References of "Bettendorff, Lucien"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA specific inorganic triphosphatase from Nitrosomonas europaea: structure and catalytic mechanism
Delvaux, David ULiege; Murty, Mamidana R.V.S; Gabelica, Valérie ULiege et al

in Journal of Biological Chemistry (2011), 286

The CYTH superfamily of proteins is named after its two founding members, the CyaB adenylyl cyclase from Aeromonas hydrophila and the human 25-kDa thiamine triphosphatase. Because these proteins often ... [more ▼]

The CYTH superfamily of proteins is named after its two founding members, the CyaB adenylyl cyclase from Aeromonas hydrophila and the human 25-kDa thiamine triphosphatase. Because these proteins often form a closed β-barrel, they are also referred to as “Triphosphate Tunnel Metalloenzymes” (TTM). Functionally, they are characterized by their ability to bind triphosphorylated substrates and divalent metal ions. These proteins exist in most organisms and catalyze different reactions, depending on their origin. Here we investigate structural and catalytic properties of the recombinant TTM protein from Nitrosomonas europaea (NeuTTM), a 19-kDa protein. Crystallographic data show that it crystallizes as a dimer and that, in contrast to other TTM proteins, it has an open β-barrel structure. We demonstrate that NeuTTM is a highly specific inorganic triphosphatase, hydrolyzing tripolyphosphate (PPPi) with high catalytic efficiency in the presence of Mg2+. These data are supported by native mass spectrometry analysis showing that the enzyme binds PPPi (and Mg-PPPi) with high affinity (Kd < 1.5 μM), while it has a low affinity for ATP or thiamine triphosphate. In contrast to Aeromonas and Yersinia CyaB proteins, NeuTTM has no adenylyl cyclase activity, but it shares several properties with other enzymes of the CYTH superfamily, e.g. heat-stability, alkaline pH optimum and inhibition by Ca2+ and Zn2+ ions. We suggest a catalytic mechanism involving a catalytic dyad formed by K52 and Y28. The present data provide the first characterization of a new type of phosphohydrolase (unrelated to pyrophosphatases or exopolyphosphatases), able to hydrolyze inorganic triphosphate with high specificity. [less ▲]

Detailed reference viewed: 91 (30 ULiège)
Full Text
Peer Reviewed
See detailThiamine Status in Humans and Content of Phosphorylated Thiamine Derivatives in Biopsies and Cultured Cells
Gangolf, Marjorie ULiege; Czerniecki, Jan; Radermecker, Marc ULiege et al

in PLoS ONE (2010), 5(10), 13616

Background Thiamine (vitamin B1) is an essential molecule for all life forms because thiamine diphosphate (ThDP) is an indispensable cofactor for oxidative energy metabolism. The less abundant thiamine ... [more ▼]

Background Thiamine (vitamin B1) is an essential molecule for all life forms because thiamine diphosphate (ThDP) is an indispensable cofactor for oxidative energy metabolism. The less abundant thiamine monophosphate (ThMP), thiamine triphosphate (ThTP) and adenosine thiamine triphosphate (AThTP), present in many organisms, may have still unidentified physiological functions. Diseases linked to thiamine deficiency (polyneuritis, Wernicke-Korsakoff syndrome) remain frequent among alcohol abusers and other risk populations. This is the first comprehensive study on the distribution of thiamine derivatives in human biopsies, body fluids and cell lines. Methodology and Principal Findings Thiamine derivatives were determined by HPLC. In human tissues, the total thiamine content is lower than in other animal species. ThDP is the major thiamine compound and tissue levels decrease at high age. In semen, ThDP content correlates with the concentration of spermatozoa but not with their motility. The proportion of ThTP is higher in humans than in rodents, probably because of a lower 25-kDa ThTPase activity. The expression and activity of this enzyme seems to correlate with the degree of cell differentiation. ThTP was present in nearly all brain and muscle samples and in ~60% of other tissue samples, in particular fetal tissue and cultured cells. A low ([ThTP]+[ThMP])/([Thiamine]+[ThMP]) ratio was found in cardiovascular tissues of patients with cardiac insufficiency. AThTP was detected only sporadically in adult tissues but was found more consistently in fetal tissues and cell lines. Conclusions and Significance The high sensitivity of humans to thiamine deficiency is probably linked to low circulating thiamine concentrations and low ThDP tissue contents. ThTP levels are relatively high in many human tissues, as a result of low expression of the 25-kDa ThTPase. Another novel finding is the presence of ThTP and AThTP in poorly differentiated fast-growing cells, suggesting a hitherto unsuspected link between these compounds and cell division or differentiation. [less ▲]

Detailed reference viewed: 74 (27 ULiège)
Full Text
Peer Reviewed
See detailThiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain
Gangolf, Marjorie ULiege; Wins, Pierre; Thiry, Marc ULiege et al

in Journal of Biological Chemistry (2010), 285

Detailed reference viewed: 92 (40 ULiège)
Full Text
Peer Reviewed
See detailThiaminylated adenine nucleotides — chemical synthesis, structural characterization and natural occurrence
Frederich, Michel ULiege; Delvaux, David ULiege; Gigliobianco, Tiziana ULiege et al

in FEBS Journal (2009), 276(12), 32563268

Thiamine and its three phosphorylated derivatives (mono-, di- and triphosphate) occur naturally in most cells. Recently, we reported the presence of a fourth thiamine derivative, adenosine thiamine ... [more ▼]

