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Abstract

The study of populations of pulse-coupled firing oscillators is a general and simple paradigm to
investigate a wealth of natural phenomena, including the collective behaviors of neurons, the
synchronization of cardiac pacemaker cells, or the dynamics of earthquakes. In this framework,
the oscillators of the network interact through an instantaneous impulsive coupling: whenever
an oscillator fires, it sends out a pulse which instantaneously increments the state of the other
oscillators by a constant value.

There is an extensive literature on the subject, which investigates various model extensions,
but only in the case of leaky integrate-and-fire oscillators. In contrast, the present dissertation
addresses the study of other integrate-and-fire dynamics: general monotone integrate-and-fire
dynamics and quadratic integrate-and-fire dynamics.

The main contribution of the thesis highlights that the populations of oscillators exhibit
a dichotomic collective behavior : either the oscillators achieve perfect synchrony (slow firing
frequency) or the oscillators converge toward a phase-locked clustering configuration (fast fir-
ing frequency). The dichotomic behavior is established both for finite and infinite populations
of oscillators, drawing a strong parallel between discrete-time systems in finite-dimensional
spaces and continuous-time systems in infinite-dimensional spaces.

The first part of the dissertation is dedicated to the study of monotone integrate-and-fire
dynamics. We show that the dichotomic behavior of the oscillators results from the mono-
tonicity property of the dynamics: the monotonicity property induces a global contraction
property of the network, that forces the dichotomic behavior. Interestingly, the analysis
emphasizes that the contraction property is captured through a 1-norm, instead of a (more
common) quadratic norm.

In the second part of the dissertation, we investigate the collective behavior of quadratic
integrate-and-fire oscillators. Although the dynamics is not monotone, an “average” mono-
tonicity property ensures that the collective behavior is still dichotomic. However, a global
analysis of the dichotomic behavior is elusive and leads to a standing conjecture. A local
stability analysis circumvents this issue and proves the dichotomic behavior in particular sit-
uations (small networks, weak coupling, etc.). Surprisingly, the local stability analysis shows
that specific integrate-and-fire oscillators exhibit a non-dichotomic behavior, thereby suggest-
ing that the dichotomic behavior is not a general feature of every network of pulse-coupled
oscillators.

The present thesis investigates the remarkable dichotomic behavior that emerges from net-
works of pulse-coupled integrate-and-fire oscillators, putting emphasis on the stability prop-
erties of these particular networks and developing theoretical results for the analysis of the
corresponding dynamical systems.





Résumé

Les populations d’oscillateurs impulsivement couplés constituent un paradigme simple et
général pour étudier une multitude de phénomènes naturels, tels que les comportements collec-
tifs des neurones, la synchronisation des cellules pacemaker du coeur, ou encore la dynamique
des tremblements de terre. Dans ce contexte, les oscillateurs interagissent au sein du réseau
par le biais d’un couplage instantané: quand un oscillateur décharge, il envoie vers les autres
oscillateurs une impulsion qui incrémente instantanément leur état par une valeur constante.

Diverses extensions du modèle ont été intensément étudiées dans la littérature, mais seule-
ment dans le cas d’oscillateurs leaky integrate-and-fire. Afin de pallier cette restriction, le
présent manuscrit traite de l’étude d’autres dynamiques integrate-and-fire: les dynamiques
générales integrate-and-fire monotones et les dynamiques integrate-and-fire quadratiques.

La contribution principale de la thèse met en évidence le comportement d’ensemble di-
chotomique selon lequel s’organisent les populations d’oscillateurs: soit les oscillateurs at-
teignent un état de synchronisation parfaite (taux de décharge lent), soit ils convergent vers
une configuration de clustering en blocage de phase (taux de décharge rapide). Ce comporte-
ment dichotomique est établi aussi bien pour des populations finies que pour des populations
infinies, ce qui démontre un parallèle élégant entre des systèmes en temps-discret dans des
espaces de dimension finie et des systèmes en temps-continu dans des espaces de dimension
infinie.

La première partie du manuscrit se concentre sur l’étude des dynamiques integrate-and-fire
monotones. Dans ce cadre, nous montrons que le comportement dichotomique résulte de la
propriété de monotonicité des oscillateurs. Cette dernière induit une propriété de contraction
globale, elle-même engendrant le comportement dichotomique. En outre, l’analyse révèle que
la propriété de contraction est capturée par une norme 1, au lieu d’une norme quadratique
(plus usuelle).

Dans la seconde partie de la thèse, nous étudions le comportement d’ensemble d’oscillateurs
integrate-and-fire quadratiques. Bien que la dynamique ne soit plus monotone, une pro-
priété de monotonicité “en moyenne” implique que le comportement collectif est encore di-
chotomique. Alors qu’une analyse de stabilité globale s’avère être difficile et conduit à plusieurs
conjectures, une analyse locale permet de prouver le comportement dichomique dans certaines
situations (réseaux de petite taille, couplage faible, etc.). De plus, l’analyse locale prouve que
des oscillateurs integrate-and-fire particuliers ne s’organisent pas suivant un comportement
dichotomique, ce qui suggère que ce dernier n’est pas une caractéristique générale de tous les
réseaux d’oscillateurs impulsivement couplés.

En résumé, la thèse étudie le remarquable comportement dichotomique qui émerge des
réseaux d’oscillateurs integrate-and-fire impulsivement couplés, mettant ainsi l’emphase sur
les propriétés de stabilité desdits réseaux et développant les résultats théoriques nécessaires à
l’étude mathématique des systèmes dynamiques correspondants.
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Chapter 1

Introduction

“In the longer run, network thinking will become essential to all branches of science as we
struggle to interpret the data pouring in from neurobiology, genomics, ecology, finance and the
World-Wide Web.” Such is the conclusion of a 2001 Nature article by S. H. Strogatz [105],
that illustrates to what degree analyzing complex networks to predict or design their collective
behavior has become an essential question. One decade later, network theory is more than
ever a central and overwhelming research thematic in many scientific disciplines.

From artificial to natural networks

In recent times, the synthesis of collective behaviors in artificial networks has attracted great
interest. In particular, numerous engineering applications have motivated leaderless coordina-
tion of multi-agent systems. Without leader and without external control, the agents interact
within an autonomous network to reach a consensus: to compute a common average of local
measurements (sensor networks), to align according to a common heading angle (unmanned
aerial vehicles), or to achieve a common task (cooperative robotics). The consensus prob-
lem thematic and the synthesis of collective motions have led to intensive research in the
engineering control community (e.g. [52, 66, 76, 98, 113], see the introduction in [94] for an
overview).

Artificial networks are, first and foremost, a mere (and pale) imitation of nature, which
was and is still an inexhaustible source of inspiration for the design of leaderless multi-agent
systems. In a number of natural phenomena, collective behaviors spontaneously emerge from
the network, in spite of the absence of leader. The puzzling unity of schools of fish or flocks
of birds is such an intriguing example [91].

Among the multitude of natural networks, the most fascinating ones are undoubtedly the
(biological) neural networks, that have largely inspired the machine learning community (see
e.g. the Hopfield model [46]). Above all, the human brain is the biggest network ever studied,
with billions of neurons individually connected to about ten thousands of others. Interestingly,
the difficulties to unveil the brain mysteries arise not only from the intricate architecture of the
huge neural network, but also because the essential functioning mechanisms are still unknown.
For instance, it is not clear how information is processed in the brain, a fundamental issue
known as the neuronal coding problem. (The reader may refer to the monograph [35] for a
comprehensive overview on neural networks.)

It is an unquestionable fact that every brain mechanism does not rely on the individual
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behavior of a neuron, but on the ensemble behavior of many neurons. As an illustration,
particular collective behaviors have been pointed out to explain some vision mechanisms
(feature binding problem [30, 38]). Pathologies such as epilepsy or Parkinson disease arise
from abnormal collective behaviors [116]. As a consequence, a main challenge in neuroscience
is to highlight how the intrinsic properties of the neuron, for which accurate models are well-
known (e.g. Hodgkin-Huxley model [45]), influence the global ensemble behavior of the whole
network, a behavior that is recorded, for instance, in an electroencephalography.

Neural networks exhibit a wealth of collective behaviors, among which two are particu-
larly remarkable: synchronization and clustering. Synchronization is a coherent and organized
behavior emerging from a (apparently) disorganized network [106]. Many other natural mech-
anisms rely on synchronization: heart pacemaker cells of the heart [86], insulin-secreting cells
in the pancreas [100], flashing fireflies [15], chirping crickets [120], clapping audiences, etc. In
contrast, clustering is a fragmentation of the collective behavior in locally synchronized but
well separated subgroups. It is observed in various situations: swarm behavior of animals or
social insects [91, 119], yeast cell cycle [9], opinion dynamics in social science [43], etc.

In the above context, the present dissertation is a mathematical study of the collective
behaviors in large networks inspired from neural networks, with a particular attention to both
synchronization and clustering behaviors. The general objective is to highlight the relationships
between the microscopic properties of the individual agents and the macroscopic ensemble
phenomena of the whole network.

Networks of coupled oscillators

A general paradigm to analyze and understand a large variety of natural phenomena is to
study networks of coupled oscillators. Acoustic vibrations, circadian rhythms, or economic
cycles are such explicit examples that clearly illustrate the omnipresence of oscillators. As a
consequence, networks of coupled oscillators are often the underlying mechanisms of numerous
phenomena: they play a key role in neuroscience [35], but also in other fields of biology (e.g.
heart pacemaker cells [86]), in mechanics (e.g. coupled Huygens pendula [49]), in physics (e.g.
Josephson-junction arrays [123]), in civil engineering (e.g. pedestrian excitation of bridges
[68]), etc.

The study of coupled oscillators is not trivial, but appears to be a complex issue. Indeed,
the network simplicity is only apparent: although the oscillators are characterized by a sim-
ple individual dynamics, they are usually connected through a nonlinear coupling. They may
therefore exhibit intricate collective behaviors, whose complexity is amplified by the network
size. In particular, the robustness of the collective behaviors in heterogeneous networks is
a mathematical puzzle that has attracted intense research interest (e.g. Kuramoto model
[59, 104]).

In a more specific framework than the general context of coupled oscillators, the present
thesis is dedicated to the study of models of coupled phase oscillators. Under mild assump-
tions, an oscillatory system, however complex it is, can be turned into a phase oscillator
[125]. The sensitivity of the phase oscillator to external perturbations is expressed through
the so-called phase response curve, a well-known tool that biologists (for instance) can di-
rectly compute with real experiments (see [102]). In this context, a fundamental question is
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to quantify, through the phase response curve, the robustness of the phase oscillator to ex-
ternal perturbations [40]. Investigating the collective behaviors in networks of coupled phase
oscillators, where each oscillator is perturbed by the neighboring oscillators, is perfectly in
line with this important robustness issue.

Impulsive coupling

There exist many examples of oscillators that do not interact through a continuous and
permanent coupling, but that influence (and are influenced by) the network only during a
tiny fraction of their cycle (e.g. yeast cells populations [9]). It is particularly so when the
oscillators send out fast pulses (e.g. spiking neurons [35]), a situation where the coupling is
almost instantaneous.

In 1975, Peskin proposed a model of instantaneous impulsive coupling [86], assuming that
a pulse emitted by an oscillator causes an instantaneous increment to the state of the other
oscillators (the oscillators are pulse-coupled). Initially introduced to model pacemaker cells of
the heart, impulsive coupling was successfully applied to spiking neurons [35], flashing fireflies
[15], earthquakes dynamics [82], etc. and even to unsupervised classification problems [92].

Impulsive coupling is always associated to firing oscillators. The emission of the pulses
corresponds to a fast part of the oscillator dynamics —the so-called firing — that contrasts
with the slow remaining part of the dynamics. The most popular model studied in this context
is the integrate-and-fire oscillator [57, 63], whose evolution is characterized by a rise to an
upper threshold and an instantaneous reset to a lower threshold (the firing). Networks of
pulse-coupled integrate-and-fire oscillators were initially studied by Mirollo and Strogatz [75],
a seminal paper that initiated abundant research on diverse extensions of the original model
(e.g. reduced interconnectivity [25, 26, 28, 36, 84, 108, 110], delays [33, 109], non-instantaneous
interactions [3, 12, 118, 128], non-identical oscillators [10, 19, 24, 97]).

From the original model of Peskin to the most recent studies, the pulse-coupled oscilla-
tors are assumed to be leaky integrate-and-fire oscillators [63], an integrate-and-fire dynamics
that is popular but restrictive with respect to the wide diversity of natural phenomena. For
instance, a leaky dynamics is a caricature of the real dynamics of a neuron, which may exhibit
various behaviors, such as excitability. However, in spite of the numerous extensions of the
original model, studies of more general integrate-and-fire oscillators are surprisingly rare. In
this context, significant results on more general dynamics are missing.

To fill in this lack, the present dissertation addresses the study of more general dynamics,
thereby paving the way to investigate the relationship between the dynamics of the oscillators
and the collective behaviors of the network.
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1.1 Contributions of the dissertation

The major contribution of the dissertation is to highlight the collective dichotomic behav-
ior observed in networks of pulse-coupled integrate-and-fire oscillators: the oscillators either
achieve perfect synchrony (low firing frequency) or converge to a clustering behavior (high fir-
ing frequency). In this context, the thesis considers monotone integrate-and-fire dynamics and
(non-monotone) quadratic integrate-and-fire dynamics, and aims at answering the following
questions:

• In the case of monotone dynamics, why is the collective behavior dichotomic ?

The dissertation investigates general monotone dynamics, including the leaky integrate-
and-fire dynamics, and shows that the monotonicity property of the dynamics induces a
global contraction property of the network. This contraction property formally explains
the dichotomic behavior of the oscillators.

• In the case of quadratic integrate-and-fire oscillators, why is the collective behavior still
dichotomic (in spite of the non-monotone dynamics) ?

The dissertation goes beyond the monotonicity assumptions by investigating the non-
monotone quadratic integrate-and-fire dynamics, a well-known generalization of the
leaky integrate-and-fire dynamics [32]. To the author’s knowledge, the dynamics has
never been considered with an impulsive coupling. However, such a study is of interest
since the dynamics can model an excitable behavior instead of the oscillatory behavior.

The study demonstrates that the quadratic integrate-and-fire oscillators are charac-
terized by the dichotomic behavior. Even though the dynamics is non-monotone, the
dichotomic behavior results from the “average” monotonicity property of the dynamics.

More specifically, the main points and contributions of the dissertation are summarized as
follows.

• For monotone oscillators, the global stability results obtained in the thesis contrast with
the weaker local results of the existing literature. Interestingly, they rely on 1-norms
instead of more usual quadratic norms. Even though the use of non-quadratic norms in
stability theory is not novel (see e.g. [44, 87, 88]), the framework presented throughout
the thesis could possibly open new avenues for the general study of dynamical systems
with monotonicity properties.

• The study of quadratic integrate-and-fire oscillators is a complex issue, and a strong
conjecture on the global stability problem is investigated. However, several local stability
results circumvent the open problems, still highlighting the dichotomic behavior of the
quadratic integrate-and-fire oscillators.

• Surprisingly, the dichotomic behavior is not a general property in networks of pulse-
coupled integrate-and-fire oscillators. An example of integrate-and-fire oscillator is pro-
vided, whose dynamics is similar to quadratic integrate-and-fire dynamics and that is not
characterized by a dichotomic behavior. As a consequence of the result, some properties
of small networks are not observed with larger networks.



1.2 Outline of the dissertation 17

• Throughout the dissertation, the results are extended to the study of a continuum
of oscillators: the stability results in finite-dimensional spaces are naturally extended
to nonlinear partial differential equations in infinite-dimensional spaces. In this con-
text, a strong parallel is established between finite and infinite populations, and between
discrete-time and continuous-time dynamical systems.

1.2 Outline of the dissertation

The dissertation is organized as follows (a more detailed summary is given at the beginning
of each chapter).

Chapter 2 presents a general overview on firing oscillators models, with a particular em-
phasis on several integrate-and-fire models. The second part of the chapter is devoted to
phase reduction techniques, that reduce firing oscillators to harmonic (phase) oscillators char-
acterized by a particular phase response curve.

