates the predictions of recent evolutionary tracks at ̃20 Myr. On the other hand, we evidence a 1-2σ mismatch between the predicted and observed mass of GJ 2060 AB. This slight departure may indicate that one of the stars hosts a tight companion. Alternatively, this would confirm the model's tendency to underestimate the mass of young low-mass stars. [less ▲]

Detailed reference viewed: 22 (0 ULiège)
Full Text
Peer Reviewed
See detailFirst light of the VLT planet finder SPHERE. IV. Physical and chemical properties of the planets around HR8799
Bonnefoy, M.; Zurlo, A.; Baudino, J. L. et al

in Astronomy and Astrophysics (2016), 587

Context. The system of fourplanets discovered around the intermediate- mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and ... [more ▼]

Context. The system of fourplanets discovered around the intermediate- mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (~30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R ~ 30) spectra of HR8799 d and e with the SPHERE instrument (Paper III). <BR /> Aims: In this paper (Paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work. <BR /> Methods: We compare the available spectra, photometry, and spectral energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (T[SUB]eff[/SUB], log g, M/H). <BR /> Results: We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2σ) the whole set of spectrophotometric datapoints available for HR8799 d and e for T[SUB]eff[/SUB] = 1200 K, log g in the range 3.0-4.5, and M/H = +0.5. The models still fail to reproduce the SED of HR8799c and b. The determination of the metallicity, log g, and cloud thickness are degenerate. <BR /> Conclusions: Our empirical analysis and atmospheric modelling show that an enhanced content in dust and decreased CIA of H[SUB]2[/SUB] is certainly responsible for the deviation of the properties of the planet with respect to field dwarfs. The analysis suggests in addition that HR8799c and b have later spectral types than the two other planets, and therefore could both have lower masses. <P />Based on observations collected at the European Southern Observatory, Chile, during the commissioning of the SPHERE instrument [less ▲]

Detailed reference viewed: 22 (1 ULiège)
Full Text
Peer Reviewed
See detailCharacterization of the gaseous companion κ Andromedae b. New Keck and LBTI high-contrast observations
Bonnefoy, M.; Currie, T.; Marleau, G.-D. et al

in Astronomy and Astrophysics (2014), 562

Context. We previously reported the direct detection of a low-mass companion at a projected separation of 55 ± 2 AU around the B9-type star κ Andromedae. The properties of the system (mass ratio ... [more ▼]

Context. We previously reported the direct detection of a low-mass companion at a projected separation of 55 ± 2 AU around the B9-type star κ Andromedae. The properties of the system (mass ratio, separation) make it a benchmark for understanding the formation and evolution of gas giant planets and brown dwarfs on wide orbits. <BR /> Aims: We present new angular differential imaging (ADI) images of the system at 2.146 (K[SUB]s[/SUB]), 3.776 (L'), 4.052 (NB_4.05), and 4.78 μm (M') obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more accurate near-infrared photometry of the star with the MIMIR instrument. We aim to determine the near-infrared spectral energy distribution of the companion and use it to characterize the object. <BR /> Methods: We used analysis methods adapted to ADI to extract the companion flux. We compared the photometry of the object to reference young, and old objects and to a set of seven PHOENIX-based atmospheric models of cool objects accounting for the formation of dust. We used evolutionary models to derive mass estimates considering a wide range of plausible initial conditions. Finally, we used dedicated formation models to discuss the possible origin of the companion. <BR /> Results: We derive a more accurate J = 15.86 ± 0.21, H = 14.95 ± 0.13, K[SUB]s[/SUB] = 14.32 ± 0.09 mag for κ And b. We detect the companion in all our high-contrast observations. We confirm previous contrasts obtained at K[SUB]s[/SUB] and L' band. We derive NB_4.05 = 13.0 ± 0.2, and M' = 13.3 ± 0.3 mag and estimate log [SUB]10[/SUB](L/L[SUB]⊙[/SUB]) = -3.76 ± 0.06. Atmospheric models yield T[SUB]eff[/SUB] = 1900[SUP]+100[/SUP][SUB]-200[/SUB] K. They do not set any constraint on the surface gravity. "Hot-start" evolutionary models predict masses of 14[SUP]+25[/SUP][SUB]-2[/SUB] M[SUB]Jup[/SUB] based on the luminosity and temperature estimates, and when considering a conservative age range for the system (30[SUP]+120[/SUP][SUB]-10[/SUB] Myr), "warm-start" evolutionary tracks constrain the mass to M ≥ 10M[SUB]Jup[/SUB]. <BR /> Conclusions: The mass of κ Andromedae b mostly falls in the brown-dwarf regime, owing to remaining uncertainties in age and in mass-luminosity models. According to the formation models, disk instability in a primordial disk may account for the position and a wide range of plausible masses of κ And b. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Instituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.Appendices are available in electronic form at <A href="http://www.aanda.org/10.1051/0004-6361/201322119/olm">http://www.aanda.org</A> [less ▲]

