References of "Bours, Vincent"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailInterleukin-6 receptor shedding is enhanced by interleukin-1beta and tumor necrosis factor alpha and is partially mediated by tumor necrosis factor alpha-converting enzyme in osteoblast-like cells.
Franchimont, Nathalie; Lambert, Cécile ULiege; Huynen, Pascale ULiege et al

in Arthritis and Rheumatism (2005), 52(1), 84-93

OBJECTIVE: Interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6R) activation of gp130 represents an alternative pathway for osteoclast development in inflammatory conditions. The goal of the present ... [more ▼]

OBJECTIVE: Interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6R) activation of gp130 represents an alternative pathway for osteoclast development in inflammatory conditions. The goal of the present study was to investigate changes in sIL-6R levels in response to the inflammatory cytokines IL-1beta and tumor necrosis factor alpha (TNFalpha) and to determine the role of TNFalpha-converting enzyme (TACE) in this process. METHODS: Levels of sIL-6R in the culture media of MG63 and SAOS-2 osteoblast-like cell lines after exposure to various agents were determined by immunoassay. TACE protein levels were measured by Western immunoblotting. Cells were transfected with small interfering RNA (siRNA) or with an expression plasmid for IL-6R and TACE to determine the potential involvement of TACE in IL-6R shedding. RESULTS: IL-1beta and TNFalpha increased the levels of sIL-6R in the culture media of MG63 osteoblast-like cells. This effect was not influenced by cycloheximide or 5,6-dichlorobenzimidazole riboside but was markedly inhibited by the calcium chelator EGTA and by the TACE and matrix metalloproteinase inhibitor hydroxamate (Ru36156). IL-1beta and TNFalpha had no influence on the alternatively spliced form of IL-6R RNA. Levels of sIL-6R were reduced when MG63 cells were transiently transfected with TACE siRNA. Transfection of SAOS-2 cells with expression plasmids for IL-6R and TACE produced a dose-dependent increase in sIL-6R levels. CONCLUSION: IL-1beta- and TNFalpha-mediated induction of IL-6R shedding in osteoblast-like cells is at least partly dependent on TACE activation. [less ▲]

Detailed reference viewed: 68 (5 ULiège)
Full Text
Peer Reviewed
See detailDexamethasone inhibits the HSV-tk/ ganciclovir bystander effect in malignant glioma cells.
Robe, Pierre ULiege; Nguyen-Khac, Minh-Tuan ULiege; Jolois, Olivier ULiege et al

in BMC Cancer (2005), 5

BACKGROUND: HSV-tk/ ganciclovir (GCV) gene therapy has been extensively studied in the setting of brain tumors and largely relies on the bystander effect. Large studies have however failed to demonstrate ... [more ▼]

BACKGROUND: HSV-tk/ ganciclovir (GCV) gene therapy has been extensively studied in the setting of brain tumors and largely relies on the bystander effect. Large studies have however failed to demonstrate any significant benefit of this strategy in the treatment of human brain tumors. Since dexamethasone is a frequently used symptomatic treatment for malignant gliomas, its interaction with the bystander effect and the overall efficacy of HSV-TK gene therapy ought to be assessed. METHODS: Stable clones of TK-expressing U87, C6 and LN18 cells were generated and their bystander effect on wild type cells was assessed. The effects of dexamethasone on cell proliferation and sensitivity to ganciclovir were assessed with a thymidine incorporation assay and a MTT test. Gap junction mediated intercellular communication was assessed with microinjections and FACS analysis of calcein transfer. The effect of dexamethasone treatment on the sensitivity of TK-expressing to FAS-dependent apoptosis in the presence or absence of ganciclovir was assessed with an MTT test. Western blot was used to evidence the effect of dexamethasone on the expression of Cx43, CD95, CIAP2 and BclXL. RESULTS: Dexamethasone significantly reduced the bystander effect in TK-expressing C6, LN18 and U87 cells. This inhibition results from a reduction of the gap junction mediated intercellular communication of these cells (GJIC), from an inhibition of their growth and thymidine incorporation and from a modulation of the apoptotic cascade. CONCLUSION: The overall efficacy of HSV-TK gene therapy is adversely affected by dexamethasone co-treatment in vitro. Future HSV-tk/ GCV gene therapy clinical protocols for gliomas should address this interference of corticosteroid treatment. [less ▲]

