References of "Grodent, Denis"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPulsations of the polar cusp aurora at Saturn
Palmaerts, Benjamin ULiege; Radioti, Aikaterini ULiege; Roussos, E. et al

in Journal of Geophysical Research. Space Physics (2016), 121

The magnetospheric cusp is a region connecting the interplanetary environment to the ionosphere and enabling solar wind particles to reach the ionosphere. We report the detection of several isolated high ... [more ▼]

The magnetospheric cusp is a region connecting the interplanetary environment to the ionosphere and enabling solar wind particles to reach the ionosphere. We report the detection of several isolated high-latitude auroral emissions with the Ultraviolet Imaging Spectrograph of the Cassini spacecraft. We suggest that these auroral spots, located in the dawn-to-noon sector and poleward of the main emission, are the ionospheric signatures of the magnetospheric cusp, in agreement with some previous observations with the Hubble Space Telescope. The high-latitude cusp auroral signature has been associated with high-latitude lobe reconnection in the presence of a southward interplanetary magnetic field. The occurrence rate of the polar cusp aurora suggests that lobe reconnection is frequent at Saturn. Several auroral imaging sequences reveal a quasiperiodic brightening of the polar cusp aurora with a period in the range of 60 to 70 min. Similar pulsations in the energetic electron fluxes and in the azimuthal component of the magnetic field are simultaneously observed by Cassini instruments, suggesting the presence of field-aligned currents. Pulsed dayside magnetopause reconnection is a likely common triggering process for the cusp auroral brightenings at Saturn and the quasiperiodic pulsations in the high-latitude energetic electron fluxes. [less ▲]

Detailed reference viewed: 24 (8 ULiège)
Full Text
Peer Reviewed
See detailStatistical study of Saturn's auroral electron properties with Cassini/UVIS FUV spectral images
Gustin, Jacques ULiege; Grodent, Denis ULiege; Radioti, Aikaterini ULiege et al

in Icarus (2016)

About 2000 FUV spectra of different regions of Saturn's aurora, obtained with Cassini/UVIS from December 2007 to October 2014 have been examined. Two methods have been employed to determine the mean ... [more ▼]

About 2000 FUV spectra of different regions of Saturn's aurora, obtained with Cassini/UVIS from December 2007 to October 2014 have been examined. Two methods have been employed to determine the mean energy 〈E〉 of the precipitating electrons. The first is based on the absorption of the auroral emission by hydrocarbons and the second uses the ratio between the brightness of the Lyman-α line and the H2 total UV emission (Lyα/H2), which is directly related to 〈E〉 via a radiative transfer formalism. In addition, two atmospheric models obtained recently from UVIS polar occultations have been employed for the first time. It is found that the atmospheric model related to North observations near 70° latitude provides the results most consistent with constraints previously published. On a global point of view, the two methods provide comparable results, with 〈E〉 mostly in the 7–17 keV range with the hydrocarbon method and 〈E〉 in the 1–11 keV range with the Lyα/H2 method. Since hydrocarbons have been detected on ∼20% of the auroral spectra, the Lyα/H2 technique is more effective to describe the primary auroral electrons, as it is applicable to all spectra and allows an access to the lowest range of energies (≤5 keV), unreachable by the hydrocarbon method. The distribution of 〈E〉 is found fully compatible with independent HST/ACS constraints (emission peak in the 840–1450 km range) and FUSE findings (emission peaking at pressure level ≤0.2 µbar). In addition, 〈E〉 exhibits enhancements in the 3 LT–10 LT sector, consistent with SKR intensity measurements. An energy flux–electron energy diagram built from all the data points strongly suggests that acceleration by field-aligned potentials as described by Knight's theory is a main mechanism responsible for electron precipitation creating the aurora. Assuming a fixed electron temperature of 0.1 keV, a best-fit equatorial electron source population density of 3 × 103 m−3 is derived, which matches very well to the plasma properties observed with Cassini MAG and CAPS/ELS instruments. However, several auroral regions are characterized by relatively high 〈E〉 and low energy flux, suggesting that additional processes such as plasma injections or magnetic reconnections must be accounted for to explain the emission in these regions. The Lyα/H2 ratio technique can be used to build maps of 〈E〉 from single spectral images. As expected, preliminary results show that the spatial distribution of 〈E〉 is not uniform, as seen on Jupiter. Our study reveals that a fraction of the aurora is due to very low energy electrons (<1 keV). Even in this case, comparisons between observed and modeled spectra show that 100 eV is a suitable value to represent the average energy of the secondary electrons. [less ▲]