Detailed reference viewed: 18 (4 ULiège)
Full Text
Peer Reviewed
See detailFIRST, a fibered aperture masking instrument. II. Spectroscopy of the Capella binary system at the diffraction limit
Huby, Elsa ULiege; Duchêne, G.; Marchis, F. et al

in Astronomy and Astrophysics (2013), 560

Aims: FIRST is a prototype instrument built to demonstrate the capabilities of the pupil remapping technique, using single-mode fibers and working at visible wavelengths. Our immediate objective is to ... [more ▼]

Aims: FIRST is a prototype instrument built to demonstrate the capabilities of the pupil remapping technique, using single-mode fibers and working at visible wavelengths. Our immediate objective is to demonstrate the high angular resolution capability of the instrument and to show that the spectral resolution of the instrument enables characterization of stellar companions. Methods: The FIRST-18 instrument is an improved version of FIRST-9 that simultaneously recombines two sets of nine fibers instead of one, thus greatly enhancing the (u, v) plane coverage. We report on observations of the binary system Capella at three epochs over a period of 14 months (≳4 orbital periods) with FIRST-18 mounted on the 3 m Shane telescope at Lick Observatory. The binary separation during our observations ranges from 0.8 to 1.2 times the diffraction limit of the telescope at the central wavelength of the spectral band. Results: We successfully resolved the Capella binary system at all epochs, with an astrometric precision as good as 1 mas under the best observing conditions. FIRST also gives access to the spectral flux ratio between the two components directly measured with an unprecedented spectral resolution of R ~ 300 over the 600-850 nm range. In particular, our data allow detection of the well-known overall slope of the flux ratio spectrum, leading to an estimation of the "pivot" wavelength of 0.64 ± 0.01 μm, at which the cooler component becomes the brightest. Spectral features arising from the difference in effective temperature of the two components (specifically the Hα line, TiO, and CN bands) have been used to constrain the stellar parameters. The effective temperatures we derive for both components are slightly lower (5-7%) than the well-established properties for this system. This difference mainly comes from deeper molecular features than those predicted by state-of-the-art stellar atmospheric models, suggesting that molecular line lists used in the photospheric models are incomplete and/or oscillator strengths are underestimated, most likely concerning the CN molecule. Conclusions: These results demonstrate the power of FIRST, which is a fibered pupil remapping-based instrument, in terms of high angular resolution and show that the direct measurement of the spectral flux ratio provides valuable information to characterize little known companions. [less ▲]

Detailed reference viewed: 10 (1 ULiège)
Full Text
Peer Reviewed
See detailPEGASE, an infrared interferometer to study stellar environments and low mass companions around nearby stars
Ollivier, M.; Absil, Olivier ULiege; Allard, F. et al

in Experimental Astronomy (2009), 23

PEGASE is a mission dedicated to the exploration of the environment (including habitable zone) of young and solar-type stars (particularly those in the DARWIN catalogue) and the observation of low mass ... [more ▼]

PEGASE is a mission dedicated to the exploration of the environment (including habitable zone) of young and solar-type stars (particularly those in the DARWIN catalogue) and the observation of low mass companions around nearby stars. It is a space interferometer project composed of three free flying spacecraft, respectively featuring two 40 cm siderostats and a beam combiner working in the visible and near infrared. It has been proposed to ESA as an answer to the first ``Cosmic Vision'' call for proposals, as an M mission. The concept also enables full-scale demonstration of space nulling interferometry operation for DARWIN. [less ▲]