Thiamine and its three phosphorylated derivatives (mono-, di- and triphosphate) occur naturally in most cells. Recently, we reported the presence of a fourth thiamine derivative, adenosine thiamine triphosphate (AThTP), produced in E. coli in response to carbon starvation. Here, we show that the chemical synthesis of AThTP leads to another new compound, adenosine thiamine diphosphate (thiaminylated ADP, AThDP), as a side product. The structure of both compounds was confirmed by mass spectrometry and 1H-, 13C- and 31P-NMR and some of their chemical properties were determined. Our results show an upfield shifting of the C-2 proton of the thiazolium ring in adenosine thiamine derivatives compared to the conventional thiamine phosphate derivatives. This modification of the electronic environment of the C-2 proton might be explained by a through-space interaction with the adenosine moiety, suggesting an U-shaped folding of adenosine thiamine derivatives. Such a structure where the C-2 proton is embedded in a closed conformation can be located using molecular modeling as an energy minimum. In E. coli, AThTP may account for 15% of total thiamine under energy stress. It is less abundant in eukaryotic organisms, but is consistently found in mammalian tissues and in some cell lines. Using a HPLC method, we show for the first time that AThDP may also occur in small amounts in E. coli and in vertebrate liver. The discovery of two natural thiamine adenine compounds further highlights the complexity and diversity of thiamine biochemistry, which is not restricted to the cofactor role of thiamine diphosphate. [less ▲]

Detailed reference viewed: 144 (50 ULiège)
Full Text
Peer Reviewed
See detailThiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors
Bettendorff, Lucien ULiege; Wins, Pierre

in FEBS Journal (2009), 276(11), 2917-2925

Prokaryotes, yeasts and plants synthesize thiamine (vitamin B1) via complex pathways. Animal cells capture the vitamin through specific high-affinity transporters essential for internal thiamine ... [more ▼]

Prokaryotes, yeasts and plants synthesize thiamine (vitamin B1) via complex pathways. Animal cells capture the vitamin through specific high-affinity transporters essential for internal thiamine homeostasis. Inside the cells, thiamine is phosphorylated to higher phosphate derivatives. Thiamine diphosphate (ThDP) is the best-known thiamine compound for its role as an enzymatic cofactor. However, besides ThDP, at least three other thiamine phosphates occur naturally in most cells: thiamine monophosphate (ThMP), thiamine triphosphate (ThTP) and the recently discovered adenosine thiamine triphosphate (AThTP). It was suggested that ThTP has a specific neurophysiological role, but recent data are in favor of a much more basic metabolic function. During amino acid starvation, Escherichia coli accumulate ThTP possibly acting as a signal involved in the adaptation of the bacteria to changing nutritional conditions. In animal cells, ThTP can phosphorylate some proteins, but the physiological significance of this mechanism remains unknown. AThTP, recently discovered in E. coli, accumulates during carbon starvation and might act as an alarmone. Among the proteins involved in thiamine metabolism, thiamine transporters, thiamine pyrophosphokinase and a soluble 25-kDa thiamine triphosphatase have been characterized at the molecular level, in contrast to thiamine mono- and diphosphatases whose specificities remain to be proven. A soluble enzyme catalyzing the synthesis of AThTP from ThDP and ADP or ATP has been partially characterized in E. coli, but the mechanism of ThTP synthesis remains elusive. The data reviewed here illustrate the complexity of thiamine biochemistry, which is not restricted to the cofactor role of ThDP. [less ▲]

Detailed reference viewed: 68 (14 ULiège)
Full Text
Peer Reviewed
See detailStructural basis for the catalytic mechanism of mammalian 25 kDa thiamine triphosphatase
Song, J.; Bettendorff, Lucien ULiege; Tonelli, Marco et al

in Journal of Biological Chemistry (2008), 283

Detailed reference viewed: 19 (4 ULiège)
Full Text
Peer Reviewed
See detailAdenylate Kinase-Independent Thiamine Triphosphate Accumulation under Severe Energy Stress in Escherichia Coli
Gigliobianco, Tiziana ULiege; Lakaye, Bernard ULiege; Makarchikov, Alexander F et al

in BMC Microbiology (2008), 8

BACKGROUND: Thiamine triphosphate (ThTP) exists in most organisms and might play a role in cellular stress responses. In E. coli, ThTP is accumulated in response to amino acid starvation but the mechanism ... [more ▼]