Chapter 3 introduces the mathematical tools involved in the study of pulse-coupled oscilla-
tors. General results on the collective behaviors of the networks are presented, that require no
specific assumption on the dynamics of the oscillators. In particular, the dichotomic behavior
is studied for networks of two oscillators.

Chapter 4 considers the case of monotone dynamics, providing global stability results
that ensure convergence toward (phase-locked) clustering configurations. Various approaches
suggest that a 1-norm is the most appropriate framework to capture the global network
properties. Finally, the robustness of the clustering configurations is investigated in the case
of heterogeneous networks.

Chapter 5 extends the global stability results of Chapter 4 to infinite populations of
pulse-coupled oscillators. Stability results characterize the nonlinear continuity equation that
describes the evolution of the infinite population, still highlighting the dichotomic behavior
of the oscillators.

Chapter 6 focuses on the collective behaviors of quadratic integrate-and-fire oscillators.
The chapter conjectures the (global) dichotomic behavior of the oscillators and provides partial
results on the local stability problem. Another model is proposed, which is similar to the
quadratic integrate-and-fire model but which does not exhibit a dichotomic behavior.

Chapter 7 is devoted to the weak coupling limit. Under the weak coupling assumption,
general stability criteria are obtained, both for finite and infinite populations. The stability
criteria not only solve the conjecture on quadratic integrate-and-fire oscillators but are also
applied to very general models (Hodgkin-Huxley dynamics, delays, etc.). Finally, some results
related to the averaged dynamics of the oscillators are presented in the last part of the chapter.

Chapter 8 concludes the manuscript, summarizing the achievements of the thesis and rais-
ing some research perspectives.

Publications: The main results of the thesis can be found in the following publications.

• The material of Chapter 4 is published in [73];

• The material of Chapter 5 can be found in [72];

• The material of Chapter 6 is published in [70] and in [74];
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• The material of Chapter 7 is published in [74].

1.3 Conventions and notations

Abbreviations. The acronyms used in the thesis are defined as follows.

FN Fitzhugh-Nagumo

HH Hodgkin-Huxley

iPRC infinitesimal phase response curve

LHS left hand side

LIF leaky integrate-and-fire

PDE partial differential equation

PRC phase response curve

QIF quadratic integrate-and-fire

Stability. Stability theory plays a key role in the present dissertation. For a comprehensive
overview of Lyapunov stability theory and for detailed definitions of (asymptotic) stability, lo-
cal stability, global stability, etc., the reader may refer to the reference book [55]. Throughout
the manuscript, the term “asymptotic” is omitted, so that “stability” always means “asymp-
totic stability”. In addition, a system will be said anti-stable if the corresponding backward-
time system is stable.

Notations. Given a scalar variable x and a scalar function f , one uses the following nota-
tions:

ℜ{x}, ℑ{x} real and imaginary parts of x

x† complex conjugate of x

⌊x⌋ integer part of x

⌈x⌉ smallest integer such that ⌈x⌉ ≥ x

x+ next iterate of a discrete-time map

ḟ first derivative of f with respect to time

f ′, f ′′ first and second derivatives of f with respect to a phase variable

f̂n nth Fourier coefficient of f

Vectors and matrix are denoted by bold symbols. Given the vector x and the matrix M, one
defines the general notations:

xT , MT transpose of x and M

M† conjugate transpose of M

‖M‖∞ infinity norm of M

‖x‖(1), ‖M‖(1) 1-norm (introduced in Section 4.2.1) of x and M

‖x‖(2), ‖M‖(2) quadratic norm (introduced in Section 4.2.2) of x and M
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For the sake of simplicity, the most frequent symbols used in the manuscript are listed below.

i unit imaginary number
√

−1

j, k, l, n integers used in various situations (mainly subscripts)

N number of oscillators

Ng number of clusters

x state variable

t time variable

F vector field of an integrate-and-fire oscillator, i.e. ẋ = F (x)

S, γ parameters of F

x, x lower and upper thresholds of the integrate-and-fire dynamics

ǫ, K coupling strengths in finite and infinite populations

θ phase variable

ω natural frequency

Θ phase configuration of the network

θ∗, Θ∗ phase-locked configurations (fixed point)

ρ(θ, t) density of the oscillators

J(θ, t) flux of the oscillators

ρ∗(θ), J∗(θ) stationary density and stationary flux

f(θ) evolution function of the integrate-and-fire oscillator

Z(θ) infinitesimal phase response curve

h(θ) scalar firing map

H(Θ) multidimensional firing map

I identity matrix

J Jacobian matrix

L linear map (defined in Section 3.4.2)

N nonlinear map (defined in Section 3.4.2)

V Lyapunov function

p(z) polynomial function

λ eigenvalue or root of polynomial p

ȟ, Ȟ, θ̌, Θ̌∗ notations corresponding to the conservative situation (Section 6.3)





Chapter 2

Models of interacting
firing oscillators

As a preliminary to the results developed in the sequel, this chapter presents a brief overview
of the oscillators characterized by a fast firing phenomenon (e.g. spiking neurons [35], heart
pacemaker cells [86], etc.). Section 2.1 describes general (multidimensional) models of firing
oscillators, including the Hodgkin-Huxley model and the Fitzhugh-Nagumo model. Phase
reduction techniques are developed in Section 2.2, which shows how general (firing) oscillators
can be turned into phase oscillators evolving on the circle. Section 2.3 introduces the well-
known integrate-and-fire models as reductions of multidimensional firing models. Finally,
networks of interacting firing oscillators are briefly described in Section 2.4, as well as the two
main behaviors that emerge from such networks.

2.1 General models of firing oscillators

An oscillator is a dynamical system whose state asymptotically evolves on a (stable) limit
cycle. Consider a (nonlinear) state dynamics

ẋ = F(x) , x ∈ R
n

with a periodic orbit (or limit cycle) xγ(t) of period T , such that xγ(t+ T ) = xγ(t) for all t.
If the limit cycle is stable, any trajectory close to the limit cycle converges to the limit cycle:
the system behaves as an oscillator.

In mathematical neuroscience, an oscillator model usually describes the periodic firing of
a neuron under a constant external current. A firing oscillator is characterized by a limit cycle
with contrasting slow and fast parts. This is illustrated in the following well-known example.

Example 2.1.1 (Hodgkin-Huxley (HH) model). A. L. Hodgkin and A. F. Huxley proposed a
four-dimensional conductance-based model for the membrane voltage dynamics of the squid
giant axon [45]. Taking into account the main ionic currents (ions Na+ and K+) and a leakage
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current through the cell membrane, the dynamics is given by

CV̇ = −ḡNa(V − VNa)m3h− ḡK(V − VK)n4 − gL(V − VL) + Ib

ṁ = αm(V )(1 −m) − βm(V )m

ḣ = αh(V )(1 − h) − βh(V )h

ṅ = αn(V )(1 − n) − βn(V )n

with

αm(V ) = (0.1V − 2.5)/[1 − exp(2.5 − 0.1V )]

βm(V ) = 4 exp(−V/18)

αh(V ) = 0.07 exp(−V/20)

βh(V ) = 1/[1 + exp(3 − 0.1V )]

αn(V ) = (0.01V − 0.1)/[1 − exp(1 − 0.1V )]

βn(V ) = 0.125 exp(−V/80)

and

VNa = 115 mV, VK = −12 mV, VL = 10.6 mV, ḡNa = 120 mS/cm2, ḡK = 36 mS/cm2,

ḡL = 0.3 mS/cm2, C = 1µF/cm2.

For some values of the (external) baseline current Ib — a standard value is Ib = 10 mA,
the system has a stable limit cycle characterized by a “slow” voltage increase followed by
a fast action potential, a short event in which the voltage rapidly increases and decreases
(Figure 2.1). In particular, when the maximum value V ≈ 30 mV is reached, the voltage
quasi-instantaneously falls to the minimum value V ≈ −70 mV. This fast “reset” from the
maximum value V to the minimum value V is a firing — the oscillator is said to fire, a
phenomenon that is typical of neuron behaviors. ⋄
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Figure 2.1: With an external current Ib = 10 mA, the Hodgkin-Huxley model has a periodic
behavior (firing oscillator). When the membrane voltage reaches the maximum value V ≈ 30
mV, it is (quasi)-instantaneously reset to the minimum value V ≈ −70 mV: the oscillator
fires.

Since it provides a realistic model of the firing dynamics characterizing an action potential,
the HH model is probably the most used and studied model in mathematical neuroscience.
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Numerous extensions of the model have also been considered in the last decades, incorporating,
for instance, other ion channels (see e.g. [27]). On the other hand, similar but simpler models
are also widely used in computational neuroscience, similar in their firing behavior and simpler
in their lower dimension (for an overview, refer to [50, 54]). In two dimensions, examples of
such models are the Morris-Lecar model [77] and the FitzHugh-Nagumo (FN) model [34, 78].

Example 2.1.2 (Fitzhugh-Nagumo (FN) model). Initially suggested by R. Fitzhugh, the FN
model is a relaxation model characterized by the two-dimensional dynamics

V̇ = V − V 3/3 − U + Ib ,

U̇ = τ−1(V + a− bU) ,

where V is the membrane voltage and U is a recovery variable. The parameters are usually
a = 0.7, b = 0.8, and τ−1 = 0.08.

For some values of the (external) baseline current (e.g. Ib = 1), there is a limit cycle.
Provided that τ−1 ≪ 1, the dynamics has two (strongly) separated time scales, resulting in a
sharp time evolution that characterizes a firing behavior (see Figure 2.2). ⋄
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Figure 2.2: With an external current Ib = 1 and τ−1 = 0.01, the FN model has a periodic
firing behavior.

2.2 Phase reduction

The multidimensional dynamics of the firing oscillators often leads to an intricate mathemat-
ical analysis, especially when large networks of coupled oscillators are considered. In this
context, phase reduction techniques are widely used for the study of interacting oscillators.
Phase reduction turns multidimensional state oscillators into one-dimensional phase oscilla-
tors whose sensitivity to external perturbations is given by the so-called phase response curve,
a well-known mathematical tool especially used for biological systems [50, 125] (see [102] for
a review).

According to Winfree [125], a dynamical system characterized by an asymptotically stable
limit cycle can be assimilated to a phase oscillator in a neighborhood of the limit cycle, as
long as the perturbations (to which the system is subjected) are weak enough. On the limit
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cycle, a phase θ ∈ S1(0, 2π) is assigned to the oscillator and is related to the ratio of time
spent on the cycle to the period T of the limit cycle. In the case of firing oscillators, a phase
θ = 0 corresponds by convention to the point of the limit cycle where the firing occurs. (Even
though the phase is scaled to 2π, so that a complete revolution on the limit cycle corresponds
to a phase variation of 2π, the phase cannot be assimilated to an angular measurement of the
position on the limit cycle.) The transformation reduces the multidimensional state dynamics
ẋ = F(x), x ∈ R

n, to a one-dimensional phase dynamics θ̇ = ω, with the natural frequency
ω = 2π/T .

If an oscillator with state xγ on the limit cycle is subject to a small perturbation ∆x,
it leaves the limit cycle — its state becomes xγ + ∆x — and then, asymptotically reaches
the limit cycle, but with a certain phase shift ∆θ compared with the unperturbed trajectory
(Figure 2.3). The phase shift, which depends on the phase θ at the perturbation time, is given
by the phase response curve (PRC) Z∆x : S1(0, 2π) 7→ R. In other words, the PRC expresses
a perturbation of the state as a perturbation of the phase.

Figure 2.3: At phase θ, the oscillator is subject to a small perturbation ∆x and leaves the
limit cycle. When reaching the limit cycle, the perturbed oscillator (black) has a phase delay
∆θ = Z∆x(θ) compared with the unperturbed oscillator (gray).

For a given model, there are as many PRC’s as there are perturbations ∆x. A particular
PRC is the infinitesimal PRC (iPRC). It corresponds to an infinitesimal perturbation in the
unit direction ê, ‖ê‖ = 1. (In models of neurons, the perturbation direction is usually a
perturbation of the membrane voltage state.) The iPRC Z : S1(0, 2π) 7→ R is given by the
directional derivative

Z(θ) = ê · ∂θ
∂x

(
xγ(θ)

)
,

with the gradient ∂θ
∂x

=
(

∂θ
∂x1

· · · ∂θ
∂xn

)

evaluated on the limit cycle.

The iPRC is of interest for several reasons. It is an intrinsic characteristic of the oscilla-
tors that allows to classify the dynamics into two categories [31, 42]. In addition, there exist
several numerical tools to compute the iPRC and analytical expressions can also be obtained
for integrate-and-fire dynamics (see below). The iPRC of HH oscillators and FN oscillators is
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shown in Figure 2.4.
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Figure 2.4: The iPRC of HH oscillators and FN oscillators is numerically computed with
the usual parameters and with a baseline current Ib = 10 mA (HH) and Ib = 1 (FN). (The
numerical computations have been performed by Pierre Sacré.)

The iPRC is of paramount importance for the study of coupled oscillators. Indeed, the
iPRC corresponds to the oscillator sensitivity to an external continuous input (e.g. a coupling
between neighboring oscillators). Consider the general multidimensional dynamics

ẋ = F(x) + u(t) ê , x ∈ R
n ,

where u(t) is the external input. Then, the phase dynamics can be written as (see [13] for
more details)

θ̇ = ω + Z(θ)u(t) , (2.1)

with an error of the order of maxt |u(t)|2 [61]. The phase dynamics (2.1) is valid in good
approximation, without the second-order correction, provided that the external input is weak.

Although the present dissertation focuses on the study of an impulsive coupling, which is
generally neither continuous nor weak, the iPRC is widely used in Chapter 5 and in Chapter
7. The other results presented in this thesis rely on the use of convenient mathematical tools,
based on a specific PRC and developed in Chapter 3.

2.3 Integrate-and-fire oscillators

First introduced in [57, 63], the integrate-and-fire models appear as a one-dimensional reduc-
tion of multidimensional firing dynamics. Since it enables the deepest mathematical studies
in large networks of interacting oscillators, the model has attracted considerable interest and
is still abundantly used in current research. In the present dissertation, we mainly focus on
this model.

2.3.1 Reduction to an integrate-and-fire dynamics

A straightforward phase reduction of a multidimensional firing model does not exploit the
firing dynamics. In contrast, the one-dimensional integrate-and-fire model is obtained by ap-
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proximating the fast firing phenomenon by a reset while focusing on the “slow” state evolution
between two firings. More precisely, the integrate-and-fire model can be seen as the result of
a reduction process in two steps (see Figure 2.5):

1. Approximation of the firing. The time spent on the (fast) firing part of the limit cycle
(from B to A) is negligible with respect to the time spent on the rest of the cycle
(from A to B). Then, an oscillator in B can be instantaneously reinjected in A, a good
approximation that yields a discontinuous limit cycle with reset.

2. Phase reduction. A phase reduction is performed in the vicinity of the discontinuous
limit cycle A-B, associating a phase θ = 0 to point A and a phase θ = 2π to point B.
The approximated iPRC is discontinuous and can be obtained analytically.

Figure 2.5: Since the firing from B to A is much faster than the dynamics between A and
B, the firing can be replaced in good approximation by a reset. Then, a phase reduction is
performed in the vicinity of the discontinuous limit cycle A-B.

The reduction presented above is illustrated by the following example.

Example 2.3.1 (Limit cycle close to a Homoclinic bifurcation). In [13], limit cycles close to a
homoclinic bifurcation are approximated by a discontinuous limit cycle, to which corresponds
a discontinuous iPRC.

A homoclinic bifurcation occurs when there exists, for a given parameter value, a homo-
clinic orbit to a saddle point with real eigenvalues. At the bifurcation, a limit cycle appears.
Assuming that there is a single unstable eigenvalue λu such that λu < |λsj

|, with λsj
being

the stable eigenvalues, the limit cycle is stable [39]. Since the trajectory is much slower near
the saddle point, the limit cycle is discontinuous in good approximation and the iPRC can be
approximated by the discontinuous function (see [13] for more details)

Z(θ) = C ω exp

(
2πλu

ω

)

exp

(

−λu
θ

ω

)

, (2.2)

where C > 0 is a model-dependent constant.
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In the popular Morris-Lecar model [77], which is among the most widely used conductance-
based models in computational neuroscience, a homoclinic bifurcation can occur for low ex-
ternal currents [93, 115]. ⋄

Remark 2.3.1. In the literature, most of studies on finite networks of integrate-and-fire
oscillators use a phase variable defined between 0 and 1. For consistency purposes, a unique
definition of the phase has been adopted throughout the manuscript: the phase is defined on
the circle S1(0, 2π). ⋄

As mentioned in [1], the main interest of the integrate-and-fire model relies on a separation
of time scales. Whereas a complex dynamics (e.g. the HH dynamics) models the whole
behavior of the oscillator, including the firings, the simplified dynamics of the integrate-and-
fire model only refers to the behavior between the firings, since the firings are considered as
additional resets.