Detailed reference viewed: 40 (4 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of new rheumatoid arthritis biomarkers using the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry ProteinChip approach.
De Seny, Dominique ULiege; Fillet, Marianne ULiege; Meuwis, Marie-Alice ULiege et al

in Arthritis and Rheumatism (2005), 52(12), 3801-12

OBJECTIVE: To identify serum protein biomarkers specific for rheumatoid arthritis (RA), using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) technology ... [more ▼]

OBJECTIVE: To identify serum protein biomarkers specific for rheumatoid arthritis (RA), using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) technology. METHODS: A total of 103 serum samples from patients and healthy controls were analyzed. Thirty-four of the patients had a diagnosis of RA, based on the American College of Rheumatology criteria. The inflammation control group comprised 20 patients with psoriatic arthritis (PsA), 9 with asthma, and 10 with Crohn's disease. The noninflammation control group comprised 14 patients with knee osteoarthritis and 16 healthy control subjects. Serum protein profiles were obtained by SELDI-TOF-MS and compared in order to identify new biomarkers specific for RA. Data were analyzed by a machine learning algorithm called decision tree boosting, according to different preprocessing steps. RESULTS: The most discriminative mass/charge (m/z) values serving as potential biomarkers for RA were identified on arrays for both patients with RA versus controls and patients with RA versus patients with PsA. From among several candidates, the following peaks were highlighted: m/z values of 2,924 (RA versus controls on H4 arrays), 10,832 and 11,632 (RA versus controls on CM10 arrays), 4,824 (RA versus PsA on H4 arrays), and 4,666 (RA versus PsA on CM10 arrays). Positive results of proteomic analysis were associated with positive results of the anti-cyclic citrullinated peptide test. Our observations suggested that the 10,832 peak could represent myeloid-related protein 8. CONCLUSION: SELDI-TOF-MS technology allows rapid analysis of many serum samples, and use of decision tree boosting analysis as the main statistical method allowed us to propose a pattern of protein peaks specific for RA. [less ▲]

Detailed reference viewed: 82 (20 ULiège)
Full Text
Peer Reviewed
See detailSodium nitroprusside-induced osteoblast apoptosis is mediated by long chain ceramide and is decreased by raloxifene.
Olivier, Sabine ULiege; Fillet, Marianne ULiege; Malaise, Michel ULiege et al

in Biochemical Pharmacology (2005), 69(6), 891-901

Release of high levels of nitric oxide (NO) is associated with osteoblastic cell death. The mechanisms of NO-induced cytotoxicity are not well documented and it is presently not known if estrogenic ... [more ▼]

Release of high levels of nitric oxide (NO) is associated with osteoblastic cell death. The mechanisms of NO-induced cytotoxicity are not well documented and it is presently not known if estrogenic compounds prevent this effect. We studied the role of ceramides in cell death induced by the NO donor sodium nitroprusside (SNP) and we tested the possibility that 17beta-estradiol, the anti-estrogen ICI 182.780 and two selective estrogen receptor modulators raloxifene and tamoxifen modify osteoblastic cell apoptosis. SNP dose-dependently decreased MC3T3-E1 osteoblast viability, increased NO production in the culture media and enhanced the release of intracellular ceramides C22 and C24. Cell death induced by SNP was partially inhibited when MC3T3-E1 cells were pretreated with raloxifene and tamoxifen but was not modified when the cells were pretreated with 17beta-estradiol or ICI 182.780. Cell death induced by SNP resulted from apoptosis as demonstrated by Annexin-V and propidium iodide labeling and a reduction of SNP-induced MC3T3-E1 apoptosis was confirmed in the presence of raloxifene and tamoxifen. SNP induction of C22 and C24 production was inhibited by a pretreatment with raloxifene but not with 17beta-estradiol. Moreover, the synthetic ceramide C24 (0.75 and 1microM) decreased MC3T3-E1 cell viability and osteoblast cell death induced by C24 was partially decreased by raloxifene and to a lesser extent by 17beta-estradiol. These data demonstrate that SNP-induced cell death is mediated by the long chain ceramides C22 and C24 and that raloxifene protected osteoblast from apoptosis induced by SNP, an effect that might be relevant to its pharmacological properties on bone remodeling. [less ▲]