Detailed reference viewed: 16 (2 ULiège)
See detailJuno Ultraviolet Spectrograph (Juno-UVS) Observations of Jupiter during Approach
Gladstone, G. Randall; Versteeg, Maarten; Greathouse, Thomas K. et al

Conference (2016, October)

We present the initial results from Juno Ultraviolet Spectrograph (Juno-UVS) observations of Jupiter obtained during approach in June 2016. Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 ... [more ▼]

We present the initial results from Juno Ultraviolet Spectrograph (Juno-UVS) observations of Jupiter obtained during approach in June 2016. Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes all important ultraviolet (UV) emissions from the H<SUB>2</SUB> bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4 x 4 cm<SUP>2</SUP> input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a "dog-bone" shape 7.2° long, in three sections of 0.2°, 0.025°, and 0.2° width (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses UV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Prior to Jupiter Orbit Insertion (JOI) on July 5, Juno approach observations provide a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions (e.g., polar emissions) may be controlled or at least affected by the solar wind. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions (~40 minutes per hour, acquired during 2016 June 3-30) with in situ solar wind observations, as well as related Jupiter observations obtained from Earth. [less ▲]

Detailed reference viewed: 18 (1 ULiège)
See detailCassini UVIS Auroral Observations in 2016
Pryor, Wayne R.; Jouchoux, Alain; Esposito, Larry et al

Conference (2016, October)

In June of 2016, the Cassini Saturn orbiter began a series of high inclination orbits that will continue until September 2017 when the mission ends as Cassini enters the Saturn atmosphere. These orbits ... [more ▼]

In June of 2016, the Cassini Saturn orbiter began a series of high inclination orbits that will continue until September 2017 when the mission ends as Cassini enters the Saturn atmosphere. These orbits present excellent views of Saturn's polar regions suitable for auroral imaging at the closest distances to date, with the additional prospect of simultaneous particle and fields measurements within the sources of Saturn Kilometric Radiation (SKR) associated with ultraviolet auroral emissions and/or acceleration regions likely coinciding with them. We will present new Cassini Ultraviolet Imaging Spectrograph (UVIS) auroral images, spectra and movies obtained during the summer and fall of 2016 and put them in the context of auroral data collected since Cassini orbit insertion in 2004. Included in the new data will be UVIS south polar observations obtained simultaneously with Hubble Space Telescope observations of the north polar region on June 29, 2016 and August 19, 2016. [less ▲]

Detailed reference viewed: 20 (4 ULiège)
See detailUV emissions of Jupiter: exploration of the high-latitude regions through the UV spectrograph on NASA's Juno mission
Hue, Vincent; Gladstone, G. Randall; Versteeg, Maarten et al

Conference (2016, October)

The Juno mission offers the opportunity to study Jupiter, from its inner structure to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) planned for ... [more ▼]

The Juno mission offers the opportunity to study Jupiter, from its inner structure to its magnetospheric environment. Juno was launched on August 2011 and its Jupiter orbit insertion (JOI) planned for July 4th 2016, will place Juno in a 53.5 days capture orbit. A period reduction maneuver will be performed two orbits later to place Juno into 14-days elliptical orbits for the duration of the nominal mission, which includes 36 orbits. Juno-UVS is a UV spectrograph with a bandpass of 70 ≤ λ ≤ 205 nm, designed to characterize Jupiter UV emissions. One of the main additions of UVS compared to its predecessors is a 2.54 mm tantalum shielding, to protect it from the harsh radiation environment at Jupiter, and a scan mirror, to allow for targeting specific auroral regions during perijove passes. The scan mirror is located at the front end of the instrument and will be used to look at +/- 30° perpendicular to the Juno spin plane. The entrance slit of UVS has a dog-bone shape composed by three sections with field of views of 0.2°x2.5°, 0.025°x2.0° and 0.2°x2.5°, as projected onto the sky. It will provide new constraints on Jupiter’s auroral nightside morphology and spectral features as well as the vertical structure of these emissions. It will bring remote-sensing constraints for the onboard waves and particle instruments (JADE, JEDI, Waves and MAG). The ability to change the pointing will allow relating the observed UV brightness of the regions magnetically connected to where Juno flies with the particles and waves measurements. We will discuss the planned observations and scientific targets for the nominal mission orbital sequence, which will consist of three UV datasets per orbit. We will present the results from the first orbit. As Juno orbit evolves during the mission, we will also present how these objectives evolve over time. [less ▲]