Detailed reference viewed: 76 (9 ULiège)
Full Text
See detailPEGASE: a DARWIN/TPF pathfinder
Ollivier, M.; Le Duigou, J.-M.; Mourard, D. et al

in Aime, C.; Vakili, F. (Eds.) Direct Imaging of Exoplanets: Science & Techniques (2006)

The space mission PEGASE, proposed to the CNES (Centre National d'Etudes Spatiales = French Space Agency) in the framework of its call for scientific proposals : "formation flying missions", is a 2 ... [more ▼]

The space mission PEGASE, proposed to the CNES (Centre National d'Etudes Spatiales = French Space Agency) in the framework of its call for scientific proposals : "formation flying missions", is a 2-aperture interferometer, composed by 3 free flying satellites (2 siderostats and 1 beam combiner), allowing baselines from 50 to 500 m in both nulling and visibility modes. With an angular resolution of a few mas and a spectral resolution of several tens in the spectral range 2.5-5 microns, PEGASE has several goals:science : spectroscopy of hot jupiters (Pegasides) and brown dwarves, exploration of the inner part of protoplanetary diskstechnology : validation in real space conditions of formation flying, nulling and visibility interferometry concepts.PEGASE has been studied at a 0-level. In this paper, we summarize the scientific program and associated technological and mission trade-off coming from this 0-level study. We also discuss how PEGASE can be considered as a TPF/DARWIN pathfinder in an international roadmap towards more complex space interferometry missions such as DARWIN/TPF. [less ▲]

Detailed reference viewed: 22 (1 ULiège)
See detailPEGASE... towards DARWIN
Ollivier, M.; Le Duigou, J.-M.; Mourard, D. et al

in Casoli, F.; Contini, T.; Hameury, J.-M. (Eds.) et al SF2A-2005: Semaine de l'Astrophysique Francaise (2005, December 01)

The space mission PEGASE, proposed to CNES in the framework of its call for scientific proposals on "formation flying", is a 2-aperture interferometer, composed by 3 free flying satellites. With an ... [more ▼]

The space mission PEGASE, proposed to CNES in the framework of its call for scientific proposals on "formation flying", is a 2-aperture interferometer, composed by 3 free flying satellites. With an angular resolution of a few mas and a spectral resolution of several tens in the spectral range 2.5-5 mum, PEGASE has several goals: - science: spectroscopy of hot jupiters (Pegasides) and brown dwarves, exploration of the inner part of protoplanetary disks; - technology: validation in real space conditions of formation flying, nulling and visibility interferometry concepts. PEGASE, presently in 0-phase study takes place in the context of DARWIN preparation. We detail in this paper the present situation of this project [less ▲]

Detailed reference viewed: 8 (0 ULiège)
See detailThe PEGASE project: characterisation of "Pegasi planets" and Brown Dwarfs
Baudoz, P.; Rouan, D.; Schneider, J. et al

in Combes, F.; Barret, D.; Contini, T. (Eds.) et al SF2A-2004: Semaine de l'Astrophysique Francaise (2004, December 01)

I will present the PEGASE project proposed within the framework of the CNES call for idea on flights in formation. This ambitious project, gathering a dozen laboratories, proposes an interferometry ... [more ▼]

I will present the PEGASE project proposed within the framework of the CNES call for idea on flights in formation. This ambitious project, gathering a dozen laboratories, proposes an interferometry mission in infrared I(1.5 to 6 µm) with spectroscopic capabilities. The bases of the interferometer will reach up to 500m, giving to PEGASE a resolution higher than the milli-arcsecond. The interferometric recombination includes a very simple mode, measurement of the visibility by excursion of the optical path difference and a mode in black fringe or nulling. The very high angular resolution of the instrument and high dynamical range with the nulling mode will allow to consider exciting scientific objectives: the characterization of Pegasids or hot Jupiters, the study of the internal structure and the atmospheres of brown dwarfs and the analysis of the internal areas of proto-planetary disks. I will first of all describe the basic configuration of the mission and will show that its simplicity ensures the feasibility of the project. I will explain then the relevance of such an instrument for the characterization of Pegasids. I will detail finally the various possible technical options to be attached to the initial version, in order to increase the effectiveness of the mission and to extend its scientific objectives. [less ▲]

Detailed reference viewed: 13 (0 ULiège)