BACKGROUND: Thiamine triphosphate (ThTP) exists in most organisms and might play a role in cellular stress responses. In E. coli, ThTP is accumulated in response to amino acid starvation but the mechanism of its synthesis is still a matter of controversy. It has been suggested that ThTP is synthesized by an ATP-dependent specific thiamine diphosphate kinase. However, it is also known that vertebrate adenylate kinase 1 catalyzes ThTP synthesis at a very low rate and it has been postulated that this enzyme is responsible for ThTP synthesis in vivo. RESULTS: Here we show that bacterial, as vertebrate adenylate kinases are able to catalyze ThTP synthesis, but at a rate more than 106-fold lower than ATP synthesis. This activity is too low to explain the high rate of ThTP accumulation observed in E. coli during amino acid starvation. Moreover, bacteria from the heat-sensitive CV2 strain accumulate high amounts of ThTP (>50% of total thiamine) at 37 degrees C despite complete inactivation of adenylate kinase and a subsequent drop in cellular ATP. CONCLUSION: These results clearly demonstrate that adenylate kinase is not responsible for ThTP synthesis in vivo. Furthermore, they show that E. coli accumulate large amounts of ThTP under severe energy stress when ATP levels are very low, an observation not in favor of an ATP-dependent mechanisms for ThTP synthesis. [less ▲]

Detailed reference viewed: 80 (23 ULiège)
Full Text
Peer Reviewed
See detailDiscovery of a natural thiamine adenine nucleotide
Bettendorff, Lucien ULiege; Wirtzfeld, Barbara; Makarchikov, Alexander F et al

in Nature Chemical Biology (2007), 3(4), 211-212

Several important cofactors are adenine nucleotides with a vitamin as the catalytic moiety. Here, we report the discovery of the first adenine nucleotide containing vitamin B1: adenosine thiamine ... [more ▼]

Several important cofactors are adenine nucleotides with a vitamin as the catalytic moiety. Here, we report the discovery of the first adenine nucleotide containing vitamin B1: adenosine thiamine triphosphate (AThTP, 1), or thiaminylated ATP. We discovered AThTP in Escherichia coli and found that it accumulates specifically in response to carbon starvation, thereby acting as a signal rather than a cofactor. We detected smaller amounts in yeast and in plant and animal tissues. [less ▲]

Detailed reference viewed: 106 (46 ULiège)
See detailNew evidence for a non-cofactor role of thiamine phosphate derivatives
Bettendorff, Lucien ULiege

Scientific conference (2007)

Detailed reference viewed: 7 (0 ULiège)
Full Text
See detailAt the crossroad of thiamine degradation and biosynthesis
Bettendorff, Lucien ULiege

in Nature Chemical Biology (2007), 3(8), 454-455

The physiological significance of thiaminase II has escaped our understanding for many years. The recent discovery of a new thiamine salvage pathway shows that this enzyme is involved in the regeneration ... [more ▼]

The physiological significance of thiaminase II has escaped our understanding for many years. The recent discovery of a new thiamine salvage pathway shows that this enzyme is involved in the regeneration of precursors for thiamine biosynthesis. [less ▲]

Detailed reference viewed: 39 (8 ULiège)
Full Text
Peer Reviewed
See detailThiamine Diphosphate Adenylyl Transferase from E. Coli: Functional Characterization of the Enzyme Synthesizing Adenosine Thiamine Triphosphate
Makarchikov, Alexander F; Brans, Alain ULiege; Bettendorff, Lucien ULiege

in BMC Biochemistry (2007), 8

BACKGROUND: We have recently identified a new thiamine derivative, adenosine thiamine triphosphate (AThTP), in E. coli. In intact bacteria, this nucleotide is synthesized only in the absence of a ... [more ▼]

BACKGROUND: We have recently identified a new thiamine derivative, adenosine thiamine triphosphate (AThTP), in E. coli. In intact bacteria, this nucleotide is synthesized only in the absence of a metabolizable carbon source and quickly disappears as soon as the cells receive a carbon source such as glucose. Thus, we hypothesized that AThTP may be a signal produced in response to carbon starvation. RESULTS: Here we show that, in bacterial extracts, the biosynthesis of AThTP is carried out from thiamine diphosphate (ThDP) and ADP or ATP by a soluble high molecular mass nucleotidyl transferase. We partially purified this enzyme and characterized some of its functional properties. The enzyme activity had an absolute requirement for divalent metal ions, such as Mn2+ or Mg2+, as well as for a heat-stable soluble activator present in bacterial extracts. The enzyme has a pH optimum of 6.5-7.0 and a high Km for ThDP (5 mM), suggesting that, in vivo, the rate of AThTP synthesis is proportional to the free ThDP concentration. When ADP was used as the variable substrate at a fixed ThDP concentration, a sigmoid curve was obtained, with a Hill coefficient of 2.1 and an S0.5 value of 0.08 mM. The specificity of the AThTP synthesizing enzyme with respect to nucleotide substrate is restricted to ATP/ADP, and only ThDP can serve as the second substrate of the reaction. We tentatively named this enzyme ThDP adenylyl transferase (EC 2.7.7.65). CONCLUSION: This is the first demonstration of an enzyme activity transferring a nucleotidyl group on thiamine diphosphate to produce AThTP. The existence of a mechanism for the enzymatic synthesis of this compound is in agreement with the hypothesis of a non-cofactor role for thiamine derivatives in living cells. [less ▲]

Detailed reference viewed: 42 (14 ULiège)