Detailed reference viewed: 26 (3 ULiège)
See detailUVS – JIRAM image comparison during Juno PJ1
Gérard, Jean-Claude ULiege; Bonfond, Bertrand ULiege; Grodent, Denis ULiege et al

Conference (2016, September 27)

We present a comparison between images collected in the infrared and ultraviolet by the JIRAM and IUVS spectral imagers on board the Juno orbiter. Similarities and differences are pointed out.

Detailed reference viewed: 20 (2 ULiège)
Full Text
See detailMulti-instrument overview of the 1-hour pulsations in Saturn's magnetosphere and auroral emissions
Palmaerts, Benjamin ULiege; Roussos, Elias; Radioti, Aikaterini ULiege et al

Conference (2016, May 11)

Detailed reference viewed: 17 (6 ULiège)
Full Text
See detailMulti-instrument overview of the 1-hour pulsations in Saturn's magnetosphere and auroral emissions
Palmaerts, Benjamin ULiege; Roussos, Elias; Radioti, Aikaterini ULiege et al

Conference (2016, April 19)

Detailed reference viewed: 27 (7 ULiège)
See detailAuroral evidence of flux tube blockage near noon at Saturn’s magnetosphere
Radioti, Aikaterini ULiege; Grodent, Denis ULiege; Gérard, Jean-Claude ULiege et al

Poster (2016, April)

We discuss plasma circulation in Saturn’s magnetosphere on the basis of auroral observations. Auroral enhance- ments in the dawn region are suggested to be related to intense field-aligned currents ... [more ▼]

We discuss plasma circulation in Saturn’s magnetosphere on the basis of auroral observations. Auroral enhance- ments in the dawn region are suggested to be related to intense field-aligned currents generated by hot tenuous plasma carried inward in fast moving flux tubes as they return from tail reconnection site to the dayside. Here we demonstrate that the rotation of the auroral emission in the dawn sector is occasionally (in half of the auroral sequences examined) slowed down and blocked near noon for a couple of hours. When the blockage is prominent and persistent, we observe auroral evidence of dayside magnetopause reconnection and openign of flux. A pos- sible interpretation for our observations could be that depleted flux tubes at large radial distances, which rotate around Saturn are blocked in the prenoon sector between the heavy Vasyliunas cycle flux tubes on one side, and the magnetopause on the other side. These depleted flux tubes have to move above or below the current sheet to pass this blockage. The blockage of the field lines close to midday will bend them and trigger reconnection, which opens the flux tubes and allows for solar wind material to enter the magnetosphere. Secondly, we suggest that the circulation pattern of depleted flux tubes close to noon in Saturn’s magnetosphere alternates between a ’blocked’ and ’unblocked’ state, depending on the solar wind dynamic pressure and the internal processes. [less ▲]

Detailed reference viewed: 24 (7 ULiège)
Full Text
See detailJUICE UVS radiation test at CSL-ULg
Carapelle, Alain ULiege; Grodent, Denis ULiege

Scientific conference (2016, January 27)

Progress report of the window fluorescence and quantum efficiency measurements of the JUICE UVS detector exposed to beams of electrons of various energies.

Detailed reference viewed: 23 (7 ULiège)
Full Text
Peer Reviewed
See detailCharacteristics of north jovian aurora from STIS FUV spectral images
Gustin, Jacques ULiege; Grodent, Denis ULiege; Ray, Licia et al

in Icarus (2016)

We analyzed two observations obtained in Jan. 2013, consisting of spatial scans of the jovian north ultraviolet aurora with the HST Space Telescope Imaging Spectrograph (STIS) in the spectroscopic mode ... [more ▼]