Detailed reference viewed: 165 (11 ULiège)
Full Text
Peer Reviewed
See detailIncreased expression of receptor activator of NF-kappa B ligand (RANKL), its receptor RANK and its decoy receptor osteoprotegerin in the colon of Crohn's disease patients
Franchimont, N.; Reenaers, Catherine ULiege; Lambert, Chantal ULiege et al

in Clinical & Experimental Immunology (2004), 138(3), 491-498

Crohn's disease (CD) is associated with low bone mass due to chronic inflammation and other factors. Receptor activator of NF-kappaB ligand (RANKL), its receptor RANK and its decoy receptor ... [more ▼]

Crohn's disease (CD) is associated with low bone mass due to chronic inflammation and other factors. Receptor activator of NF-kappaB ligand (RANKL), its receptor RANK and its decoy receptor osteoprotegerin (OPG) are potentially involved in this process as they regulate osteoclastogenesis and are influenced by pro-inflammatory cytokines. The aim of this study was to determine the levels of soluble RANKL (sRANKL), RANK and OPG expression both in the serum and in the colon of CD patients. Levels of sRANKL and OPG were assessed in the serum and the supernatants of cultured colonic biopsies in patients with CD and controls by ELISA. RANK expression was explored by immunostaining and immunofluorescence of fixed colonic samples. OPG and sRANKL levels were higher in the serum of CD patients as compared to age- and sex-matched controls. Levels of sRANKL and OPG were significantly enhanced in cultured colonic biopsies from CD, and OPG levels correlated with histological inflammation, and pro- and anti-inflammatory cytokine levels. No significant correlation was found for sRANKL. RANK(+) cells were increased in the colon of CD, particularly in inflamed areas. These cells were positive for CD68 or S100 protein. We conclude that serum and local levels of sRANKL and OPG are increased in CD. Moreover, RANK is expressed in the colonic mucosa by subpopulations of activated macrophages or dendritic cells at higher levels in CD compared to normal colon. [less ▲]

Detailed reference viewed: 31 (6 ULiège)
Full Text
Peer Reviewed
See detailProtein phosphorylation as a key mechanism for the regulation of BCL-3 activity
Viatour, Patrick ULiege; Merville, Marie-Paule ULiege; Bours, Vincent ULiege et al

in Cell Cycle (Georgetown, Tex.) (2004), 3(12), 1498-1501

Constitutive NF-kappaB activation, a hallmark of many human cancers, upregulates anti-apoptotic gene expression and therefore disrupts the balance between apoptosis and proliferation. In some lymphomas ... [more ▼]

Constitutive NF-kappaB activation, a hallmark of many human cancers, upregulates anti-apoptotic gene expression and therefore disrupts the balance between apoptosis and proliferation. In some lymphomas, this constitutive NF-kappaB activity is the result of point mutations or translocations of the genes coding for NF-kappaB inhibitors, namely IkappaBalpha or p100. The BCL-3 protein is another member of the IkappaB family and is overexpressed in a subset of human B-cell chronic lymphocytic leukemias because of a chromosomal translocation. This oncoprotein is phosphorylated by multiple kinases including GSK3 and this phosphorylation regulates BCL-3 function by modulating its oncogenic potential and by regulating the expression of a subset of its target genes. Therefore, deciphering the NF-kappaB/IkappaB protein phosphorylations is critical in order to better understand the molecular mechanisms of NF-kappaB-mediated oncogenesis. [less ▲]

Detailed reference viewed: 33 (1 ULiège)
Full Text
Peer Reviewed
See detailGSK3-Mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity
Viatour, Patrick ULiege; Dejardin, Emmanuel ULiege; Warnier, Michael et al

in Molecular Cell (2004), 16(1), 35-45

The oncoprotein BCL-3 is a nuclear transcription factor that activates NF-kappaB target genes through formation of heterocomplexes with p50 or p52. BCL-3 is phosphorylated in vivo, but specific BCL-3 ... [more ▼]