The approximation is relevant, especially when considering a network of coupled firing
oscillators. In this case, the behavior of the whole network does not depend on the fast firings
but on the state evolution between two firings. In addition, the approximation reduces the
computational cost of numerical simulations and dramatically simplifies theoretical studies.

2.3.2 Relation between state dynamics and phase dynamics

The integrate-and-fire dynamics are usually expressed as one-dimensional state dynamics
between two threshold values: a scalar state variable x monotonically increases between two
thresholds x and x, according to the dynamics

ẋ = F (x), with F (x) > 0, ∀x ∈ [x, x]. (2.3)

Upon reaching the upper threshold x, the state is instantaneously reset to the lower threshold
x. Roughly speaking, the oscillator integrates between the two thresholds and fires when
reaching the upper threshold (Figure 2.6).

x

x

x(t)

t

Figure 2.6: Time evolution of the state of an integrate-and-fire oscillator.

The above one-dimensional state dynamics is equivalent to a phase dynamics (e.g. ob-
tained through the reduction process explained in Section 2.3.1). Indeed, there is a trivial
change of variable between the one-dimensional state x ∈ [x, x] and the phase θ ∈ S1(0, 2π):
the phase is determined from the state by rescaling in such a way that θ = 0 corresponds to
the low threshold x = x and that the (unperturbed) oscillator satisfies θ̇ = ω, where ω = 2π/T
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Figure 2.7: There is a bijection between the state x ∈ [x, x] and the phase θ ∈ S1(0, 2π). In
particular, the state x (resp. x) corresponds to the phase θ = 0+ (resp. 2π−).

is the natural frequency of the oscillator (Figure 2.7).

The state-phase relation is given by the function f ∈ [0, 2π] 7→ [x, x] defined as

f(θ) , φ−1(θ/ω) = x . (2.4)

The function φ(x) corresponds to the time required by the state x(t), solution of ẋ = F (x),
x(0) = x, to reach the value x, that is

φ(x) =

∫ x

x

1

F (s)
ds, φ(x) = T =

2π

ω
. (2.5)

In addition, the iPRC is related to F through the analytical expression (see [13, 32])

Z(θ) =
dθ

dx
=

ω

F
(
f(θ)

) . (2.6)

It is noticeable that, disregarding the fact that the integrate-and-fire model is the reduction
of a multidimensional model, the infinitesimal iPRC requires no assumption of a weak input,
since the trajectories always remain on the unidimensional cycle [x, x].

2.3.3 Monotone dynamics and leaky integrate-and-fire (LIF) model

There exist several integrate-and-fire models, at which correspond different dynamics ẋ = F (x)
that determine the ensemble behavior of the coupled oscillators. First and foremost, the mod-
els characterized by a monotone vector field dF/dx < 0 ∀x ∈ [x, x] or dF/dx > 0 ∀x ∈ [x, x]
are extensively studied in the present dissertation (see Chapter 4 and Chapter 5). By slight
abuse of terminology, we will refer in the sequel to monotone (integrate-and-fire) oscillators
for integrate-and-fire oscillators with a monotone vector field.

A typical monotone integrate-and-fire model is the leaky integrate-and-fire (LIF) model.
The LIF model is the most popular integrate-and-fire model and is a direct simplification of
the Hodgkin-Huxley model [2]. It models a neuron membrane as a capacitor C in parallel with
a resistor R that allows a leaky current through the membrane-capacitor. To this electrical
system, driven by an external current I, corresponds the dynamics

V̇ = − V

CR
+
I

C
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where V is the membrane voltage. A firing occurs when V = V and the voltage is then reset
to V = V . Modulo an appropriate change of variable, the state model is of the general form

ẋ = S + γx , x ∈ [x, x] , (2.7)

with γ < 0, x = 0, and x = 1. Equation (2.7) corresponds to the integrate-and-fire model
(2.3) with the monotone decreasing vector field F (x) = S + γx. In order to have F (x) > 0
∀x ∈ [x, x], we suppose that S > 0 and S > −γ (driven current I sufficiently high).

The “leaky” nature of the model relates to the negative value γ (dF/dx < 0), corresponding
to a concave-down time evolution of the oscillator [Figure 2.8 (a)]. In contrast, positive values
of γ (dF/dx > 0) would result in a concave-up time evolution of the oscillator [Figure 2.8 (b)].
In the neuroscience context for instance, it is experimentally observed that time evolutions
of the membrane potential (of a neuron) actually is neither concave-up nor concave-down.
Considering concave-up time evolutions instead of the usual concave-down evolution is one
of the key contribution of the thesis. The distinction between concave-up and concave-down
time evolution indeed plays a key role in the collective behavior emerging from the network
of coupled oscillators.

x

x

x(t)

t(a)

x

x

x(t)

t(b)

Figure 2.8: The time evolution of integrate-and-fire oscillators is (a) concave-down when
dF/dx < 0 and (b) concave-up when dF/dx > 0.

The monotone oscillators are characterized by the following properties.

Curvature property. Some attention is put on the curvature of f , which plays a key role
in the collective behavior of the coupled oscillators. It follows from (2.5) and (2.4) that

f ′ =
1

ω

(
dφ

dx

)−1

=
F

ω
> 0 , (2.8)

where f ′ denotes the first derivative of f with respect to the phase θ. The relation (2.8)
implies the following property of the function f .

Property 1. If F is monotone increasing (resp. decreasing) on [x, x], then the evolution f
is concave-up (resp. concave-down) on [0, 2π].

The curvature property of f corresponds to the curvature of the time evolution of the
oscillator.
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Infinitesimal PRC. Since the derivative of the iPRC is given by

Z ′(θ) = −dF

dx

(

f(θ)
) 1

F
(
f(θ)

) , (2.9)

the iPRC inherits the monotonicity property of the F .

Property 2. If F is monotone increasing (resp. decreasing) on [x, x], then the iPRC is
monotone decreasing (resp. increasing).

These properties are illustrated with the LIF model (and its “nonleaky” analog with
γ > 0). The function f and the (monotone) iPRC is shown in Figure 2.9. In addition, the
iPRC is given by

Z(θ) =
ω

S
exp

(

−γ θ

ω

)

with ω = 2π γ

[

log

(
S + γ

S

)]−1

. (2.10)
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Figure 2.9: (a) The monotone oscillators ẋ = 1.2 + γ x, x ∈ [0, 1], are characterized by (a) a
function f with a curvature of constant sign and (b) a monotone iPRC.

The reader will note that the phase reduction of oscillators close to a homoclinic bifurcation
(Example 2.3.1) leads to a monotone iPRC and therefore yields another example of monotone
oscillators.

2.3.4 QIF and “QIF-like” integrate-and-fire dynamics

A main motivation of the present dissertation is the study of the QIF model (see Chapter 6
and Chapter 7). The QIF model, first proposed in [32], is probably the second most popular
integrate-and fire model after the LIF model (see for instance [14, 65, 111]). The model is
characterized by a quadratic membrane voltage dynamics, given by

CV̇ = q(V − Vth)2 + I − Ith , (2.11)

where Vth and Ith are respectively the voltage and current thresholds and q is a fixed param-
eter. A firing occurs whenever V = V and the voltage is then reset to V = V . Modulo an
appropriate change of variables, the state model is of the general form

ẋ = S + x2 , x ∈ [x, x] . (2.12)
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Equation (2.12) corresponds to the integrate-and-fire model (2.3) with the quadratic vector
field F (x) = S + x2. Even though the firing and reset values V and V are known constants,
the thresholds x and x have arbitrary values that depend on Vth. For x → −∞ and x → ∞,
the QIF model corresponds to the so-called Θ-neuron, which is a canonical type I neuron
model [31]. In addition, the QIF model is a simplified version of the Izhikevich model [50, 51],
a two-dimensional quadratic integrate-and-fire model described by the quadratic dynamics
(2.11), but where a recovery current Ith is a second state variable evolving according to a
linear integrate-and-fire dynamics. Depending on the chosen parameters values, the Izhikevich
model exhibit most of the fundamental behaviors of neurons (e.g. burst, resonator, etc.).

A main interest of the QIF model relies on the fact that the model can capture both an
oscillatory or an excitable behavior. When S > 0 (or equivalently I > Ith), F (x) is strictly
positive on [x, x] and the model is an oscillator. When S < 0 (or equivalently I < Ith), the
model exhibits a different regime. Without any external perturbation, the state converges to
the resting value x = −

√

|S|. Then, assuming it receives a sufficiently large perturbation,
the state may exceed

√
S and then rises and fires at x = x before finally going back to the

initial rest value (Figure 2.10). In this situation, the behavior is not oscillatory but excitable,
a feature that is encountered, for instance, within neural populations. In the present work,
we investigate networks of QIF units in the oscillatory regime, paving the way for a further
study of the excitable regime.

x xx x

ẋ ẋ

x x

S + x2 S + x2

−
√

|S|
√

|S|
(a) (b)

Figure 2.10: The QIF model is characterized (a) by an oscillator behavior when S > 0 and
(b) by an excitable behavior when S < 0.

The QIF model is fundamentally different from the LIF model in that its state dynamics
is not monotone. While monotone oscillators benefit from monotonicity properties that yield
strong results on coupled populations, a mathematical study of coupled QIF oscillators leads
to open problems and is actually one of the main challenges that motivated the work presented
in the dissertation.

“QIF-like” oscillators. To get a deeper insight into the problem arising from the study
of QIF oscillators, other “QIF-like” integrate-and-fire dynamics are considered. They satisfy
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the following assumption.

Assumption 1. F (·) : [x, x] 7→ R is continuous, positive, even, and strictly increasing on
[0, x].

The QIF model satisfies Assumption 1. Other representative models of this class are shown
in Figure 2.11. The exponential model, defined by F (x) = S exp(x2), S > 0, is characterized
by a shape similar to the QIF model. The piecewise linear model, defined by F (x) = S+γ|x|,
S, γ > 0, is a direct generalization of the linear LIF model.

−1 −0.5 0 0.5 1
0

1

2

x
 

 

F (x) = S + x2

F (x) = S + γ|x|

F (x) = S exp(x2)

xx

Figure 2.11: Three models (quadratic, exponential, and piecewise linear) satisfying Assump-
tion 1.

Curvature property. The function f of QIF and “QIF-like” oscillators is characterized by
the following property.

Property 3. Assume that the dynamics satisfies Assumption 1. If x+x > 0 (resp. x+x < 0),
then the function f is concave-up in the mean (resp. concave-down in the mean), that is

∫ 2π

0
f ′′(θ) dθ = f ′(2π) − f ′(0) =

F (x) − F (x)

ω
> 0 (resp. < 0) . (2.13)

Property 3 is illustrated in Figure 2.12 in the case of QIF oscillators.
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Figure 2.12: The function f of QIF oscillators (S = 0.1) is both concave-down and concave-up.
It is concave-down in the mean for x+ x < 0 and concave-up in the mean for x+ x > 0.
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Infinitesimal PRC. The iPRC corresponding to QIF and “QIF-like” oscillators is charac-
terized by the following property.

Property 4. An integrate-and-fire model satisfying Assumption 1 has an iPRC with a vertical
reflection symmetry, that is

Z(θ) = Ze(θ − θ) ∀θ ∈ [0, 2π] , (2.14)

where Ze(·) is an even function on R. To the inequality x+x > 0 (resp. x+x < 0) corresponds
the inequality θ < π (resp. θ > π).

In addition, consider two models (a) and (b) with the thresholds satisfying x(a) = −x(b)

and x(a) = −x(b) (opposite values x + x). Then, they are characterized by mirrored iPRC’s,

that is, θ(b) = 2π − θ(a) and Z(b)(θ) = Z(a)(2π − θ).

Proof. Since F is even, it follows from (2.5) that

φ(−x) = −φ(x) + φ(−x) . (2.15)

Consequently, (2.4) leads to

f(θ) = −f(− θ + ω φ(−x)
)

and setting θ = ω φ(−x)/2, one obtains

f(θ + θ) = −f(θ − θ) . (2.16)

Since F is even, the iPRC (2.6) satisfies

Z(θ + θ) = Z(θ − θ) .

The condition x+ x > 0 implies φ(−x) < φ(x) = T , and θ < π.

For the two models (a) and (b), it is straightforward that ω(a) = ω(b) = ω. In addition,
(2.5) implies φ(a)(x) = φ(a)(−x(a)) + φ(b)(x) or, given (2.15),

φ(b)(x) = φ(a)(x) +
2π

ω
− φ(a)(−x(a)) . (2.17)

It follows that

θ(b) =
ω

2
φ(b)(−x(b)) =

ω

2
φ(b)(x(a)) = 2π − ω

2
φ(a)(−x(a)) = 2π − θ(a) ,

which concludes the proof.

Property 4 can be verified for the QIF model and for the piecewise linear model, for
instance. It is illustrated in Table 2.1 and Figure 2.13.
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QIF model Piecewise linear model
F (x) = S + x2 F (x) = S + γ|x|

Ze(θ) = ω
S cos2

(√
S

ω θ
)

Ze(θ) = ω
S exp

(− γ
ω |θ|)

θ = −
2π arctan

(

x
/√

S
)

arctan
(

x
/√

S
)

− arctan
(

x
/√

S
) θ =

2π log
(
(S − γx)

/
S
)

log
(
(S − γx)

/
S
)

+ log
(
(S + γx)

/
S
)

ω = 2π
√
S
/[

arctan x√
S

− arctan x√
S

]

ω = 2πγ/ log

(
(S − γx) (S + γx)

S2

)

Table 2.1: “QIF-like” models satisfy Property 4, that is, the iPRC is of the form
Z(θ) = Ze(θ − θ). (The computations are not shown.)

⋄
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Figure 2.13: The iPRC of “QIF-like” oscillators has a mirror symmetry with respect to phase
θ.

The properties of the oscillators (curvature and iPRC) are of paramount importance to
determine the behavior of the coupled oscillators. We conclude the section by summarizing
them in the following equivalent statements (to which we will indistinctly refer in the sequel):

• For monotone oscillators:

1. The vector field F (x) is monotone increasing (resp. decreasing) on [x, x];

2. (Property 1) The function f (2.4) are concave-up (resp. concave-down) on [0, 2π];

3. (Property 2) The iPRC is monotone decreasing (resp. increasing).
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• For “QIF-like” oscillators satisfying Assumption 1:

1. The vector field F (x) has a positive (resp. negative) mean slope on [x, x], that is
x+ x > 0 (resp. x+ x < 0);

2. (Property 3) The function f (2.4) are concave-up (resp. concave-down) in the
mean;

3. (Property 4) The iPRC is characterized by θ < π (resp. θ > π) in (2.14).

2.4 Networks of interacting oscillators

Thanks to simplified models and to phase reduction, a single firing oscillator has a simple be-
havior. Within a network, it interacts with the other oscillators through a nonlinear coupling,
that may however yield complex ensemble behaviors.

2.4.1 Networks and couplings

We study networks of N interacting oscillators, each of them characterized by its own state
xk or equivalently by its own phase θk, with the labels k ∈ N = {1, . . . , N}. Connected to
the oscillators j ∈ Nk ⊆ N , oscillator k has a dynamics

θ̇k = ωk + Ωcoupling
k (θj∈Nk

) , (2.18)

where Ωcoupling
k is the phase coupling term, that can be derived from a state coupling through

a PRC. If the coupling always triggers a phase advance to the oscillators, that is Ωcoupling
k > 0,

it is an excitatory coupling. If it always triggers a phase delay, that is Ωcoupling
k < 0, it is an

inhibitory coupling.
In the present dissertation, we mainly consider that the oscillators are identical and there-

fore characterized by equal natural frequencies ωk = ω for all k ∈ N (homogeneous popula-
tion). In addition, assuming that the network is dense enough, we consider in good approx-
imation that each oscillator is connected to every other (that is, Nk = N or Nk = N \ {k})
— the coupling is said all-to-all or global. Studying sparse network topologies is an inter-
esting problem which has led to numerous studies, but it is beyond the scope of the present
dissertation.