We analyzed two observations obtained in Jan. 2013, consisting of spatial scans of the jovian north ultraviolet aurora with the HST Space Telescope Imaging Spectrograph (STIS) in the spectroscopic mode. The color ratio (CR) method, which relates the wavelength-dependent absorption of the FUV spectra to the mean energy of the precipitating electrons, allowed us to determine important characteristics of the entire auroral region. The results show that the spatial distribution of the precipitating electron energy is far from uniform. The morning main emission arc is associated with mean energies of around 265 keV, the afternoon main emission (kink region) has energies near 105 keV, while the ‘flare’ emissions poleward of the main oval are characterized by electrons in the 50–85 keV range. A small scale structure observed in the discontinuity region is related to electrons of 232 keV and the Ganymede footprint shows energies of 157 keV. Interestingly, each specific region shows very similar behavior for the two separate observations. The Io footprint shows a weak but undeniable hydrocarbon absorption, which is not consistent with altitudes of the Io emission profiles (∼900 km relative to the 1 bar level) determined from HST-ACS observations. An upward shift of the hydrocarbon homopause of at least 100 km is required to reconcile the high altitude of the emission and hydrocarbon absorption. The relationship between the energy fluxes and the electron energies has been compared to curves obtained from Knight’s theory of field-aligned currents. Assuming a fixed electron temperature of 2.5 keV, an electron source population density of ∼800 m−3 and ∼2400 m−3 is obtained for the morning main emission and kink regions, respectively. Magnetospheric electron densities are lowered for the morning main emission (∼600 m−3) if the relativistic version of Knight’s theory is applied. Lyman and Werner H2 emission profiles, resulting from secondary electrons produced by precipitation of heavy ions in the 1–2 MeV/u range, have been applied to our model. The low CR obtained from this emission suggests that heavy ions, presumably the main source of the X-ray aurora, do not significantly contribute to typical UV high latitude emission. [less ▲]

Detailed reference viewed: 18 (3 ULiège)
Full Text
Peer Reviewed
See detailThe color ratio-intensity relation in the Jovian aurora: Hubble observations of auroral components
Gérard, Jean-Claude ULiege; Bonfond, Bertrand ULiege; Grodent, Denis ULiege et al

in Planetary and Space Science (2016), 131

Spectral observations made with the long slit of the Space Telescope Imaging Spectrograph (STIS) on board Hubble have been used to construct spectral maps of the FUV Jovian aurora. They reveal that the ... [more ▼]

Spectral observations made with the long slit of the Space Telescope Imaging Spectrograph (STIS) on board Hubble have been used to construct spectral maps of the FUV Jovian aurora. They reveal that the amount of absorption by overlying methane shows significant spatial variations. In this report, we examine the relationship between the auroral brightness of the unabsorbed H2 emission that is proportional to the precipitated electron energy flux, and the ultraviolet color ratio, a proxy of the mean electron energy. We find that it varies significantly between the different components of the aurora and in the polar region. Although no global dependence can be found, we show that the two quantities are better organized in some auroral components such as regions of the main aurororal emission. By contrast, the dependence of the electron characteristic energy in high-latitude and diffuse aurora regions on the auroral energy input is generally more scattered. We conclude that the various auroral components are associated with different electron acceleration processes, some of which are not governed by a simple relation linking the value of a field-aligned acceleration potential with the parallel currents flowing from the ionosphere. [less ▲]

Detailed reference viewed: 31 (12 ULiège)
Full Text
See detailHST-Juno synergistic approach of Jupiter's magnetosphere and ultraviolet auroras
Grodent, Denis ULiege; Bonfond, Bertrand ULiege; Gérard, Jean-Claude ULiege et al

E-print/Working paper (2016)

Jupiter's system is not only fundamental to our understanding of the solar system but also of planetary systems around other stars as well as more distant astrophysical bodies, not accessible to a ... [more ▼]

Jupiter's system is not only fundamental to our understanding of the solar system but also of planetary systems around other stars as well as more distant astrophysical bodies, not accessible to a detailed investigation. Fully exploiting any rare opportunity to explore the Jovian system through synergistic observations is thus critical, as it will impact significantly across wider astronomical studies. Such an exceptional opportunity will occur in Cycle 24, when the NASA Juno spacecraft will achieve its prime mission around Jupiter. Since Juno will literally fly through the auroral acceleration regions, the combination of HST auroral observations with Juno in situ measurements will allow us to finally unravel the origins and consequences of Jupiter's powerful and highly variable ultraviolet auroras. This occasion has never occurred before and is unlikely to ever repeat. Juno will address key scientific issues related to unexplored regions of the Jovian magnetosphere. The auroral signatures associated with these magnetospheric processes will be precisely observed with STIS and COS. This program responds to the UV initiative and is only possible during Cycle 24. Indeed, HST is the only observatory capable of making these high spatial and temporal resolution FUV observations during the Juno mission. This ambitious campaign will yield high-impact results and significantly augment the science return of the NASA Juno mission. [less ▲]

