References of "Thomassin, Jean-Michel"
     in
Bookmark and Share    
See detailDesign and synthesis of Fe2O3 nanoparticles/N-doped porous carbon structures as high performance electrode for lithium ion battery
Alkarmo, Walid ULiege; Ouhib, Farid ULiege; Aqil, Abdelhafid ULiege et al

Poster (2016, October 13)

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous ... [more ▼]

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous frameworks have emerged as attractive materials for various electrochemical energy storage/conversion devices, including Li-ion batteries (LIBs), Li−S batteries, supercapacitors and fuel cells. In this context, a hierarchically structured macro- and mesoporous N-doped carbon with dispersed Fe2O3 nanoparticles (NDC@Fe2O3) is prepared by thermal treatment of a novel composite composed by PMMA particles decorated by graphene oxide (GO), PPy and iron salts. The NDC@Fe2O3 composite exhibited high surface area with a hierarchical pores structure. The combination of Fe2O3 nanoparticles with porous carbon to form hybrid anode has been an efficient way to maintain the electronic integrity of the whole electrode since the carbon acts as a buffer layer to accommodate the volume variation and to provide multidimensional electron transport pathways during the charge/discharge process. [less ▲]

Detailed reference viewed: 154 (15 ULiège)
See detailNovel promising way to synthesize non-isocyanate polyurethanes (NIPUs) for innovative coating applications against corrosion protection of metal surfaces
Panchireddy, Satyannarayana ULiege; Grignard, Bruno ULiege; Thomassin, Jean-Michel ULiege et al

Poster (2016, October 13)

Polyurethanes (PUs) are one of the most widely used polymeric materials with applications in automotive, as sealants, adhesives, decorative, aircraft topcoats, for coatings or as foams for thermal and/or ... [more ▼]

Polyurethanes (PUs) are one of the most widely used polymeric materials with applications in automotive, as sealants, adhesives, decorative, aircraft topcoats, for coatings or as foams for thermal and/or acoustic insulation. Industrially, PUs are produced by copolymerization between polyols and polyisocyanates. Because of the toxicity issues related to the use of isocyanates, there is a need to develop greener and safer route to produce such polymers. This study reports on the synthesis of new sustainable isocyanates-free PU (NIPU) coatings for aluminium anticorrosion. In a first step, bio- and CO2-sourced cyclic carbonates monomers were synthesized by coupling of epoxydized vegetable oils with CO2 using a new efficient bicomponent organocatalyst. In second step formulations including cyclic carbonates/amines/additives were optimized to produce highly adhesive cross-linked NIPU coatings that show good resistance against solvents and long-term barriers preventing the corrosion of the aluminiumsubstrate [less ▲]

Detailed reference viewed: 162 (6 ULiège)
See detailSynthesis and characterization of non-isocyanate polyurethane (NIPU) hydrogels
Gennen, Sandro ULiege; Grignard, Bruno ULiege; Thomassin, Jean-Michel ULiege et al

Poster (2016, October 13)

Due to its good biocompatibility, biodegradation and excellent mechanical properties, polyurethane (PU) is a material of choice for biomedical applications (gloves, tubing, artificial membranes…) and, as ... [more ▼]

Due to its good biocompatibility, biodegradation and excellent mechanical properties, polyurethane (PU) is a material of choice for biomedical applications (gloves, tubing, artificial membranes…) and, as hydrogels, it was used as wound dressing, soft contact lenses, drug delivery systems and scaffolds for tissue engineering. Classically, PU are synthesized by a step-growth polymerization between poly (di-)ols and poly (di-) isocyanates. Due to the toxicity of isocyanates, REACH regulations have changed and, today, there is a need to develop greener and safer route to produce isocyanate-free PUs. This contribution focus on the synthesis of NIPU hydrogels by copolymerizing a bifunctional CO2-sourced hydrophilic PEG bi-cyclic carbonate with diamines in presence of a cross- linker. The PEG bi-cyclic carbonates was prepared via a CO2/epoxide coupling reactions using a new efficient organocatalytic system based on the use of an ammonium salt (TBAI) in combination with a fluorinated alcohol. [less ▲]

Detailed reference viewed: 105 (7 ULiège)
See detailSynthesis and characterizations of non-isocyanate polyurethane (NIPU) hydrogels
Gennen, Sandro ULiege; Grignard, Bruno ULiege; Thomassin, Jean-Michel ULiege et al

Poster (2016, September 12)

Polyurethane (PU) is on of the most used polymers for the preparation of hydrogels due to its good biocompatibility, biodegradation and excellent mechanical properties. PU hydrogels are found in lot of ... [more ▼]

Polyurethane (PU) is on of the most used polymers for the preparation of hydrogels due to its good biocompatibility, biodegradation and excellent mechanical properties. PU hydrogels are found in lot of applications such as wound dressing, soft contact lenses, drug delivery and scaffolds for tissue engineering. Classicaly, PU is produced by a step-growth polymerization between diols and diisocyanates. However, in order to avoid the use of harmful isocyanates compounds and because of regulations which tend to ban the use of isocyanates, we developed hydrogels based on a non-isocyanate polyurethane (NIPU) chemistry by valorizing CO2-sourced cyclic carbonates and amines. Precisely, NIPU hydrogels were prepared by a solvent-free copolymerization between bifunctional hydrophilic polyethylene glycol cyclic carbonates and diamines in presence of a triamine as a crosslinker, followed by a water swelling of the obtained cross-linked gel. Parameters such as the cross-linking ratio and diamine’s nature were optimized. Different clay contents (cloiste 30B) as nanofiller were dispersed in the ideal cyclic carbonate/diamine/triamine formulation prior polymerization in order to reinforce the compression properties of NIPU hydrogels. Finaly, we were able to prepare NIPU hydrogels with water content up to 80 % and good compression properties using low clay content. [less ▲]