The particular coupling investigated in this thesis is an impulsive coupling (developed in
detail in Chapter 3), a coupling that is closely related to the dynamics of firing oscillators.
While the impulsive coupling is discontinuous in essence, the study, however, leads to the
analysis of a continuous coupling (Chapter 5) and of a “Kuramoto-like” coupling (Chapter
7), for which the oscillators are coupled through their phase differences.

2.4.2 Collective behaviors

Networks of N coupled firing oscillators can exhibit several ensemble behaviors on the torus
S1 × S1 × · · · × S1 = T

N . The two extreme behaviors are synchronization and phase-locked
anti-synchronization (or phase-locking). While synchronized oscillators are gathered, anti-
synchronized oscillators are spread on the circle (Figure 2.14).
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Definition 1 (Synchronization). N firing oscillators are synchronized if they all fire at the
same time. That is, if θk = 0, k ∈ N , then θj = 0 for all j ∈ N .

In the case of identical oscillators, the oscillators have the same phase θ1 = θ2 = · · · = θN

forever.

Definition 2 (Phase-locking). N firing oscillators are phase-locked if, at each firing of any
oscillator, the N − 1 other oscillators have phases with fixed values {θ∗

1, . . . , θ
∗
N−1} (with the

convention 0 < θ∗
k < θ∗

k+1 < 2π).

The indices of the phase-locked phases are not related to the indices of the different
oscillators. At each firing, there may be a permutation of the oscillators in the phase-locked
configuration, so that a same locked phase θ∗

k (k fixed) may be assigned to different oscillators.
If the oscillators homogeneously spread on S1(0, 2π), that is θ∗

k = 2πk/N , the phase-locked
configuration is a splay state. In some situations, groups of oscillators (instead of single
oscillators) are phase-locked: this is a phase-locked clustering configuration.

(a) (b)

Figure 2.14: (a) Synchronization: all the oscillators fire simultaneously. (b) Phase-locking: at
each firing, the oscillators have fixed but different phases.

Other collective behaviors — periodic, quasiperiodic, chaotic — are also observed in net-
works of coupled oscillators. But throughout this thesis, emphasis is put on the two extreme
behaviors (synchronization and phase-locked anti-synchronization). In the next chapter, we
show how oscillators interacting through an impulsive coupling achieve either synchroniza-
tion or phase-locked anti-synchronization, and are thereby characterized by an interesting
dichotomy.



Chapter 3

Impulsive coupling and firing maps

Impulsive coupling is a natural way of coupling firing oscillators. In a neural network, firing
neurons interact by sending out action potential (spikes) that modify the state of the other
connected oscillators. Given the very short time length of the spikes, the coupling is almost
instantaneous and is considered in good approximation as an impulsive coupling.

As an introduction to impulsive coupling, this chapter presents general results on identical
pulse-coupled integrate-and-fire oscillators. In Section 3.1, impulsive coupling is introduced in
detail. Section 3.2 describes the clustering phenomenon exhibited by identical pulse-coupled
oscillators and shows that the network may be characterized by an interesting dichotomic
behavior — the oscillators either synchronize or converge toward a phase-locked clustering
configuration. Using a discrete-time one-dimensional map that describes the evolution of the
network at each firing (the so-called firing map), Section 3.3 proves that two pulse-coupled
oscillators exhibit the dichotomic behavior. Next, Section 3.4 performs a preliminary study
of large networks and provides some general properties of the multidimensional generalization
of the above-mentioned firing map.

The main contribution of the chapter is to highlight (i) the dichotomic behavior of two
monotone or “QIF-like” oscillators and (ii) the existence of phase-locked clustering configu-
rations in large populations.

3.1 Impulsive coupling

Impulsive coupling (or pulse-coupling) was first proposed by Peskin to model pacemaker
cells in the heart [86]. In the case of integrate-and-fire oscillators, it was defined as follows.
Whenever an oscillator fires, it sends out a pulse that causes an instantaneous increment
ǫ < x − x to the state of all other oscillators (all-to-all coupling). The coupling strength
ǫ is constant, usually positive (excitatory coupling), and does not depend on the oscillator
emitting the pulse, even though one assumes some heterogeneity in the network. If, after
receiving the pulse, the incremented state of an oscillator exceeds the upper threshold, then it
is also reset to the lower threshold with the firing oscillator — there is an absorption (Figure
3.1).

Similarly to [75], some assumptions are adopted in the sequel. We assume that an absorbed
oscillator does not emit a pulse before reaching the threshold again. By this assumption, we
prevent “avalanche” phenomena which could ignite a chain reaction of firings. In addition,
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the coupling is not additive: when N oscillators fire simultaneously, the resulting pulse is
always ǫ, and not nǫ. The two assumptions do not modify the coupling mechanisms and have
no significant influence on the network behavior.

ǫ

tl

x(t)

t

x

x

(a)

x− x(tl)

tl

x(t)

t

x

x

(b)

Figure 3.1: (a) When an oscillator fires (at time tl), it increments the state of the other
oscillators by a value ǫ > 0. (b) If x(tl) > x− ǫ, there is an absorption.

The impulsive coupling is summarized by the jump rule

xj(t) = x ⇒ xk(t+) =

{

xk(t−) + ǫ if xk(t−) < x− ǫ

x if xk(t−) ≥ x− ǫ
∀k 6= j ∈ N .

In the sequel, we consider the case of identical oscillators — the generalization of the impulsive
coupling to nonidentical oscillators is direct. Between the two thresholds, the dynamics of the
pulse-coupled integrate-and-fire oscillators is given by

ẋk = F (xk) + ǫ
N∑

j=1
j 6=k

∞∑

l=0

δ(t− t
(j)
l ) , x ∈ [x, x] . (3.1)

The Dirac functions δ model the pulses that increment the state of oscillator k at the firing

times t
(j)
l , that is, when an oscillator j 6= k fires. Equivalently, the phase dynamics expresses

as

θ̇k = ω + Zǫ(θk)
N∑

j=1
j 6=k

∞∑

l=0

δ(t− t
(j)
l ) , (3.2)

where Zǫ is the PRC related to an impulsive perturbation. This particular PRC can be
analytically derived from the iPRC (2.6) (Figure 3.2):

Zǫ(θ) =

∫ f(θ)+ǫ

f(θ)

dθ

dx
(s) ds =

∫ f(θ)+ǫ

f(θ)
Z
(

f−1(s)
)

ds = ω

∫ f(θ)+ǫ

f(θ)

1

F (s)
ds . (3.3)

In Figure 3.2, the oscillator receiving the pulse jumps from phase θ to phase

f−1
(

f(θ) + ǫ
)

= θ + Zǫ(θ) .
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Figure 3.2: The PRC Zǫ corresponds to the phase advance of an oscillator whose state is
instantaneously incremented by ǫ. The PRC Zǫ is derived from the iPRC Z.

Remark 3.1.1. Impulsive coupling can also be applied to models other than the integrate-
and-fire models. But in the case of multidimensional dynamics, the PRC Zǫ cannot be derived
from the iPRC and must be computed numerically. ⋄

Remark 3.1.2. The reader will easily verify that the phase dynamics (3.2) particularizes the
general phase dynamics (2.18), with

Ωcoupling
k (θj∈N ) = Zǫ(θk)

N∑

j=1
j 6=k

ωj δ(θj) .

⋄

Pulse-coupled integrate-and-fire oscillators are hybrid models: they are the compositions
of a continuous flow θ̇k = ω ∀k (between two firings) with a discrete jump θ+

k = θk + Zǫ(θk)
(at each firing). Between two firings, the oscillators are all uncoupled. They rigidly rotate on
the circle, so that the phase difference θk − θj between any pair {j, k} of oscillators remains
constant. When a firing occurs, the state of the oscillators instantaneously jumps to other
values; the state difference xk − xj is conserved through this event.

Since it only affects the network at precise firing times, the impulsive coupling presents a
great advantage. By “omitting” the time intervals between two firings, where nothing hap-
pens, one only retains information on the network configuration at the precise firing times.
The continuous-time model is then turned into a discrete-time model, a framework that not
only dramatically simplifies numerical simulations (from speed, memory, and precision points
of view) but also retains the only information needed to perform an efficient analysis of the
network. This will be developed in detail in Section 3.3.

A wealth of extensions of the original impulsive coupling can be found in literature.
Topologies different from the all-to-all topology have been abundantly studied [36, 108, 110]:
chain topology [84], ring topology [28], two-dimensional lattices [26], random topology [25, 82].
Several studies introduce delayed transmissions between the oscillators [33, 109] or consider
non-instantaneous interactions, where the delta-like pulses are replaced by smooth α-functions
[3, 12, 118, 128]. The effect of a partial reset (no absorption but residual charges after the
firing) is also investigated in [56]. However, the vast majority of these studies only consider
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the LIF dynamics (ẋ = S+γ x, with γ < 0). In contrast, the main contribution of the present
dissertation extends the analysis of pulse-coupled oscillators to different dynamics.

3.2 Absorptions, synchronization, and clustering

Numerical simulations show that networks of identical pulse-coupled integrate-and-fire oscil-
lators are usually characterized by a strong dichotomic behavior. After a transient evolution,
the oscillators either perfectly synchronize (synchronization behavior) or gather into several
clusters, in a phase-locked anti-synchronized configuration (clustering behavior) (Figure 3.3).
Synchronization of pulse-coupled oscillators was first rigorously studied in the seminal pa-
per of Mirollo and Strogatz [75]. The existence of the clustering behavior was reported in
studies on delayed LIF models (see e.g. [33, 117]), and in [73] for non-delayed models with
concave-up time evolution (instead of the usual concave-down evolution of the LIF oscillator).

(a) (b)

Figure 3.3: “Snapshot” configuration of N = 100 oscillators: (a) the oscillators perfectly
synchronize (one cluster); (b) the oscillators gather in 9 phase-locked clusters. Each dot
represents a cluster of oscillators.

The behavior of the network is an evolution in two stages: the initial formation of the
clusters through the absorption phenomenon and the evolution of the clusters toward either
synchronization or phase-locked clustering.

3.2.1 Absorptions and clusters

The initial evolution of large networks of pulse-coupled oscillators is typically dominated
by the absorption phenomenon: each firing oscillator absorbs nearby oscillators and creates a
cluster. After an absorption, the oscillator that has just fired and all those that it has absorbed
subsequently have the same phase forever — since they are identical. They therefore aggregate
in a cluster. Since we made the assumption of nonadditive coupling strength, the cluster
actually behaves as a single oscillator. (In the following, we sometimes make no distinction
between a single oscillator and a cluster.) In addition, the number of clusters — denoted by
Ng — is bounded, as shown in the following lemma.
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Lemma 3.2.1. In a network of N pulse-coupled integrate-and-fire oscillators with pulse
strength 0 < ǫ < x− x, the number of clusters Ng is bounded by

Ng ≤ Ng,max , min

(⌈
x− x

ǫ

⌉

, N

)

(3.4)

where ⌈X⌉ corresponds to the smallest integer such that ⌈x⌉ ≥ x.

Proof. Consider a cluster that has just fired, with a state xg = x. Each time a new firing
occurs, a (possibly new) cluster is reset to x and the state xg of the first cluster is increased by
ǫ. After nf firings, there are nf + 1 clusters (or single oscillators) in [x, xg] and xg ≥ x+nf ǫ.
In the best conditions, xg = x+ nf ǫ and the first cluster will not fire again as long as

x+ nf ǫ < x, (3.5)

so that the maximal number of firings is

nf,max =

⌈
x− x

ǫ
− 1

⌉

. (3.6)

There are therefore at most Ng,max = nf,max + 1 clusters in [x, xg < x]. If nf,max + 1 exceeds
the initial number N of oscillators, then Ng,max = N .

The number of clusters depends on the size of the interval [x, x] and on the coupling
strength ǫ. The result can be compared with the clustering configurations observed in a yeast
cell model introduced in [9], configurations whose number of clusters is determined by the
size of specific interaction regions.

Clustering is also observed in various other models. However, a cluster is usually a group of
interacting agents that asymptotically converge toward a consensus value (see e.g. [5, 43, 119]).
In networks of pulse-coupled oscillators, though, a cluster is created in finite time since it is
a consequence of the absorption mechanism.

Remark 3.2.1 (Effect of the network topology). In the present dissertation, we only consider
a complete network topology (“all-to-all” coupling). Since the clusters are created by the
aggregation of oscillators which are absorbed by the firing of one oscillator, only connected
oscillators will aggregate in a cluster. The number Ng and the composition of the clusters
therefore depend not only on the initial conditions but also on the network connectivity.
In particular, the number of clusters Ng may exceed the maximum value Ng,max given by
(3.4) if the coupling is not “all-to-all”. Furthermore, the clusters may disappear in weakly
connected networks by lack of local aggregation. Numerical simulations suggest that the
clusters configurations are preserved if the network connectivity is sufficiently high. In such
situations, the network connectivity only affects the speed of convergence to phase-locked
clusters configurations, as shown in [110]. ⋄

3.2.2 Evolution toward either synchronization or clustering

After the initial absorptions, theNg clusters evolve as Ng single oscillators. Possibly character-
ized by a dichotomic behavior, they achieve either synchronization or phase-locked clustering
(Figure 3.3). The dichotomic behavior depends on the curvature of the oscillators time evo-
lution (see Section 2.3.3). The synchronization behavior is observed for oscillators with a
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concave-down time evolution (in the mean) while the phase-locked clustering behavior is ob-
served for oscillators with a concave-up time evolution (in the mean). As shown in Chapter
6, the dichotomic behavior is not observed with every integrate-and-fire dynamics, but is a
common feature of a large class of integrate-and-fire models.

Synchronization. The clusters themselves coalesce under further absorptions, an aggre-
gating process that persists until a unique cluster remains, the synchronized state. Then, the
remaining cluster (the synchronized oscillators) fires at the frequency ωsync = ω, where ω is
the natural frequency of the oscillators.

Phase-locked clustering As the opposite behavior, every cluster tends to maximize the
distance with respect to the neighboring clusters, and the network asymptotically converges
toward a phase-locked anti-synchronized configuration. Assuming that the phase-locked con-
figuration is {0, θ∗

1, θ
∗
2, · · · , θ∗

Ng−1} (at the firing of any cluster), the clusters fire periodically
at a frequency

ωclust =
2π ω

2π − θ∗
Ng−1

. (3.7)

Since the phase of each cluster is at least increased by a value 2π − θ∗
Ng−1 between two

successive firings, the phase-locked phase θ∗
Ng−1 satisfies 2π − θ∗

Ng−1 < 2π/Ng and it follows
that ωclust > Ng ω. The phase-locked clustering is thus characterized by a high firing frequency,
whereas the synchronization behavior is characterized by a low firing frequency.

3.3 The case of two oscillators

To understand the dichotomic behavior described in the preceding section, the case of two
oscillators is first considered. The “discrete-time” character of the pulse-coupled integrate-
and-fire oscillators is fully exploited when considering a discrete-time map, the so-called firing
map, that was originally introduced in [75]. The convergence properties of the firing map
determine whether the network achieves synchronization or phase-locked clustering.

3.3.1 Firing map

While disregarding the continuous evolution between two firings, the firing map expresses the
phase differences of the two oscillators at the successive firing times. For instance, the network
configuration (0, θ) is mapped to (h(θ), 0) at the next firing, where h(θ) is the firing map.

To compute the firing map, one considers the two oscillators A and B, whose initial
configuration (0, θ) is given in Figure 3.4 (a). When oscillator B is about to fire [Figure 3.4
(b)], oscillator A has a phase 2π − θ, since the phase difference between the two oscillators
has remained constant. After the firing of oscillator B [Figure 3.4 (c)], oscillator A jumps to
phase

θ+ = h(θ) , f−1
(

f(2π − θ) + ǫ
)

. (3.8)

The firing map is directly related to the PRC Zǫ. Considering Figure 3.2, one has

h(θ) = 2π − θ + Zǫ(2π − θ) . (3.9)
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(a) (b) (c)

Figure 3.4: (a) Oscillator A fires; (b) Oscillator B is about to fire; (c) Oscillator B fires.