Detailed reference viewed: 58 (4 ULiège)
Full Text
See detailThe Magnetodiscs and Aurorae of Giant Planets
Szego, Karoly; Achilleos, Nicholas; Arridge, Chris et al

Book published by Springer Science & Business Media B.V. - Previously published in Space Science Reviews, Volume 187, Issues 1-4, 2015 (2016)

This volume contains the reports discussed during the Workshop “Giant Planet Magne- todiscs and Aurorae” held 26–30 November 2012, at the International Space Science Insti- tute, organised together with ... [more ▼]

This volume contains the reports discussed during the Workshop “Giant Planet Magne- todiscs and Aurorae” held 26–30 November 2012, at the International Space Science Insti- tute, organised together with the Europlanet project, supported by FP7 (Grant No. 228319). Magnetodiscs are large current sheets surrounding Jupiter and Saturn (also Uranus and Neptune) that are filled with plasma principally originating in the natural satellites of these worlds. They are also solar system analogues for astrophysical discs. Magnetodiscs are spe- cial features of the fast rotating giant planets, a special feature of rotationally driven magne- tospheres. Their structure is modified by variability in their plasma sources and by the solar wind. Auroral signatures in the optical and radio wavebands allow a diagnostic of these dynamical processes and enable the visualisation of these large plasma and field structures.The objective of this workshop was to address outstanding issues in the structure and dynamics of magnetodiscs using a comparative approach (see details under topics). More specifically, we aimed to review current understanding of magnetodiscs and auroral re- sponses to magnetodisc dynamics; characterise and understand radial plasma transport in magnetodiscs; determine how magnetic reconnection works in magnetodiscs, and describe the effects on plasma transport; describe the associated auroral responses to internal and ex- ternal magnetospheric processes; characterise how the solar wind influences magnetodiscs and the auroral responses to solar wind-driven dynamics; characterise the spectral and spa- tial properties of auroral emissions produced by magnetodisc dynamics; answer the ques- tion of whether there are significant differences between solar wind- and internally-driven dynamics; and determine the sources of local-time asymmetries in magnetodiscs. This volume is a unique synthesis of all aspects of the giant magnetospheres and their aurorae; it provides an interdisciplinary approach to understanding the coupled system from the solar wind to the atmosphere; it combines the latest observations with current theory and models; and it also contains sufficient breadth for students of magnetospheric and space physics to use as a reference for future research. [less ▲]

Detailed reference viewed: 20 (2 ULiège)
Full Text
See detailUltraviolet auroral emissions on giant planets
Grodent, Denis ULiege; Bonfond, Bertrand ULiege; Radioti, Aikaterini ULiege et al

Conference (2015, November 25)

The aurorae on Jupiter and Saturn are the most powerful proper ultraviolet emissions in our solar system, after the Sun’s. They can only be observed outside the absorbing atmosphere of the Earth with ... [more ▼]

The aurorae on Jupiter and Saturn are the most powerful proper ultraviolet emissions in our solar system, after the Sun’s. They can only be observed outside the absorbing atmosphere of the Earth with space telescopes such as the Hubble Space Telescope or the Hisaki Telescope, or from Spacecraft orbiting these planets, like Cassini for Saturn and Juno for Jupiter. We will review the types of observation that can be obtained with these different instruments and how this information can be used to interpret the auroral emissions. [less ▲]

Detailed reference viewed: 26 (11 ULiège)
Full Text
Peer Reviewed
See detailThe far-ultraviolet main auroral emission at Jupiter – Part 1: Dawn–dusk brightness asymmetries
Bonfond, Bertrand ULiege; Gustin, Jacques ULiege; Gérard, Jean-Claude ULiege et al

in Annales Geophysicae (2015), 33

The main auroral emission at Jupiter generally appears as a quasi-closed curtain centered around the magnetic pole. This auroral feature, which accounts for approximately half of the total power emitted ... [more ▼]