The oncoprotein BCL-3 is a nuclear transcription factor that activates NF-kappaB target genes through formation of heterocomplexes with p50 or p52. BCL-3 is phosphorylated in vivo, but specific BCL-3 kinases have not been identified so far. In this report, we show that BCL-3 is a substrate for the protein kinase GSK3 and that GSK3-mediated BCL-3 phosphorylation, which is inhibited by Akt activation, targets its degradation through the proteasome pathway. This phosphorylation modulates its association with HDAC1, -3, and -6 and attenuates its oncogenicity by selectively controlling the expression of a subset of newly identified target genes such as SLPI and CxcI1. Our results therefore suggest that constitutive BCL-3 phosphorylation by GSK3 regulates BCL-3 turnover and transcriptional activity. [less ▲]

Detailed reference viewed: 49 (11 ULiège)
See detailDiscovery of new rheumatoid arthritis biomarkers using SELDI-TOF-MS ProteinChip approach
De Seny, Dominique ULiege; Fillet, Marianne ULiege; Meuwis, Marie-Alice ULiege et al

in Arthritis and Rheumatism (2004, September), 50(9, Suppl. S), 124

Detailed reference viewed: 43 (19 ULiège)
Full Text
See detailPotentiation of tumor necrosis factor-induced NF-kappa B activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of I kappa B alpha (vol 23, pg 6200, 2003)
Adam, Emmanuelle; Quivy, Vincent; Bex, Françoise et al

in Molecular and Cellular Biology (2004), 24(15), 6890

Detailed reference viewed: 20 (7 ULiège)
Full Text
Peer Reviewed
See detailRegulation of HER-2 oncogene expression by cyclooxygenase-2 and prostaglandin E2
Benoit, Valérie; Relic, Biserka ULiege; de Leval, Laurence ULiege et al

in Oncogene (2004), 23(8), 1631-1635

The oncoprotein HER-2/neu is a prosurvival factor and its overexpression has been correlated with adverse prognosis in breast cancers. High levels of the cyclooxygenase-2 (COX-2), a proinflammatory and ... [more ▼]

The oncoprotein HER-2/neu is a prosurvival factor and its overexpression has been correlated with adverse prognosis in breast cancers. High levels of the cyclooxygenase-2 (COX-2), a proinflammatory and antiapoptotic enzyme, were detected in HER-2-positive tumors and this observation was linked to an HER-2-mediated induction of COX-2 gene transcription. Here, we report that COX-2 expression, and synthesis of its major enzymatic product, PGE2, leads in turn to an enhanced HER-2 expression. Moreover, COX-2 enzymatic inhibition dramatically reduced HER-2 protein levels, efficiently increased the cancer cells sensitility to chemotherapeutic treatment and acted in synergy with HER-2 inhibitor, trastuzumab. Therefore, we propose an original model where HER-2 and COX-2 transcriptionally regulate each other in a positive loop. [less ▲]

Detailed reference viewed: 69 (7 ULiège)
Full Text
Peer Reviewed
See detailCaspase-8-dependent HER-2 cleavage in response to tumor necrosis factor alpha stimulation is counteracted by nuclear factor kappa B through c-FLIP-L expression
Benoit, Valérie; Chariot, Alain ULiege; Delacroix, Laurence ULiege et al

in Cancer Research (2004), 64(8), 2684-2691

The oncoprotein HER-2/neu is a prosurvival factor, and its overexpression has been correlated with poor prognosis in patients with breast cancer. We report that HER-2 is a new substrate for caspase-8 and ... [more ▼]

The oncoprotein HER-2/neu is a prosurvival factor, and its overexpression has been correlated with poor prognosis in patients with breast cancer. We report that HER-2 is a new substrate for caspase-8 and that tumor necrosis factor alpha (TNF-alpha) stimulation leads to an early caspase-8-dependent HER-2 cleavage in MCF7 A/Z breast adenocarcinoma cells defective for nuclear factor kappaB (NFkappaB) activation. We show that the antiapoptotic transcription factor NFkappaB counteracts this cleavage through induction of the caspase-8 inhibitor c-FLIP. Our results also demonstrate that this HER-2 cleavage contributes to the TNF-alpha-induced apoptosis pathway because ectopic expression of an uncleavable HER-2 protects NFkappaB-defective cells against TNF-alpha-mediated cell death. Therefore, we propose an original model in which NFkappaB exerts a new antiapoptotic function by counteracting TNF-alpha-triggered cleavage of the HER-2 survival factor. [less ▲]