Properties. The firing map has the following general properties.

1. The firing map is defined only if f(2π − θ) + ǫ < x. Its domain is thus [β1, 2π], with
β1 = 2π − f−1(x− ǫ). If 0 < θ ≤ β1, there will be an absorption at the next firing and
the two oscillators will synchronize.

2. The firing map is monotone decreasing (Figure 3.5). The time derivative is given by

h′(θ) = −f ′(2π − θ)

f ′
(

h(θ)
) = −

F
(

f(2π − θ)
)

F
(

f(2π − θ) + ǫ
) < 0 , (3.10)

where the last equality follows from (2.8).

3. The monotonicity property of the firing map implies that the firing map is invertible. In
addition, since the firing map is decreasing, it is characterized by a unique fixed point
θ∗ = h(θ∗). The fixed point corresponds to a situation in which an oscillator has a
fixed phase at the firing of the other oscillator: this corresponds to the phase-locked
behavior. Hence, the dichotomic behavior is linked to stability of the fixed point. If the
fixed point is attracting, the network configuration asymptotically converges toward the
phase-locked configuration. If the fixed point is repelling, the distance θ − θ∗ from the
fixed point grows at each firing until θ ≤ β1, and an absorption synchronizes the two
oscillators.

3.3.2 Dichotomic behavior of monotone oscillators

In case of monotone integrate-and-fire oscillators with an increasing vector field (dF/dx > 0),
the positive curvature of the function f implies a strong contraction property of the firing
map. The result is summarized as follows.

Property 5. If the function f is concave-up on [0, 2π], then the firing map (3.8) is a con-
traction on [β1, 2π].
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θ

h(θ)

2π

0β1β1 θ∗ θ∗

β2

2π
β2

Figure 3.5: Two firing maps [of oscillators with a monotone decreasing dynamics (blue) and
of QIF oscillators (red)]. Each firing map is monotone decreasing in [β1, 2π] and has a unique
fixed point.

Proof. By construction, the application (3.8) maps the interval [β1, 2π] onto the interval
[β2, 2π], with β2 = h(2π) = f−1(x+ ǫ). In addition, it follows from (3.10) that the firing map
satisfies

− 1 < h′(θ) < 0 ∀θ ∈ [β1, 2π] , (3.11)

since f ′ is strictly increasing and h(θ) > 2π− θ by construction. By the mean value theorem,
one has

|h(θ) − h(ψ)| ≤
∣
∣h′(ξ)

∣
∣ |θ − ψ|

for some ξ ∈ [θ, ψ] and the firing map is a contraction on [β1, 2π] with the Lipschitz constant
maxξ∈[β1,2π] h

′(ξ), which concludes the proof.

Property 5 can be added to the equivalent properties of monotone integrate-and-fire models
(Properties 1 and 2). Next, the behavior of two monotone oscillators with dF/dx > 0 is
characterized by the following proposition.

Proposition 3.3.1. Consider two pulse-coupled identical integrate-and-fire oscillators ẋ = F (x)
characterized by a monotone increasing F . Then either an absorption occurs at the first firing
or both oscillators asymptotically converge to the phase-locked difference θ∗, the unique fixed
point of the firing map h.

Proof. If there is no absorption at the first firing, an absorption will never occur since β2 > β1

by the contraction property. In this case, by the contraction mapping theorem (see e.g. [55]),
the unique fixed point θ∗ of the firing map is a global attractor for the dynamics θ+ = h(θ).

As a counterpart of this result, it is equivalent to show that the firing map is expanding
for concave-down functions f (decreasing dF/dx < 0), leading to the synchronization of the
two oscillators. This highlights the dichotomic behavior and its dependence on the curvature
of the function f (the derivative dF/dx).

3.3.3 Dichotomic behavior of “QIF-like” oscillators

In case of integrate-and-fire oscillators with “QIF-like” dynamics (satisfying Assumption 1),
the firing map is not a contraction. However, the firing map satisfies an important property.
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A well-chosen translation of the firing map has a reflection symmetry with respect to the
bisectrix (Figure 3.6). The property is summarized as follows.

0
0

 

θ

h(θ)

θ+

h(θ + ∆)
∆

θ∆

2π

θ∗

Figure 3.6: The scalar firing map has an important property: the map h(θ+∆) has a reflection
symmetry with respect to the bisectrix.

Property 6. Pulse-coupled integrate-and-fire oscillators satisfying Assumption 1 have a firing
map (3.8) that verifies

h(· + ∆) = h−1(·) − ∆ , (3.12)

where (∆, θ∆) is the unique solution of
{

θ∆ − h(θ∆) = ∆
|h′(θ∆)| = 1

. (3.13)

The value ∆ has the same sign as x+ x. Moreover,

|h′(θ)| < 1 ∀θ < θ∆ . (3.14)

Proof. From (2.16), it follows that

f(θ) = −f(−θ + 2θ) (3.15)

and
f−1(−x) = −f−1(x) + 2θ . (3.16)

Properties (3.16) and (3.15) lead to

h−1(θ) = 2π − f−1
(

f(θ) − ǫ
)

,

= 2(π − θ) + f−1
(

− f(θ) + ǫ
)

,

= 2(π − θ) + f−1
(

f(−θ + 2θ + ǫ
)

,

= 2(π − θ) + h
(

θ + 2(π − θ)
)

.

Setting
∆ = 2(π − θ) , (3.17)
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one obtains (3.12). In addition, Property 4 implies that θ < π, or equivalently ∆ > 0 if
x+ x > 0.
Equations (3.13) and (3.17) lead to the equality f(θ∆ − 2π + 2θ) = f(2π − θ∆) + ǫ. According
to (3.15), one obtains −f(2π−θ∆) = f(2π−θ∆)+ǫ and it follows from (3.10) that |h′(θ∆)| = 1.
Since dF/dx > 0 for x > 0, one has |h′(θ)| < 1 for θ < θ∆.

Property 6 can be added to the equivalent properties of models satisfying Assumption
1 (Properties 3 and 4). The result is of paramount importance since the condition ∆ > 0
(x + x > 0) determines the global stability of the firing map, and then the behavior of the
two oscillators. This is summarized in the following proposition.

Proposition 3.3.2. Consider two pulse-coupled identical integrate-and-fire oscillators with a
dynamics satisfying Assumption 1. (i) If x + x > 0, either an absorption occurs at the first
firing or both oscillators asymptotically converge to the phase-locked difference θ∗, the unique
fixed point of the firing map h. (ii) If x+ x < 0, the two oscillators achieve synchronization.

Proof. We consider the case x+x > 0. If there is no absorption at the first firing, an absorption
will never occur since Property 6 yields

β1 = h−1(2π) = h(2π + ∆) + ∆ < h(2π) = β2 ,

which follows from (3.12), (3.14), and ∆ > 0.
Next, we proceed in two steps to prove that the fixed point θ∗ = h(θ∗) is a global attractor.

Step 1: We show that the firing map h(·) has no nontrivial 2-periodic orbits, that is

h(θ) = h−1(θ) (3.18)

admits no other solution but the fixed point θ∗. In the plane (θ, h(θ) = θ+), a rotation of
−π/4 of the axes results in a change of variables

(θ, θ+) 7→ (θ̃, θ̃+) =

√
2

2
(θ − θ+, θ + θ+) .

It turns the bisectrix into the θ̃+-axis — that is, θ̃ = 0 — and the firing map h(θ) becomes
the map h̃(θ̃). The assumption (3.12) expresses as

h̃

(
∆√

2
+ θ̃

)

= h̃

(
∆√

2
− θ̃

)

∀θ̃

and (3.14) is rewritten as

h̃′(θ̃) > 0 ∀θ̃ < ∆√
2
.

These two properties imply that the equation h̃(θ̃) = h̃(−θ̃), which is equivalent to (3.18),
has no other solution but θ̃ = 0 (which corresponds to the fixed point θ∗). Hence, the return
map R , h ◦ h has a unique fixed point.

Step 2: The fixed point θ∗ = h(θ∗) cannot be greater than θ∆ = h(θ∆) + ∆ since
∆ > 0 and h′ < 0. Then, θ∗ < θ∆ implies that |h′(θ∗)| < 1, according to (3.14). It follows
that the derivative of the return map satisfies R′(θ∗) = [h′(θ∗)]2 < 1. Moreover, it holds
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that R′(θ) = h′(h(θ))h′(θ) > 0. Since, in addition, the return map has only one fixed point
R(θ∗) = θ∗, it can be written that

{

θ∗ < R(θ) < θ if θ > θ∗,

θ < R(θ) < θ∗ if θ < θ∗.

This leads to

|R(θ) −R(θ∗)| = |R(θ) − θ∗| < |θ − θ∗| ∀θ 6= θ∗

and the fixed point of R is globally attracting. For every e > 0, there exist integers n1 and
n2 such that, for all θ,

{

|Rn(θ) − θ∗| = |h2n(θ) − θ∗| < e for n ≥ n1,

|Rn(h(θ)) − θ∗| = |h2n+1(θ) − θ∗| < e for n ≥ n2.

It follows that, for every e > 0, there exists an integer n3 = max(2n1, 2n2 + 1) such that
|hn(θ) − θ∗| < e for n ≥ n3 and for all θ. Then, one has limn→∞ |hn(θ) − θ∗| = 0.

In the case x + x < 0, the proof follows on similar lines to show that the fixed point is
globally repelling, which leads to the absorption of an oscillator by the other.

The global stability properties of the firing map still imply the dichotomic behavior of the
two oscillators. The fixed point of the firing map is globally attracting (or globally repelling),
a property that is shared with the firing map of monotone oscillators. In the present case, the
vector field F is neither monotone increasing nor monotone decreasing, but the dichotomic
behavior depends on whether the vector field is increasing in the mean or decreasing in the
mean.

The firing map is not characterized by a contraction property, as it is for monotone oscilla-
tors, but is contracting over the phase interval [0, θ∆] and expanding over the complementary
interval [θ∆, 2π]. A rough parallelism can be established. While concave-up time evolution
(of oscillators with monotone increasing dynamics) leads to a contracting firing map, a time
evolution that is concave-up in the mean leads to a firing map that is contracting “on average”,
since the interval [β1, 2π] is mapped onto the smaller interval [β2, 2π].

3.4 Large networks

In large populations, the oscillators aggregate in several clusters that subsequently evolve
according to the dynamics of a multidimensional firing map.

3.4.1 Number of clusters

As mentioned in Section 3.2, the initial behavior of a large population of oscillators is domi-
nated by the absorptions that create the clusters. The number of clusters Ng depends on the
initial configuration of the network. It is determined by the following algorithm, based on
successive iterations of the firing map (3.8).

1. Ng := 1; N = {1, . . . , N};
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2. θmax := max{θk | k ∈ N };

3. Remove from N all indices k such that θk > θmax − 2π + f−1(x− ǫ);

4. Shift oscillators to next firing position θk := f−1
(
f(2π + θk − θmax) + ǫ

)
for k ∈ N ;

5. if N = ∅;
• then stop;
• else Ng := Ng + 1 and return to 2.

From the above algorithm, it is immediate to see that, if the initial conditions satisfy

max
k=1,...,N

θk − min
k=1,...,N

θk < 2π − f−1(x− ǫ) = β1 ,

then all the oscillators will be close enough to be absorbed by the first firing and form only
one cluster (Ng = 1). On the other hand, Ng = Ng,max (see Lemma 3.2.1) if the oscillators
are homogeneously distributed — e.g., a high number of oscillators with randomly distributed
phases.

3.4.2 Multidimensional firing map

While the evolution of two oscillators/clusters is dictated by the firing map (3.8) — that we
denote in the sequel as the scalar firing map — the evolution of Ng > 2 clusters is dictated
by a (Ng − 1)-dimensional firing map.

Let the clusters phases be the components of the vector Θ = (θ1, θ2, · · · , θNg−1) ∈
(0, 2π)Ng−1. The (Ng − 1)-dimensional firing map is a direct generalization of the scalar
firing map and expresses as

H(Θ) =







θ+
1 = h(θNg−1)
θ+

2 = h(θNg−1 − θ1)
...

θ+
Ng−1 = h(θNg−1 − θNg−2)

. (3.19)

In this framework, a given index is not always assigned to the same cluster. Whenever a
cluster fires, it receives the index 0 — its phase θ0 = 0 is omitted in (3.19) — and an index
k ∈ {1, · · · , Ng − 1} is assigned to the Ng − 1 remaining clusters, according to the phase
ordering

θ0 = 0 < θ1 < θ2 < · · · < θNg−1 < 2π . (3.20)

Since the oscillators are identical, the order of the clusters is never modified, and a cyclic per-
mutation of the indices is performed at each firing. To summarize, the successive iterations
of the firing map describe the evolution of the relative phase differences between the clusters,
phase differences that are only modified at each firing.

The (Ng − 1) dimensional firing map is characterized by some general properties.
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Domain and absorptions. The domain of the scalar firing map h restricts the domain of
the (Ng − 1)-dimensional firing map. If the phase difference θNg−1 − θk ≤ β1, an absorption
will occur at the next firing. The (Ng − 1)-dimensional firing map is thus defined on the
domain

U =
{

Θ ∈ (0, 2π)Ng−1 | θk < θk+1, k = 1, . . . , Ng − 2 and θNg−1 − θNg−2 > β1

}

. (3.21)

When an absorption occurs, the number of clusters decreases from Ng to Ñg < Ng. The
(Ng − 1)-dimensional vector Θ = (θ1, θ2, · · · , θÑg−1, · · · , θNg−1) is projected onto a (Ñg − 1)-
dimensional subspace, according to the projection

Pabsp

(

(θ1, θ2, · · · , θÑg−1, · · · , θÑg−1)
)

= (θ1, θ2, · · · , θÑg−1, 0, · · · , 0) .

The evolution of the Ñg remaining distinct clusters is subsequently described by the (Ñg −1)-

dimensional firing map H′(Θ′), with Θ′ = [θ1, θ2, · · · , θÑg−1] ∈ (0, 2π)Ñg−1.

Fixed point. The fixed point H(Θ∗) = Θ∗ corresponds to a phase-locked clustering con-
figuration of the network — at each firing, the phases of the clusters are fixed. The following
result establishes, in full generality, the existence and the uniqueness of the fixed point.

Proposition 3.4.1. The fixed point of the (Ng − 1)-dimensional firing map (3.19), with
1 < Ng ≤ Ng,max, exists and is unique in U .

Proof. We proceed in three steps.
Step 1: Let B1(θ) = θ and Bk(θ) = θ − h(Bk−1(θ)) for k = 2, . . . , Ng. We prove the

following property. For k = 1 . . . , Ng, there exists a value 0 ≤ θc
k such that Bk(θc

k) = 0 and
such that B′

k(θ) > 0 and 0 < Bk(θ) < 2π ∀θ ∈ [θc
k, 2π). This is trivial for B1(θ) = θ, with

θc
1 = 0. Considering the property to be true for Bk−1 with k ∈ {2 . . . , Ng}, we proceed by

induction. One first obtains

B′
k(θ) = 1 − h′

(

Bk−1(θ)
)

B′
k−1(θ) > 0 ∀θ ∈ [θc

k−1, 2π] (3.22)

since h(·), evaluated on Bk−1(θ) ∈ [0, 2π], is strictly decreasing. Then, noting that θc
k−1 < 2π

and that h(0) > 2π by construction, we have

Bk(θc
k−1) = θc

k−1 − h
(

Bk−1(θc
k−1)

)

= θc
k−1 − h(0) < 0 . (3.23)

Moreover, one easily computes that

Bk(2π) = 2π − f−1
(

x+ (k − 1)ǫ
)

> 0 (3.24)

since k ≤ Ng ≤ Ng,max < (x − x)/ǫ + 1. As a consequence of (3.22), (3.23), (3.24), and the
continuity of Bk, there exists a unique θc

k, with θc
k−1 < θc

k < 2π, such that B(θc
k) = 0. Noting

that Bk(2π) < 2π, it follows that 0 ≤ Bk(θ) < 2π ∀θ ∈ [θc
k, 2π).