The main auroral emission at Jupiter generally appears as a quasi-closed curtain centered around the magnetic pole. This auroral feature, which accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range, is related to corotation enforcement currents in the middle magnetosphere. Early models for these currents assumed axisymmetry, but significant local time variability is obvious on any image of the Jovian aurorae. Here we use far-UV images from the Hubble Space Telescope to further characterize these variations on a statistical basis. We show that the dusk side sector is ~ 3 times brighter than the dawn side in the southern hemisphere and ~ 1.1 brighter in the northern hemisphere, where the magnetic anomaly complicates the interpretation of the measurements. We suggest that such an asymmetry between the dawn and the dusk sectors could be the result of a partial ring current in the nightside magnetosphere. [less ▲]

Detailed reference viewed: 43 (18 ULiège)
Full Text
Peer Reviewed
See detailThe far-ultraviolet main auroral emission at Jupiter – Part 2: Vertical emission profile
Bonfond, Bertrand ULiege; Gustin, Jacques ULiege; Gérard, Jean-Claude ULiege et al

in Annales Geophysicae (2015), 33

The aurorae at Jupiter are made up of many different features associated with a variety of generation mechanisms. The main auroral emission, also known as the main oval, is the most prominent of them as ... [more ▼]

The aurorae at Jupiter are made up of many different features associated with a variety of generation mechanisms. The main auroral emission, also known as the main oval, is the most prominent of them as it accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range. The energy of the precipitating electrons is a crucial parameter to characterize the processes at play which give rise to these auroral emissions, and the altitude of the emissions directly depends on this energy. Here we make use of far-UV (FUV) images acquired with the Advanced Camera for Surveys on board the Hubble Space Telescope and spectra acquired with the Space Telescope Imaging Spectrograph to measure the vertical profile of the main emissions. The altitude of the brightness peak as seen above the limb is ~ 400 km, which is significantly higher than the 250 km measured in the post-dusk sector by Galileo in the visible domain. However, a detailed analysis of the effect of hydrocarbon absorption, including both simulations and FUV spectral observations, indicates that FUV apparent vertical profiles should be considered with caution, as these observations are not incompatible with an emission peak located at 250 km. The analysis also calls for spectral observations to be carried out with an optimized geometry in order to remove observational ambiguities. [less ▲]

Detailed reference viewed: 33 (14 ULiège)
Full Text
See detailDynamics of the active region in Jupiter’s aurorae
Bonfond, Bertrand ULiege; Grodent, Denis ULiege; Badman, Sarah et al

Conference (2015, September 29)

The Far-UV aurorae at Jupiter variety on a wide range of timescales. This study focuses on the dynamics of the active region on timescales of a few minutes. Up to now, only the time-tag mode of the Space ... [more ▼]

The Far-UV aurorae at Jupiter variety on a wide range of timescales. This study focuses on the dynamics of the active region on timescales of a few minutes. Up to now, only the time-tag mode of the Space Telescope Imaging Spectrograph provides access to such fast variations with a high spatial resolution. This active region, located on the dusk flank of the area inside the main auroral oval, is the locus of particularly bright (up to several mega Reyleighs) and sudden (a few tens of seconds) enhancements called flares. A previous study also showed that these flare could reoccur quasi-periodically every 2-3 minutes and propagate from dusk to dawn. Here we use data obtained in 2013 and 2014 to show that this quasi-periodic behavior is only present on half of the cases and that the affected region could either cover the whole active region or a much smaller area (∼5000km^2). We also found areas that were still during part of the observation sequence and then began to blink (see Figure 1). We also show that there no systematically preferred propagation direction. Finally, sequences acquired successively in the two hemispheres show that the quasi-periodic flares can be in phase [less ▲]

Detailed reference viewed: 20 (3 ULiège)
Full Text
See detailSimulations of the auroral signatures of Jupiter’s magnetospheric injections
Dumont, Maïté ULiege; Grodent, Denis ULiege; Radioti, Aikaterini ULiege et al

Conference (2015, September 29)

We report the evolution of ultraviolet auroral features located equatorward of the main emission appearing in the Hubble Space Telescope (HST) images of the northern and the southern Jovian hemisphere. We ... [more ▼]

We report the evolution of ultraviolet auroral features located equatorward of the main emission appearing in the Hubble Space Telescope (HST) images of the northern and the southern Jovian hemisphere. We investigate the possibility that those ultraviolet auroral structures are associated with energetic particle injections. For this study, we compare the characteristics of the simulated auroral signature of plasma injections with the observed parameters of equatorward isolated auroral structures. [less ▲]

Detailed reference viewed: 21 (6 ULiège)