Detailed reference viewed: 85 (33 ULiège)
Full Text
Peer Reviewed
See detail15-deoxy-delta12,14-prostaglandin J2 inhibits Bay 11-7085-induced sustained extracellular signal-regulated kinase phosphorylation and apoptosis in human articular chondrocytes and synovial fibroblasts
Relic, Biserka ULiege; Benoit, Valerie; Franchimont, Nathalie et al

in Journal of Biological Chemistry (2004), 279(21), 399-403

We have previously shown that nuclear factor-kappaB inhibition by adenovirus expressing mutated IkappaB-alpha or by proteasome inhibitor increases human articular chondrocytes sensibility to apoptosis ... [more ▼]

We have previously shown that nuclear factor-kappaB inhibition by adenovirus expressing mutated IkappaB-alpha or by proteasome inhibitor increases human articular chondrocytes sensibility to apoptosis. Moreover, the nuclear factor-kappaB inhibitor BAY11-7085, a potent anti-inflammatory drug in rat adjuvant arthritis, is itself a proapoptotic agent for chondrocytes. In this work, we show that BAY 11-7085 but not the proteasome inhibitor MG-132 induced a rapid and sustained phosphorylation of extracellular signal-regulated kinases (ERK1/2) in human articular chondrocytes. The level of ERK1/2 phosphorylation correlated with BAY 11-7085 concentration and chondrocyte apoptosis. 15-Deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) and its precursor prostaglandin (PG) D2 but not PGE2 and PGF2alpha rescued chondrocytes from BAY 11-7085-induced apoptosis. 15d-PGJ2 markedly inhibited BAY 11-7085-induced phosphorylation of ERK1/2. BAY 11-7085 also induced ERK1/2 phosphorylation and apoptosis in human synovial fibroblasts, and these reactions were down-regulated by 15d-PGJ2. Further analysis in synovial fibroblasts showed that only molecules that suppressed BAY 11-7085-induced phosphorylation of ERK1/2 (i.e. 15d-PGJ2, PGD2, and to a lesser extent, MEK1/2 inhibitor UO126, but not prostaglandins E2 and F2alpha or peroxisome proliferator-activated receptor-gamma agonist ciglitazone) were able protect cells from apoptosis. These results suggested that the antiapoptotic effect of 15d-PGJ2 on chondrocytes and synovial fibroblasts might involve inhibition of ERK1/2 phosphorylation. [less ▲]

Detailed reference viewed: 29 (4 ULiège)
Full Text
Peer Reviewed
See detailModulation of the HSV-TK/ganciclovir bystander effect by n-butyrate in glioblastoma: correlation with gap-junction intercellular communication.
Robe, Pierre ULiege; Jolois, Olivier ULiege; Nguyen Khac, Minh-Tuan ULiege et al

in International Journal of Oncology (2004), 25(1), 187-92

The efficacy of HSV-TK/ganciclovir gene therapy largely relies on the bystander effect, i.e. the ability of transfected cells to kill the adjacent, untrasfected cells. This mechanism itself depends ... [more ▼]

The efficacy of HSV-TK/ganciclovir gene therapy largely relies on the bystander effect, i.e. the ability of transfected cells to kill the adjacent, untrasfected cells. This mechanism itself depends chiefly on the transfer via gap junctions of phosphorylated ganciclovir between cells, and is often deficient in glioblastomas. In this report, we demonstrate that n-butyrate markedly enhances the gap junction intercellular communication of GJIC-deficient glioma cells, and significantly increases the bystander effect in such cells. This effect of n-butyrate appears to be independent from its HDAC inhibitory effect, since trichostatin A does not reproduce it. [less ▲]

Detailed reference viewed: 42 (8 ULiège)
Full Text
Peer Reviewed
See detailIn vitro and in vivo activity of the nuclear factor-kappa B inhibitor sulfasalazine in human glioblastomas.
Robe, Pierre ULiege; Bentires-Alj, Mohamed; Bonif, Marianne et al

in Clinical Cancer Research : An Official Journal of the American Association for Cancer Research (2004), 10(16), 5595-603