Step 2: A fixed point of the firing map (3.19) satisfies

θ∗
k = h

(

Bk(θ∗
Ng−1)

)

, k = 1, . . . , Ng − 1 . (3.25)
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One deduces that the condition (3.20) implies 0 < θ∗
n − θ∗

k < 2π, or equivalently

0 < Bk(θ∗
Ng−1) < 2π, k = 1, . . . , Ng − 1 . (3.26)

Moreover, it also holds
BNg (θ∗

Ng−1) = 0 . (3.27)

According to the above properties of Bk, the value θ∗
Ng−1 = θc

Ng
exists and is the unique

solution of (3.27) which fulfills all the conditions (3.26). The values θ∗
k are then explicitly

determined by (3.25).
Step 3: One verifies that the fixed point does not violate the ordering conditions (3.20).

First, we have

θ∗
1 = h

(

B1(θ∗
Ng−1)

)

= h(θ∗
Ng−1) > 0 .

Furthermore, knowing that

h
(

B∗
2(θ∗

Ng−1)
)

= h

(

θ∗
Ng−1 − h

(

B1(θ∗
Ng−1)

))

> h(θ∗
Ng−1) = h

(

B∗
1(θ∗

Ng−1)
)

,

the other relations follow by induction. If h(Bk(θ∗
Ng−1)) < h(Bk+1(θ∗

Ng−1)) for k = 1, . . . , Ng − 1,
then

h
(

Bk+2(θ∗
Ng−1)

)

= h

(

θ∗
Ng−1 − h

(

Bk+1(θ∗
Ng−1)

))

> h

(

θ∗
Ng−1 − h

(

Bk(θ∗
Ng−1)

))

= h
(

Bk+1(θ∗
Ng−1)

)

.

At last, one has θ∗
Ng−1 < 2π, which concludes the proof.

Remark 3.4.1. Without the upper bound Ng < Ng,max, the firing map has still a unique
fixed point on [0, h−1(0)]Ng−1, for any Ng ∈ N0. But in this case, the fixed point may have
some components beyond 2π, and does not necessary lies in U . ⋄

The result of Proposition 3.4.1 is very general since it makes no assumption on the dynam-
ics of the integrate-and-fire oscillators. In addition, it implies that the network can exhibit
only a very limited number of phase-locked clustering configurations.

Corollary 3.4.1. A network of N pulse-coupled integrate-and-fire oscillators has only Ng,max

(3.4) different phase-locked clustering configurations. Moreover, a phase-locked configuration
is unique for a given number of clusters.

Proof. The case Ng = 1 corresponds to the unique synchronized behavior. Lemma 3.2.1
implies that Ng < Ng,max. Then, the assumption of Proposition 3.4.1 is satisfied and it follows
that there exists only one phase-locked clustering configuration for each number Ng < Ng,max.

From a practical (numerical) point of view, the system H(Θ∗) = Θ∗ can be easily solved
to obtain the fixed point. Once the scalar equation (3.27) solved to obtain θ∗

Ng−1, the Ng − 2
remaining θ∗

k’s are explicitly given by (3.25). This property, as well as the proof of Proposition
3.4.1, is due to the particular chain structure of the firing map.
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Particular structure. One of the remarkable properties of the firing map (3.19) is its
particular structure. The firing map is indeed the composition

H = N ◦ L (3.28)

of a linear map L, corresponding to the oscillators shift between two firings, with a nonlinear
map N, corresponding to the impulsive interaction of the oscillators at a firing (Figure 3.7).
The linear map is a dynamical application defined by the (Ng − 1) × (Ng − 1) companion
matrix

L =









0 . . . 0 1
−1 0 0 1

0
. . . 0

...
0 0 −1 1









(3.29)

and provides the firing map H with a multidimensional chain structure. The nonlinear map is
a repeated static nonlinearity N(ζ) = (h(ζ1), · · · , h(ζNg−1)), where h is the scalar firing map
previously defined for two oscillators. The linear map corresponds to the uniform rotation of
the oscillators between two firings (continuous flow of the hybrid model) and the nonlinear
map is related to the impulsive coupling at each firing (instantaneous jump of the hybrid
model).

Figure 3.7: The firing map is the (feedback) combination of a linear (dynamical) map L with
a static nonlinearity N.

Stability properties. The stability properties of the firing map are of paramount im-
portance to investigate the collective behavior emerging from the network. For instance, a
globally (anti-)stable fixed point leads to a dichotomic behavior of large networks. Given
the particular feedback structure of the firing map (Figure 3.7), the stability problem is also
related to absolute stability questions (see [55] for an overview).

While the linear map L somehow accounts for the “multidimensional architecture” of the
firing map, it provides no stability property. This is illustrated by the dynamics of uncoupled
oscillators. Setting ǫ = 0 in (3.8) yields h(θ) = 2π − θ and the phase difference between two
configurations Θ and Ψ evolves as

(Θ − Ψ)+ = −L (Θ − Ψ) . (3.30)

The linear map thereby governs the rigid rotation of the oscillators, a marginally stable
behavior that converges toward no particular configuration. This is also suggested by the
property

(−L)Ng = I ,
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where I is the identity, property that shows no net influence of the linear map after Ng steps.
In contrast, it is the static nonlinearity N that governs the stability properties of the

firing map H. The static nonlinearity is related to the firing instants, where the impulsive
coupling modifies the relative configuration of the network. The map is directly derived from
the scalar firing map, for which strong global stability results have been established. Then,
a relevant question is which properties of the scalar firing map induce the stability of the
(Ng − 1)-dimensional firing map.

In other words:

• Q1. For monotone integrate-and-fire oscillators, is the (Ng − 1)-dimensional firing map
characterized by a contraction property?

• Q2. For “QIF-like” integrate-and-fire oscillators (satisfying Assumption 1), is the fixed
point of the (Ng−1)-dimensional firing map globally stable whenever x+x > 0 (evolution
concave-up in the mean)?

In the rest of the present dissertation, we tackle these two questions, focusing on large
populations of oscillators and investigating whether a dichotomic behavior characterizes two
oscillators (or clusters) as well as Ng > 2 clusters. Under mild additional assumptions,
Chapter 4 provides a positive answer to question Q1. Interestingly, the answer of question
Q2 depends on further properties of F , a result which means that large networks of pulse-
coupled oscillators are not all characterized by a dichotomic behavior. The extension of the
stability properties of the scalar firing map to higher dimensions depends on finer properties
on the scalar firing map. In addition, Chapter 6 shows that the second question leads to open
problems, especially in the case of QIF oscillators.



Chapter 4

Global analysis of monotone
integrate-and-fire oscillators

In 1975, Peskin originally applied impulsive coupling to LIF oscillators [86] and conjectured
that the network always synchronizes. The conjecture was proved fifteen years later by Mirollo
and Strogatz [75], under the more general assumption of monotone decreasing F (concave-
down time evolution). In contrast, we show that a monotone increasing F (concave-up time
evolution) leads to a phase-locked clustering behavior. The study of monotone increasing
dynamics, presented in the present chapter, complements the previous analysis and highlights
the dichotomic behavior of monotone oscillators.

Systems of two oscillators are characterized by a dichotomic behavior, an observation that
follows from the contraction property of the scalar firing map (see Chapter 3). The present
chapter extends this result and shows that large networks of monotone oscillators are charac-
terized by the same properties as the simple networks of two oscillators: the multidimensional
firing map has also a contraction property and large populations are also characterized by the
dichotomic behavior.

The chapter is organized as follows. In Section 4.1, we discuss some properties of the di-
chotomic behavior, properties that are induced by the monotone dynamics of the oscillators.
Section 4.2 presents the main result of the chapter. The contraction property of the multidi-
mensional firing map is established for a well-chosen 1-norm. A link between the contraction
property and absolute stability theory is established in Section 4.3. Finally, the robustness of
the phase-locked clustering configuration in heterogeneous populations of monotone oscillators
is investigated in Section 4.4.

The main contributions of the chapter are (i) the contraction property of the multidi-
mensional firing map, for identical monotone oscillators and (ii) the study of heterogeneous
populations of monotone oscillators. The main results presented in the chapter are published
in [73].

4.1 Dichotomic behavior

Networks of identical monotone integrate-and-fire oscillators exhibit the dichotomic behav-
ior: either they achieve perfect synchrony (decreasing F , concave-down time evolution) or
they converge toward a phase-locked clustering configuration (increasing F , concave-up time
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evolution).

4.1.1 Synchronization

Identical pulse-coupled integrate-and-fire oscillators with a concave-down time evolution achieve
perfect synchrony, a result that was proved in [75]:

Theorem 4.1.1 (Mirollo and Strogatz, 1990). For almost all initial conditions, a system of
identical pulse-coupled integrate-and-fire oscillators ẋ = F (x), with a monotone decreasing
vector field dF/dx < 0 on [x, x] (concave-down time evolution), approaches a state in which
all the oscillators are firing synchronously.

4.1.2 Phase-locked clustering

If the initial conditions are randomly distributed, all the oscillators are not absorbed during a
unique initial firing. Under this condition, numerical simulations suggest that all networks of
integrate-and-fire oscillators with a concave-up time evolution converge toward a phase-locked
clustering configuration.

As a first observation, the number of absorptions is bounded and two clusters cannot merge
through an absorption. This property, summarized in the following proposition, precludes the
synchronization of the whole network by an aggregating process of the clusters.

Proposition 4.1.1. In a network of N identical integrate-and-fire oscillators ẋ = F (x) char-
acterized by dF/dx > 0 on [x, x] (concave-up time evolution), a cluster of more than one
oscillator cannot be absorbed by any firing oscillator. Consequently, there are at most Ng,max

(3.4) absorptions.

Proof. Consider a cluster A that has just been created through the firing of one of its oscil-
lators. At this time, the cluster has the state x and the states of the other oscillators are all
increased by ǫ. In particular, the state of its preceding oscillator/cluster B is greater than x+ǫ
and the state difference xB − xA > ǫ. In order to prove that B cannot absorb A at its next
firing, one has to show that the state difference remains greater than ǫ until B fires. At each
intermediate firing that occurs before the firing of B, the states of A and B are both increased
by ǫ and xB −xA remains unchanged. Moreover, between two successive intermediate firings,
the phases of both A and B are increased by a same value ∆θ, a process that increases the
state difference :

f
(

f−1(xB) + ∆θ
)

− f
(

f−1(xA) + ∆θ
)

> f
(

f−1(xB)
)

− f
(

f−1(xA)
)

= xB − xA ,

where the inequality holds since the evolution function f is concave-up. Hence, the state
difference remains greater than ǫ and the cluster A is not absorbed by the firing of B.
Since the absorptions only create new clusters, the number of absorptions cannot exceed Ng,
whose bound is Ng,max by Lemma 3.2.1.

Proposition 4.1.1 shows that the network cannot achieve synchrony and implies that the
Ng clusters evolve according to a unique (Ng − 1)-dimensional firing map, since the number
of clusters cannot decrease. However, the above result implies nothing on the convergence of
the Ng clusters toward the phase-locked clustering configuration, so that a stability analysis
of the (Ng − 1)-dimensional firing map is needed.

A preliminary answer to the stability question is provided by the following proposition.
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Proposition 4.1.2. If the evolution function f is concave-up on [0, 2π], then the Jacobian
matrix J(Θ) of the corresponding (Ng − 1)-firing map, Ng > 1, has all its eigenvalues inside
the unit disk, for all Θ ∈ U . Consequently, the fixed point of the (Ng − 1)-dimensional firing
map is locally asymptotically stable.

Proof. The Jacobian matrix J is

J =









0 . . . 0 h′
0

−h′
1 0 0 h′

1

0
. . . 0

...
0 0 −h′

Ng−2 h′
Ng−2









,

with h′
0 = |h′(θNg−1)| and h′

k = |h′(θNg−1 − θk)| for k = 1, . . . , Ng − 2. The characteristic
polynomial of J expresses as

p(z) = zNg−1 + h′
Ng−2z

Ng−2 + h′
Ng−3h

′
Ng−2z

Ng−3 + · · · +

Ng−2
∏

k=1

h′
kz +

Ng−2
∏

k=0

h′
k . (4.1)

It follows from Property 5 [see (3.11)] that h′
k < 1 for k = 0, . . . , Ng − 2. By the Eneström-

Kakeya theorem1 [48], the polynomial has all its roots inside the unit disk. Then, all the
eigenvalues are inside the unit disk, which concludes the proof.

The above result follows from the important Property 5 (i.e. |h′| < 1) that characterizes
the scalar firing map of monotone integrate-and-fire oscillators.

Remark 4.1.1. Owing to the special structure H = N ◦ L of the firing map (see Chapter 3),
the Jacobian matrix can be decomposed as the matrix product J = −D L, with D a diagonal
matrix whose entries are the derivatives h′

k. The diagonal matrix D is related to the nonlinear
part N of the firing map and provides the Jacobian matrix with stability properties. ⋄

Proposition 4.1.2 implies that the Jacobian matrix is stable everywhere in U , a property
that restricts the behavior of the firing map. It follows from the Jacobian matrix property
that the trajectories are not chaotic and, in addition, there exists no nontrivial periodic orbit
(the proof is not detailed in the present manuscript).

However, the Jacobian matrix property is a local property which does not prove that the
fixed point is a global attractor. In the case of synchronization, the local property implies that
every set is mapped onto a set of greater measure and thereby shows that the trajectories
must leave U after successive iterations (this results in an absorption). This property was
directly used in [75] to prove Theorem 4.1.1. In the case of phase-locked clustering, each
set converges toward a set of zero measure, but this does not imply that the trajectories
converge toward a fixed point. As a consequence, the Jacobian property cannot be used
directly to prove the convergence toward a phase-locked configuration. Such a property even
leads to strong conjectures in dynamical systems theory (Jacobian conjectures [20, 101]). Even
though the firing map is locally contracting everywhere in U — the measure of infinitesimal
volumes is decreasing along each solution — it is not obvious whether the firing map is globally
contracting. We tackle this issue in the next section.

1If p(z) =
∑n

k=0
pkzk is a polynomial such that pn ≥ pn−1 ≥ · · · ≥ p0 > 0, then p(z) does not vanish in

|z| > 1.
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4.2 Global contraction: from a quadratic norm to a 1-norm

In the case of two oscillators, the scalar firing map is a contraction, with |h′| < 1 (Property
5). In the sequel, we prove that the (Ng − 1)-dimensional firing map is also a contraction.
The question is not trivial since the contraction property must be defined with respect to a
distance, for instance derived from a particular norm, and it is a priori not obvious which
norm to consider. After initially considering a more usual quadratic norm, we show that,
surprisingly, a 1-norm is more convenient to express the contraction property of the firing
map.

4.2.1 Contraction with respect to a quadratic norm

The contraction property of the (Ng − 1)-dimensional firing map is first investigated with
respect to a quadratic vector norm. Exploiting the particular structure H = N ◦ L of the
firing map, we introduce a norm such that the induced distance between two trajectories is
invariant during the rigid rotation of the oscillators between two firings (map L), but varies
only under the instantaneous jump triggered by a firing (map N). One considers the quadratic
vector norm

‖x‖(2) =
√

xT Qx , (4.2)

where the (Ng − 1) × (Ng − 1) matrix Q is chosen in such a way that the linear map L is an
isometry, that is

‖Lx‖(2) = ‖x‖(2) ∀x or equivalently LT QL = Q . (4.3)

A matrix satisfying (4.3) corresponds to the Laplacian matrix of a graph with a chain structure
— the reader will remember that the linear map L provides the firing map with a chain
structure — and is given by

Q =













2 −1 0 . . . 0

−1 2 −1
. . . 0

0
. . .