Detailed reference viewed: 103 (9 ULiège)
See detailValorization of CO2 for the preparation of advanced materials
Gennen, Sandro ULiege; Grignard, Bruno ULiege; Thomassin, Jean-Michel ULiege et al

Conference (2016, July 07)

Detailed reference viewed: 32 (8 ULiège)
See detailFe2O3 nanoparticle-functionalized N-doped carbon with interconnected, hierarchical porous structures as high-performance electrode for lithium ion batteries
Alkarmo, Walid ULiege; Ouhib, Farid ULiege; Aqil, Abdelhafid ULiege et al

Poster (2016, May 23)

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous ... [more ▼]

Thanks to their fascinating physical properties such as high surface area, multidimensional electron transport pathways and good mechanical strength, three dimensionally (3D) interconnected carbon porous frameworks have emerged as attractive materials for various electrochemical energy storage/conversion devices, including Li-ion batteries (LIBs), Li−O2 batteries, Li−S batteries, supercapacitors, and fuel cells. A hierarchically structured macro- and mesoporous N-doped carbon with dispersed Fe2O3 nanoparticles (NDC@Fe2O3) is prepared by thermal treatment of a novel composite composed by PMMA particles decorated by graphene oxide (GO), PPy and iron salts. The NDC@Fe2O3 composite exhibited high surface area with a hierarchical pores structure. Integrated as a lithium ion battery anode, NDC@Fe2O3 exhibited high reversible capacity of 930 mA h/g over 200 cycles. The combination of Fe2O3 nanoparticles with porous carbon to form hybrid anode has been an efficient way to maintain the electronic integrity of the whole electrode since the carbon acts as a buffer layer to accommodate the volume variation and to provide multidimensional electron transport pathways during the charge/discharge process. [less ▲]

Detailed reference viewed: 299 (12 ULiège)
See detailSynthesis of CO2-sourced hydrogels by using the non-isocyanate polyurethane (NIPU) chemistry
Gennen, Sandro ULiege; Grignard, Bruno ULiege; Thomassin, Jean-Michel ULiege et al

Poster (2016, May 23)

Polyurethane (PUs) is one of the most important polymers and finds applications as elastomers, coatings, adhesives and sealants for automotive or construction. PU is also a material of choice in the ... [more ▼]

Polyurethane (PUs) is one of the most important polymers and finds applications as elastomers, coatings, adhesives and sealants for automotive or construction. PU is also a material of choice in the biomedical domain due to its good biocompatibility, biodegradation and mechanical properties. Especially, PUs hydrogels have been developed in the last years for biomedical applications such as soft contact lenses, wound dressing, drug delivery systems and scaffolds for tissue engineering. Traditionally, PUs are synthesized by a step-growth polymerization between diols and diisocyanates. Because of toxicity issues and a possible interdiction of isocyanates, we focused on developing new PU hydrogels using a non-isocyanate route (Figure 1). The polyurethanes formed by this route are called NIPU (for Non-Isocyanate PolyUrethane). Firstly, chemically cross-linked NIPU gels were synthesized by solvent-free polycondensation between a hydrophilic CO2-sourced polyethyleneglycol bi-cyclic carbonate and a diamine in the presence of a crosslinker. Then, NIPU gels were swelled in water till water equilibrium before characterization of their mechanical properties by compression tests. The influence of the cross-linking ratios (diamine/crosslinker ratio) and diamine structure on the swelling and the compression properties were studied. To reinforce the compression properties of NIPU hydrogel (increase in stress at break, strain at break and compression modulus), a nanofiller was dispersed in the cyclic carbonate/diamine/crosslinker formulation prior to polymerization. For the first time, nanocomposite NIPU hydrogels with high water contents (up to 80%) and good compression properties have been prepared by using low clay content. [less ▲]

Detailed reference viewed: 148 (9 ULiège)
Full Text
Peer Reviewed
See detailCO2-blown microcellular non-isocyanate polyurethane (NIPU) foams: from bio- and CO2-sourced monomers to potentially thermal insulating materials
Grignard, Bruno ULiege; Thomassin, Jean-Michel ULiege; Gennen, Sandro ULiege et al

in Green Chemistry (2016), 18(7), 2206-2215

Bio- and CO2-sourced non-isocyanate polyurethane (NIPU) microcellular foams were prepared using supercritical carbon dioxide (scCO2) foaming technology. These low-density foams offer low thermal ... [more ▼]

Bio- and CO2-sourced non-isocyanate polyurethane (NIPU) microcellular foams were prepared using supercritical carbon dioxide (scCO2) foaming technology. These low-density foams offer low thermal conductivity and have an impressive potential for use in insulating materials. They constitute attractive alternatives to conventional polyurethane foams. We investigated CO2’s ability to synthesize the cyclic carbonates that are used in the preparation of NIPU by melt step-growth polymerization with a bio-sourced amino-telechelic oligoamide and for NIPU foaming. Our study shows that CO2 is not only sequestered in the material for long-term application, but is also valorized as a blowing agent in the production of NIPU foams. Such foams will contribute to energy conservation and savings by reducing CO2 emissions. [less ▲]

Detailed reference viewed: 121 (37 ULiège)