Glioblastomas, the most common primary brain cancers, respond poorly to current treatment modalities and carry a dismal prognosis. In this study, we demonstrated that the transcription factor nuclear ... [more ▼]

Glioblastomas, the most common primary brain cancers, respond poorly to current treatment modalities and carry a dismal prognosis. In this study, we demonstrated that the transcription factor nuclear factor (NF)-kappaB is constitutively activated in glioblastoma surgical samples, primary cultures, and cell lines and promotes their growth and survival. Sulfasalazine, an anti-inflammatory drug that specifically inhibits the activation of NF-kappaB, blocked the cell cycle and induced apoptosis in several glioblastoma cell lines and primary cultures, as did gene therapy with a vector encoding a super-repressor of NF-kappaB. In vivo, sulfasalazine also significantly inhibited the growth of experimental human glioblastomas in nude mice brains. Given the documented safety of sulfasalazine in humans, these results may lead the way to a new class of glioma treatment. [less ▲]

Detailed reference viewed: 61 (8 ULiège)
Full Text
Peer Reviewed
See detailCytoplasmic I kappa B alpha increases NF-kappa B-independent transcription through binding to histone deacetylase (HDAC) 1 and HDAC3
Viatour, Patrick ULiege; Legrand-Poels, Sylvie; van Lint, Carine et al

in Journal of Biological Chemistry (2003), 278(47), 46541-46548

IkappaBalpha is an inhibitory molecule that sequesters NF-kappaB dimers in the cytoplasm of unstimulated cells. Upon stimulation, NF-kappaB moves to the nucleus and induces the expression of a variety of ... [more ▼]

IkappaBalpha is an inhibitory molecule that sequesters NF-kappaB dimers in the cytoplasm of unstimulated cells. Upon stimulation, NF-kappaB moves to the nucleus and induces the expression of a variety of genes including IkappaBalpha. This newly synthesized IkappaBalpha also translocates to the nucleus, removes activated NF-kappaB from its target genes, and brings it back to the cytoplasm to terminate the phase of NF-kappaB activation. We show here that IkappaBalpha enhances the transactivation potential of several homeodomain-containing proteins such as HOXB7 and Pit-1 through a NF-kappaB-independent association with histone deacetylase (HDAC) 1 and HDAC3 but not with HDAC2, -4, -5, and -6. IkappaBalpha bound both HDAC proteins through its ankyrin repeats, and this interaction was disrupted by p65. Immunofluorescence experiments demonstrated further that IkappaBalpha acts by partially redirecting HDAC3 to the cytoplasm. At the same time, an IkappaBalpha mutant, which lacked a functional nuclear localization sequence, interacted very efficiently with HDAC1 and -3 and intensively enhanced the transactivation potential of Pit-1. Our results support the hypothesis that the NF-kappaB inhibitor IkappaBalpha regulates the transcriptional activity of homeodomain-containing proteins positively through cytoplasmic sequestration of HDAC1 and HDAC3, a mechanism that would assign a new and unexpected role to IkappaBalpha. [less ▲]

Detailed reference viewed: 46 (6 ULiège)
Full Text
Peer Reviewed
See detailDeletion (6)(p22p25) is a recurrent anomaly of thymoma: report of a second case and review of the literature
Herens, Christian ULiege; Radermecker, Maurice ULiege; Servais, Anne-Marie ULiege et al

in Cancer Genetics & Cytogenetics (2003), 146(1), 66-69

A patient with type AB thymoma and del(6)(p22p25) as the sole cytogenetic anomaly is described. This is the second report of a del(6)(p22p25) in a thymoma. The same deletion was previously found in ... [more ▼]

A patient with type AB thymoma and del(6)(p22p25) as the sole cytogenetic anomaly is described. This is the second report of a del(6)(p22p25) in a thymoma. The same deletion was previously found in association with a type A thymoma. Both patients presented with benign tumors. These data suggest that partial deletion of the short arm of chromosome 6 is a nonrandom change associated with benign thymomas. (C) 2003 Elsevier Inc. All rights reserved. [less ▲]