. . .
. . . 0

0
. . . −1 2 −1

0 . . . 0 −1 2













. (4.4)

One verifies that the norm is well-defined since the matrix Q is positive definite:

xT Qx = x2
1 +

Ng−2
∑

k=1

(xk − xk+1)2 + x2
Ng−1 > 0

for all x 6= (0, . . . , 0). From the vector norm, one also derives the induced matrix norm

‖A‖(2) = max
x 6=0

‖Ax‖(2)

‖x‖(2)

. (4.5)

Under some assumptions, we show that the (Ng−1)-dimensional firing map is a contraction
with respect to the norm (4.2). This is the statement of Theorem 4.2.1. To prove the result,
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the special structure of the firing map is exploited: while the linear map L is an isometry with
respect to the considered norm (4.3), the nonlinear map N induces the contraction property of
the firing map. As a preliminary to the result, the following lemma provides a useful property
of the norm of particular diagonal matrices.

Lemma 4.2.1. For any integer n = 0, . . . , Ng−1, let D
(0,1)
n = diag{dk} be a (Ng−1)×(Ng−1)

diagonal matrix, with dk = 0 for k ≤ n and dk = 1 for k > n. Then

max
n∈{0,...,Ng−1}

‖D(0,1)
n ‖(2) ≤ Ng + 1

2
√
Ng

.

Proof. The proof of Lemma 4.2.1 can be found in Appendix A.1.

As a consequence of Lemma 4.2.1, some diagonal matrices with entries less than one are
not a contraction in the proposed norm. Then, the condition |h′| < 1 (fulfilled whenever f
is concave-up) is not sufficient to establish the contraction (of the nonlinear map N) and a
more restrictive assumption is necessary. This is summarized in the following theorem.

Theorem 4.2.1. If the bounds h = minθ∈[0,2π] |h′(θ)| and h = maxθ∈[0,2π] |h′(θ)| satisfy

h− h

1 − h
<

2
√
Ng

Ng + 1
(4.6)

and if
h′′(θ) > 0 ∀θ ∈ [0, 2π] or h′′(θ) < 0 ∀θ ∈ [0, 2π] , (4.7)

then the (Ng − 1)-dimensional firing map (3.19), with Ng > 2, is a contraction in U for the
quadratic norm (4.2).

Proof. Let Θ = (θ1, . . . , θNg−1), Ψ = (ψ1, . . . , ψNg−1), and define θ0 = ψ0 = 0. For each
k ∈ {1, . . . , Ng − 1}, one has

θ+
k − ψ+

k = h(θNg−1 − θk−1) − h(ψNg−1 − ψk−1)

or, by the mean value theorem,

θ+
k − ψ+

k = h′(ξk)
[
(θNg−1 − ψNg−1) − (θk−1 − ψk−1)

]

for some ξk ∈ [θNg−1 − θk−1, ψNg−1 − ψk−1]. In vector form, it follows that

H(Θ) − H(Ψ) = −D L (Θ − Ψ) ,

with the diagonal matrix

D = diag
{|h′(ξ1)|, . . . , |h′(ξNg−1)|} . (4.8)

Next, we obtain

‖H(Θ) − H(Ψ)‖(2) = ‖DL(Θ − Ψ)‖(2) ≤ ‖D‖(2)‖L(Θ − Ψ)‖(2) = ‖D‖(2)‖(Θ − Ψ)‖(2) ,

where the last equality follows from (4.3), the isometry property of L.
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It remains to prove that ‖D‖(2) < 1. The assumption (4.7) implies that the ξk’s are
ordered and, as a consequence, that the entries of the diagonal matrix D (4.8) are ordered.
Given the symmetry Q(k, l) = Q(l, k) = Q(Ng − l, Ng − k), we consider without lack of gen-
erality that the firing map is concave-up, so that the entries of D are increasing. As a conse-
quence, any admissible matrix D can be expressed as a convex combination of the matrices

D
(h,h)
n = diag{dk}, with dk = h for k ≤ n and dk = h for k > n. It follows that

‖D‖(2) =

∥
∥
∥
∥
∥
∥

Ng−1
∑

n=0

αnD(h,h)
n

∥
∥
∥
∥
∥
∥

(2)

≤
Ng−1
∑

n=0

αn‖D(h,h)
n ‖(2) ≤ max

n∈{0,...,Ng−1}
‖D(h,h)

n ‖(2), (4.9)

where αn ≥ 0 and
∑

n αn = 1. Moreover, since D
(h,h)
n = h I + (h− h) D

(0,1)
n , one has

‖D‖(2) ≤ h ‖I‖(2) + (h− h) max
n∈{0,...,Ng−1}

‖D(0,1)
n ‖(2) ≤ h+ (h− h)

Ng + 1

2
√
Ng

,

where the last inequality follows from Lemma 4.2.1. Finally, the assumption (4.6) implies
‖D‖(2) < 1, which concludes the proof.

At this stage, the contraction property of the scalar firing map does not perfectly extend to
the (Ng − 1)-dimensional firing map. In Theorem 4.2.1, additional assumptions are required,
assumptions that are not needed for the contraction property of the scalar firing map. While
assumption (4.7) is a mild technical assumption (satisfied by LIF oscillators, for instance),
assumption (4.6) is more restrictive. In addition, the greater the number of clusters Ng,
the more restrictive the condition (4.6). Since Ng has an upper bound Ng,max (3.4), the
condition (4.6) slightly restricts the model parameters for which the firing map is a contraction.
However, in the case of a weak coupling ǫ << 1, the upper bound Ng,max may be very high
and the assumption (4.6) imposes very restrictive lower and upper bounds on the derivative
of the scalar firing map.

The question is whether another distance is more appropriate to capture the contraction
property of the (Ng − 1)-dimensional firing map, under assumptions that do not depend on
the number of clusters Ng. The answer is positive, through a particular 1-norm inspired from
the quadratic norm (4.2).

4.2.2 Contraction with respect to a 1-norm

To improve on Theorem 4.2.1, we introduce a norm for which the linear map L is still an
isometry, but for which the contraction property induced by the nonlinear part N is satisfied
under milder assumptions, independently of the number Ng.

Instead of the quadratic norm (4.2)

‖x‖2
(2) = x2

1 +

Ng−2
∑

k=1

(xk − xk+1)2 + x2
Ng−1 ,

we replace the squares (· · · )2 by absolute values | · · · | and propose the 1-norm

‖x‖(1) = |x1| +

Ng−2
∑

k=1

|xk − xk+1| + |xNg−1| , (4.10)
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with the induced matrix norm

‖A‖(1) = max
x 6=0

‖Ax‖(1)

‖x‖(1)
.

The linear map L is still an isometry for the norm (4.10). Noting y = Lx, one verifies

‖y‖(1) = |y1| +

Ng−2
∑

k=1

|yk+1 − yk| + |yNg−1| = |xNg−1| + |x1| +

Ng−2
∑

k=1

|xk+1 − xk| = ‖x‖(1) .

The 1-norm is more appropriate than the quadratic norm to express the contraction prop-
erty of the firing map. Whereas Lemma 4.2.1 shows that the quadratic norm of the special

diagonal matrices D
(0,1)
n can exceed one (and increases with the number Ng), the following

lemma shows that the 1-norm never exceeds one, for any number Ng.

Lemma 4.2.2. For any integer n = 0, . . . , Ng−1, let D
(0,1)
n = diag{dk} be a (Ng−1)×(Ng−1)

diagonal matrix, with dk = 0 for k ≤ n and dk = 1 for k > n. Then, one has

‖D
(0,1)
Ng−1‖(1) = 0

‖D(0,1)
n ‖(1) = 1 for n < Ng − 1 .

Proof. The proof of Lemma 4.2.2 can be found in Appendix A.2.

The following theorem establishes the contraction property of the (Ng − 1)-dimensional
firing map without the restrictive assumption (4.6) on the bounds of the scalar firing map.

Theorem 4.2.2. If |h′(θ)| < 1 ∀θ ∈ [0, 2π] (f is concave-up) and if

h′′(θ) > 0 ∀θ ∈ [0, 2π] or h′′(θ) < 0 ∀θ ∈ [0, 2π] ,

then the (Ng − 1)-dimensional firing map (3.19) is a contraction in U for the 1-norm (4.10).

Proof. The proof follows on similar lines as the proof of Theorem 4.2.1. Since L is an isom-
etry, one obtains ‖H(Θ) − H(Ψ)‖(1) ≤ ‖D‖(1)‖(Θ − Ψ)‖(1) and it remains to prove that
‖D‖(1) < 1. Given the curvature assumption on h, the matrix D/‖D‖∞ — with ‖D‖∞ < 1

since |h′| < 1 — is expressed as the convex combination of the matrices D
(0,1)
n , n = 0, . . . , Ng − 1.

Similarly to (4.9), one has

‖D‖(1)

‖D‖∞
≤ max

n∈{0,...,Ng−1}
‖D(0,1)

n ‖(1)

and, by Lemma 4.2.2, ‖D‖(1) ≤ ‖D‖∞ < 1, which concludes the proof. (Actually, it is easy
to see that ‖D‖(1) = ‖D‖∞.)

Theorem 4.2.2 shows that a particular distance between any two trajectories is decreasing
with time. While the distance is conserved between the firings (rigid rotation of the oscilla-
tors), the distance strictly decreases at every instantaneous firing.

Theorem 4.2.2 implies that the fixed point of the firing map is a global attractor. It thus
extends Property 3.3.1 to large populations of oscillators. Insofar as more than one cluster
is formed during the initial absorptions stage, the clusters always converge to a phase-locked
clustering state. This is summarized in the following theorem.
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Theorem 4.2.3. Consider a network of N identical pulse-coupled integrate-and-fire oscilla-
tors ẋ = F (x) characterized by (i) a monotone vector field dF/dx > 0 on [x, x] (concave-
up evolution) and (ii) a scalar firing map with a curvature of constant sign. Then either
an absorption occurs at the first firing and synchronizes all the oscillators, or the network
asymptotically converges to a phase-locked clustering configuration.

Proof. The proof follows from Theorem 4.2.2, through the contraction mapping theorem (see
e.g. [55]), and from Proposition 4.1.1.

As a key result of this chapter, Theorem 4.2.2 implies Theorem 4.2.3 (phase-locked cluster-
ing), a result that can be seen as the counterpart of Theorem 4.1.1 (synchronization) and that
highlights the dichotomic behavior of pulse-coupled monotone integrate-and-fire oscillators.

4.3 A link to absolute stability theory

The present section is a brief digression about the absolute stability problem related to the
analysis of the firing map. The stability results obtained within this framework are not
stronger than the contraction property with respect to the 1-norm, a property that remains
the main contribution of this chapter. However, in this section, we show that the results
previously obtained with the quadratic norm (Section 4.2.1) are related to absolute stability
results.

In nonlinear control theory, absolute stability problem is related to feedback systems with
a static nonlinearity. The systems are said absolutely stable if they are globally stable for any
nonlinearity satisfying a given condition (for instance, a sector condition). In the pulse-coupled
oscillators context, we have seen that the firing map has a particular structure, interpreted
as the feedback interconnection between a linear dynamical system L and a nonlinear static
system N (Figure 3.7). As a consequence, some absolute stability results are applied in the
present context and show the global stability of the firing map, in the case of monotone os-
cillators. (More details about absolute stability can be found in [55].)

Considering the notations of Figure 3.7, we propose the change of variables

x = Θ − Θ∗

y = ζ − LΘ∗ ,

where Θ∗ is the fixed point of the firing map, that is Θ∗ = H(Θ∗) = N(LΘ∗). In the new
variables, the two systems

ζ+ = LΘ

Θ = N(ζ)

become

y+ = Lx (4.11)

x = N(y + LΘ∗) − Θ∗ , −Φ(y) . (4.12)

The feedback interconnection of the two systems is represented in Figure 4.1. The linear
dynamical system (4.11) is characterized by the transfer function G(eiω) = Le−iω. The static
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nonlinearity Φ (4.12) satisfies Φ(0) = 0, thanks to the change of variables. The convergence
to the fixed point Θ∗ corresponds in the new variables to the convergence to (x,y) = (0,0).

Figure 4.1: The firing map is the feedback interconnection of a linear system, whose transfer
function is G(eiω) = Le−iω, with a static nonlinearity Φ(y).

Each component of the repeated nonlinearity N(ζ) = (h(ζ1), · · · , h(ζNg−1)) is mono-
tone decreasing, since the scalar firing map is monotone decreasing. Then, the compo-
nents Φk of the repeated nonlinearity Φ are all monotone increasing. In addition, they are
slope restricted, since they are characterized by slopes between h = minθ∈[0,2π] |h′(θ)| and

h = maxθ∈[0,2π] |h′(θ)|. The nonlinearity thereby satisfies the sector condition (Figure 4.2)

[Φk(yk) − hyk][Φk(yk) − hyk] ≤ 0 . (4.13)

Figure 4.2: The static nonlinearity Φ satisfies the sector condition.

Since the sector condition (4.13) is fulfilled, the well-known circle criterion (see [55, 124])
provides conditions on h and h to establish the absolute stability of the system (4.11)-(4.12).
It follows from the circle criterion that the origin (corresponding to the fixed point of the
firing map) is globally stable if

G(I + hG)−1 (4.14)

is stable (all the poles are inside the unit circle) and if

(I + hG†)(I + hG) +
[

(I + hG)(I + hG)
]†
> 0 , (4.15)

where G† holds for the conjugate transpose of G.
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Stability of (4.14) is easily verified. Since det[G(eiω)] = det[L]e−iω = e−iω does not
encircle the point −1/h < −1, it follows from the multivariable Nyquist criterion [17] that
(4.14) is stable.

Condition (4.15) is a passivity condition that yields

I + hh+
1

2
(h+ h)

(

Le−iω + LT eiω
)

> 0 ∀ω . (4.16)

Condition (4.16) is a slope restriction of the nonlinearity. It provides a general condition on
the bounds h and h (slope restriction of the nonlinearity) to ensure the global stability of the
origin for the system (4.11)-(4.12), that is, to ensure the global stability of the fixed point
for the firing map. The condition is compared with the results obtained in Section 4.2.1, for
different dimensions.

• In one dimension, the theory confirms the known results on the global stability of the
scalar firing map. Indeed, condition (4.16) leads to

1 + hh+ (h+ h) cosω > 0 ∀ω

and is satisfied for any h < h < 1. It is noticeable that, for a non-monotone dynamics
with h > 1, the condition is not satisfied. Although we know that the fixed point is
globally stable for “QIF-like” dynamics (Proposition 3.3.2), the circle criterion fails to
prove this result.

• In two dimensions, condition (4.16) becomes

(

1 + hh −hh− i (h+ h) sinω
−hh+ i (h+ h) sinω 2hh+ (h+ h) cosω + 1

)

> 0 ∀ω .

Straightforward computations show that the above condition is actually equivalent to
the condition ‖D‖(2) < 1, with the quadratic norm (4.2) and the diagonal matrix

D = diag{dk}, h < dk < h. In two dimensions, the circle criterion and the quadratic
norm introduced in Section 4.2.1 lead to the same results, imposing condition (4.6) on
the bounds h and h.

• In three dimensions, condition (4.16) yields







1 + hh −h+h
2 eiω h+h

2 e−iω − hh

−h+h
2 e−iω 1 + hh −hh− i (h+ h) sinω

h+h
2 eiω − hh −hh− i (h+ h) sinω 3hh+ (h+ h) cosω + 1






> 0 ∀ω . (4.17)

Straightforward computations show that, even though the condition is similar to the
condition ‖D‖(2) < 1, it is however slightly more restrictive on the bounds h and h.
For instance, when h = 0, the quadratic norm ensures global stability provided that
h < 2/

√
6 ≈ 0.816 while (4.17) requires that h < 0.806 (Figure 4.3).

The condition obtained with the circle criterion is more restrictive because it imposes no
condition on the second derivative Φ′′

k, and thereby on h′′ — in contrast, the quadratic
norm approach imposes condition (4.7) on h′′. Thus, should the scalar firing map violate
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the mild assumption (4.7), the quadratic norm would fail to prove the global stability
of the firing map, but the circle criterion proves the global stability under the stronger
slope restriction (4.17) (instead of (4.6)). (Condition (4.7) is only used to prove that
the entries of (4.8) are ordered, a property that is always satisfied in two dimensions.)
In addition, when the second derivative condition is satisfied, the resulting order on the
Φ′

k’s could be taken into account by introducing a multiplier in the absolute stability
criterion [127]. In this situation, the condition on the bounds h and h would be relaxed.
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Figure 4.3: Global stability of the fixed point is proved if the couple (h, h) is above the curve.
The circle criterion imposes a (slightly) more restrictive condition (on h and h) than the
quadratic norm.