Detailed reference viewed: 18 (3 ULiège)
Full Text
Peer Reviewed
See detailThe antiangiogenic factor 16K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappa B
Tabruyn, Sébastien ULiege; Sorlet, C. M.; Rentier-Delrue, Françoise ULiege et al

in Molecular Endocrinology (2003), 17(9), 1815-1823

We have previously shown that the 16-kDa N-terminal fragment of human prolactin (16K hPRL) has antiangiogenic properties, including the ability to induce apoptosis in vascular endothelial cells. Here, we ... [more ▼]

We have previously shown that the 16-kDa N-terminal fragment of human prolactin (16K hPRL) has antiangiogenic properties, including the ability to induce apoptosis in vascular endothelial cells. Here, we examined whether the nuclear factor-kappaB (NF-kappaB) signaling pathway was involved in mediating the apoptotic action of 16K hPRL in bovine adrenal cortex capillary endothelial cells. In a dose-dependent manner, treatment with 16K hPRL induced inhibitor kappaB-alpha degradation permitting translocation of NF-kappaB to the nucleus and reporter gene activation. Inhibition of NF-kappaB activation by overexpression of a nondegradable inhibitor kappaB-alpha mutant or treatment with NF-kappaB inhibitors blocked 16K hPRL-induced apoptosis. Treatment with 16K hPRL activated the initiator caspases-8 and -9 and the effector caspase-3, all of which were essential for stimulation of DNA fragmentation. This activation of the caspase cascade by 16K hPRL was also NF-kappaB dependent. These findings support the conclusion that NF-kappaB signaling plays a central role in 16K hPRL-induced apoptosis in vascular endothelial cells. [less ▲]

Detailed reference viewed: 29 (6 ULiège)
Full Text
Peer Reviewed
See detailPotentiation of tumor necrosis factor-induced NF-kappa B activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of I kappa B alpha
Adam, Emmanuelle; Quivy, Vincent; Bex, Françoise et al

in Molecular and Cellular Biology (2003), 23(17), 6200-6209

Previous studies have implicated acetylases and deacetylases in regulating the transcriptional activity of NF-kappaB. Here, we show that inhibitors of deacetylases such as trichostatin A (TSA) and sodium ... [more ▼]

Previous studies have implicated acetylases and deacetylases in regulating the transcriptional activity of NF-kappaB. Here, we show that inhibitors of deacetylases such as trichostatin A (TSA) and sodium butyrate (NaBut) potentiated TNF-induced expression of several natural NF-kappaB-driven promoters. This transcriptional synergism observed between TNF and TSA (or NaBut) required intact kappaB sites in all promoters tested and was biologically relevant as demonstrated by RNase protection on two instances of endogenous NF-kappaB-regulated gene transcription. Importantly, TSA prolonged both TNF-induced DNA-binding activity and the presence of NF-kappaKB in the nucleus. We showed that the p65 subunit of NF-kappaB was acetylated in vivo. However, this acetylation was weak, suggesting that other mechanisms could be implicated in the potentiated binding and transactivation activities of NF-kappaB after TNF plus TSA versus TNF treatment. Western blot and immunofluorescence confocal microscopy experiments revealed a delay in the cytoplasmic reappearance of the IkappaBalpha inhibitor that correlated temporally with the prolonged intranuclear binding and presence of NF-kappaB. This delay was due neither to a defect in IkappaBalpha mRNA production nor to a nuclear retention of IkappaBalpha but was rather due to a persistent proteasome-mediated degradation of IkappaBalpha. A prolongation of IkappaB kinase activity could explain, at least partially, the delayed IkappaBalpha cytoplasmic reappearance observed in presence of TNF plus TSA. [less ▲]

Detailed reference viewed: 47 (7 ULiège)
See detailRaloxifene protects Osteoblasts from apoptosis induced by sodium nitroprusside: Potential involvement of ceramide
Olivier, Sabine ULiege; Fillet, Marianne ULiege; Malaise, Michel ULiege et al

in Journal of Bone and Mineral Research (2003, September), 18(Suppl. 2), 136

Detailed reference viewed: 103 (10 ULiège)