• As the system dimension increases, condition (4.16) is increasingly conservative (simi-
larly to the contraction property with respect to the quadratic norm).

The results are similar to those obtained with the quadratic norm (Section 4.2.1), a fact
that is logical since the passivity condition (4.15) is related to the existence of a quadratic
Lyapunov function, through the Kalman-Yakubovich-Popov (KYP) lemma [53, 89, 126] (see
also [55]). In addition, absolute stability theory clearly implies that a quadratic norm cannot
characterize the contraction property in full generality. Instead, a non-quadratic norm must
be considered ([87] similarly shows that non-quadratic polyhedral Lyapunov functions yield
less conservative stability conditions than the circle criterion). The study thereby reinforces
our statement that the 1-norm is appropriate to capture the dynamics of monotone oscillators.

4.4 Heterogeneous populations

In this chapter, we have shown that the firing map has strong contraction properties that
imply a strong dichotomic behavior for identical (monotone) pulse-coupled oscillators. A
natural extension to these results is to discuss the robustness of the behavior against some
heterogeneity within the network, considering that the frequency ωk of each oscillator is
randomly distributed.

Networks of nonidentical oscillators are characterized by intricate behaviors — as a generic
example, the Kuramoto model [4, 59, 104] clearly illustrates the complexity of heterogeneous
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networks. In case of integrate-and-fire oscillators, the persistence of synchrony in heteroge-
neous populations has been investigated and has also lead to complex problems. For instance,
[114] showed that, in heterogeneous populations with smooth pulse interactions, synchrony is
not achieved and the population breaks into two subpopulations.

In case of impulsive coupling, Peskin [86] first conjectured — in addition to its conjecture
on identical oscillators — that the network of oscillators with a concave-down time evolution
always converges to synchronization even if the oscillators are not quite identical. Some
simplified models were analyzed in [10]. Later on, for oscillators characterized by a constant
velocity ẋk = F (xk) = Sk, Senn et al. [97] found sufficient conditions for synchrony. However,
the time evolution of these oscillators has no curvature and synchronization is not induced
by the impulsive coupling in itself but by the frequency differences and by the absorption
mechanism. An answer to Peskin’s conjecture was given in 2008 by Chang et al. [19]. The
authors proposed sufficient (but not necessary) conditions to ensure the synchronization of
nonidentical oscillators with concave-down time evolutions. In addition, they also showed that
oscillators with concave-up time evolutions can synchronize, provided that their discrepancies
and their curvature are small. (Results of [19, 97] show that the curvature of the time evolution
is not a strict indicator of synchronization, as it happened to be for identical oscillators.)

As it is explained above, there is abundant (though incomplete) literature about synchro-
nization in heterogeneous populations of pulse-coupled oscillators. On the other hand, less
work has been performed on the phase-locked clustering behavior in heterogeneous popula-
tions. In this section, we therefore focus on the clustering behavior, showing that this global
behavior of identical oscillators (induced by strong contraction properties of the firing map)
is robust and still persists for nonidentical oscillators.

4.4.1 Two oscillators

The case of two different interacting oscillators has been studied in [28]. The authors proved
frequency locking when the frequencies are close enough for the oscillators to fire alternately
(1 : 1 entrainment).

Since the oscillators are different, they are associated with different firing maps h1 and
h2. For 1 : 1 entrainment, the two firing maps are applied alternately, so that one considers
the two return maps R1 = h1 ◦ h2 and R2 = h2 ◦ h1. The return maps determine the
evolution of one oscillator at the successive firings of the other oscillator. For oscillators
with concave-up time evolution, the return maps have a unique stable fixed point, resulting
in the unique phase-locked behavior described in [28]. Other firing patterns exist for larger
frequency differences between the two oscillators, each resulting in a different combination of
the two firing maps. Each firing pattern corresponds to a different return map and results in
a different phase-locked behavior.

This analysis suggests that a detailed description of the dynamics of a population of N
different oscillators quickly becomes intricate as the number of oscillators grows.

4.4.2 Clustering behavior in large populations

In large populations, the clusters are affected by the heterogeneity of the oscillators. For
identical oscillators, an absorption is irreversible and a cluster can be assimilated to a single
oscillator. In contrast, nonidentical oscillators that have fired together can subsequently
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separate and clusters can be modified or even destroyed. Coupling and heterogeneity have
opposite influences: while the former creates clusters through the absorption mechanism, the
latter tends to destroy them.

In the sequel, we report on numerical observations about the clustering behavior of a
(large) population of oscillators. We simulated the behavior of N = 100 integrate-and-fire
oscillators with the monotone individual dynamics

ẋk = S + γxk , xk ∈ [0, 1] k = 1, . . . , N ,

where γ > 0. The parameters Sk > 0 are randomly distributed — Gaussian distribution
of mean µ(Sk) and standard deviation σ(Sk) — so that frequency variations appear across
the population. To study the robustness of clustering against the population heterogeneity,
we kept a fixed distribution for the parameters Sk (individual discrepancies) and a constant
value for ǫ (coupling strength), but we varied the parameter γ (identical for the N oscillators).
The parameter γ is a key feature of the oscillators. It determines the curvature of the time
evolution of the oscillators and affects the relative importance of the coupling strength versus
the frequency distribution.

Clustering configurations are still observed in heterogeneous populations (Figure 4.4).
Whereas each cluster can be considered as a unique oscillator in case of identical oscillators,
the clusters of nonidentical oscillators spread over a finite range [θa, θb] due to the frequency
discrepancies. A cluster is now defined as a set of oscillators that fire together. It is charac-
terized by its slowest and its fastest oscillator, respectively determining the lower bound θa

and the upper bound θb of the cluster interval. The range of each cluster gradually broadens
as the elapse time increases since the last absorption.

Figure 4.4: “Snapshot” clustering behavior in a population of N = 100 oscillators [γ = 0.5,
µ(Sk) = 0.99, σ(Sk) = 0.19, ǫ = 0.11]. The clusters broaden during their evolution on the
circle.

An important difference with respect to the identical case is the existence of traveling
oscillators. An oscillator trapped within a cluster will return close to its initial position every
Ng firings — that is, each time the same cluster fires. In contrast, a traveling oscillator will
visit all clusters and its state evolution after Ng firings will therefore drift across the entire
phase range. The number of traveling oscillators is a qualitative measure of the clustering
level. Figure 4.5 illustrates the fraction of traveling oscillators as a function of the parameter
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γ and clearly shows the presence of three distinct situations: total clustering (γ > γc), partial
clustering (γnc < γ < γc), and weak clustering (γ < γnc).
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Figure 4.5: Fraction of traveling oscillators in a population of N = 100 oscillators [µ(Sk) = 3.2,
σ(Sk) = 1.6, ǫ = 0.11] as a function of the parameter γ. The fraction is 2% over the range
[γnc, γc].

Total clustering Beyond the critical value γc, the coupling strength induces a sufficient
coherence in the population to prevent any oscillator exchange between the clusters. Each
oscillator is trapped within a cluster, in which it stays indefinitely, and fires at the frequency
of the fastest oscillator of the cluster. The oscillators discrepancies are dominated by the
absorption phenomena and the network asymptotically converges to a phase-locked configu-
ration. Figure 4.6 illustrates this situation of total clustering and shows that the position of
each oscillator is fixed at each firing of the same cluster (every Ng firings).
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Figure 4.6: Total clustering in a population of N = 100 oscillators [µ(Sk) = 3.2, σ(Sk) = 1.6,
ǫ = 0.11] for strong coherence (γ = 8 > γc). Each dot represents the value of xk every Ng = 9
firings. The single dot per oscillator indicates a phase-locked configuration (transient behavior
is not shown).
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Partial clustering For values between γnc and γc, the fastest oscillators travel across the
clusters. They are fast enough to catch up the preceding cluster and to be trapped by its
next absorption. This partial clustering situation is shown in Figure 4.7. Among the whole
population, only two oscillators are traveling. The 98 remaining oscillators stay in a fixed
cluster in steady state. However, their positions are not perfectly constant every Ng firings
because of the two traveling oscillators. Indeed, since the frequency of a cluster is uniquely
determined by the frequency of its fastest oscillator, a (fast) traveling oscillator jumping
from one cluster to another modifies the frequency of the clusters. During the exchange,
the traveling oscillator decreases the frequency of the cluster it is leaving while possibly
speeding up the cluster it has just joined. As a consequence, this drift of traveling oscillators
modifies the firing times of the clusters and affects the exact location of a given oscillator
every Ng firings. Nevertheless, the clustering configuration is still very visible. Moreover, this
partial clustering configuration remarkably extends over a broad range of the parameter γ,
as illustrated in Figure 4.5, and therefore presents an outstanding robustness to frequency
discrepancies across the population.

Weak clustering Below the critical value γnc, the number of traveling oscillators grows
rapidly and a large fraction of the population travels across the different clusters (Figure
4.8). This results in a situation of weak clustering, in which clusters are less visible. As the
coherence parameter γ decreases to 0, clustering tends to disappear. Figure 4.5 suggests that
the transition from partial clustering (few traveling oscillators) to no clustering (most of the
oscillators are traveling) rapidly occurs below the critical value γnc, in a nonmonotonic way
and with strong fluctuations. Despite its strong robustness over the broad partial clustering
range, clustering is violently destroyed below the value γnc.

4.4.3 Periodic behaviors

The period of the clustering behavior is the number of firings Tf required by the oscillators
to recover their exact original locations. For N identical oscillators, the clusters have fixed
positions at each firing of any cluster and the period Tf = 1. With two different (but quite
similar) oscillators, which fire in an entrainment mode 1 : 1, the phase of an oscillator at
the firing of the other oscillator is constant and the period Tf = 2. When considering a
population of N nonidentical oscillators, the periodicity of the steady state depends on the
clustering situation and appears to be an indirect measure of the level of clustering.

Total clustering (γ > γc) leads to a firing period Tf = Ng, since each oscillator has a fixed
position at each firing of the same cluster. The apparition of traveling oscillators in the situa-
tion of partial clustering considerably increases the periodicity because the exchanges between
the clusters affect the firing frequency of the clusters. With a single traveling oscillator, the
firing period expresses as

Tf = NgNf , (4.18)

where Nf + 1 is the number of times the traveling oscillator fires before returning to its initial
cluster. While the traveling oscillator fires Nf + 1 times, the clusters fire one time less, i.e.
Nf times, and the firing mode is thus

Nf + 1 : Nf : · · · : Nf . (4.19)
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Figure 4.7: Partial clustering in a population of N = 100 oscillators [µ(Sk) = 3.2, σ(Sk) = 1.6,
ǫ = 0.11] for intermediate coherence (γnc < γ = 4 < γc). Dots have the same meaning as
in Figure 4.6. Oscillators 17 and 91 are traveling while the 98 remaining ones are nearly
phase-locked.

Figure 4.8: Weak clustering in a population of N = 100 oscillators [µ(Sk) = 3.2, σ(Sk) = 1.6,
ǫ = 0.11] for small coherence (γ = 0.5 < γnc). Dots have the same meaning as in Figure 4.6.
About half of the oscillators are traveling.
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After the total number ofNgNf firings, each cluster has the same frequency as at the beginning
and recovers its initial exact location, a situation that ends the period.

With more than one traveling oscillator, the firing period may considerably increase. For
instance, two traveling oscillators require Nf1 and Nf2 firings, respectively, to return within
their initial cluster. However, since generally Nf1 6= Nf2 , Tf must adjust so that the two
traveling oscillators are simultaneously in their initial cluster. This requires the existence of
integers n and m such that

n∑

k=1

N
(k)
f1

=
m∑

k=1

N
(k)
f2

, Nc (4.20)

and the total firing period is then

Tf = NgNc . (4.21)

The integers n and m can be very high, so that a rapid adjustment ofNf1 and Nf2 is not always
observed, leading to quasiperiodic behaviors. Table 4.1 illustrates the firing periodicity as a
function of the parameter γ in a population of nonidentical oscillators with a narrow frequency
distribution. Although only two oscillators are traveling in the range γ ∈ [0.05, 0.35] (partial
clustering), the total period Tf may be very large for small values of γ. For γ = 0.05, the
firing period cannot be computed and the behavior is (nearly) aperiodic. These numerical
observations still emphasize that partial clustering occurs over a broad range of the coherence
parameter γ (weak clustering was never observed numerically in the example of Table 4.1)
and can coexist with (almost) aperiodic firing patterns.

Slope Firing period Number of firings Number of firings
γ Tf Nc Nf1 Nf2

0.45 9 / / /
0.4 333 37 37 /
0.35 1080 120 20-24-29-20-27 65-55
0.3 405 45 21-24 45
0.25 396 44 19-25 44
0.2 369 41 20-21 41
0.15 1962 218 20-21-20-19-22-20-19-19-20-18-20 38-38-35-38-35-34
0.1 4464 . . . . . . . . .
0.05 >100 000 . . . . . . . . .

Table 4.1: Firing period and values Nf1 and Nf2 for various values of the coherence parameter
γ with N = 100, µ(Sk) = 1, σ(Sk) = 0.1, ǫ = 0.11. In the current case, the number of clusters
is Ng = 9.

4.5 Conclusion

In this chapter, emphasis has been put on the dichotomic behavior of the network, since we
showed that the network can exhibit a phase-locked clustering behavior in addition to the
well-known synchronization behavior. For identical oscillators, the phase-locked clustering
behavior is a global behavior that is induced by the strong contraction properties of the firing
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map. [Global stability of the firing map is summarized in Table 4.2, with the respective as-
sumptions imposed by the different approaches.] The strong properties of identical oscillators
enforce a (total/partial) clustering behavior for weak and medium discrepancies, showing the
robustness of the clustering configuration against frequency discrepancies across the network.

Method Assumption on h′ Assumption on h′′

quadratic norm (4.2) conservative condition (4.6) mild condition (4.7)

circle criterion very conservative condition (4.16) /

1-norm (4.10)
contracting scalar firing map

(|h′| < 1)
mild condition (4.7)

Table 4.2: The 1-norm is the most appropriate to capture the contraction property of the
scalar firing map.

A mathematical analysis of heterogeneous populations is actually much more involved (as
it is suggested in Section 4.4.1). Even though the partial clustering behavior may appear as a
“simple” behavior, a mathematical characterization of the periodic configuration is intractable
— at least by means of the firing maps, since the order between the oscillators is not preserved,
and thus not known — and it is even more the case for the situation of weak clustering. In
case of synchronization, partially synchronized behaviors can also appear, whose mathematical
analysis is very challenging.

An efficient way to study heterogeneous populations is to consider the continuum limit of
an infinite number of oscillators (mean-field approximation). Within this framework, mathe-
matical tools exist to study the effect of heterogeneity on the behaviors. For instance, partial
synchronization of LIF pulse-coupled populations has been recently studied in [24]. In addi-
tion, the discrepancies between the oscillators can be approximated when considering a noisy
dynamics, a stochastic extension that is compatible with the continuum limit [3].

In the present dissertation, we do not focus on the case of nonidentical oscillators. However,
in the next chapter, we propose to extend the global analysis of finite homogeneous populations
to a global analysis of infinite homogeneous populations (continuum limit), possibly opening
the way for future research on heterogeneous populations.



Chapter 5

Global analysis for a continuum
of monotone oscillators

In the present chapter, we investigate the behavior of infinite populations of monotone oscil-
lators. When the number of oscillators is very large, the population is well-approximated by a
continuum of N → ∞ oscillators (thermodynamic limit), a technique known as the mean-field
approximation [112] and often used to study large populations of phase oscillators [13] and,
more specifically, of integrate-and-fire oscillators [81].

In case of impulsive coupling, several studies (e.g. [3, 12, 11, 60, 117]) provide stability
results for infinite populations of LIF oscillators. Although these studies extend the analysis
to delayed transmissions, they merely rely on a linear local analysis. In contrast, we present in
this chapter global stability results for infinite populations of monotone oscillators (including
the LIF oscillators).

The global analysis of finite populations (Chapter 4) is extended to infinite populations,
so that a perfect parallel is drawn between finite populations and infinite populations. In ad-
dition, the analysis shows the coherence between a discrete approach (relying on the discrete-
time firing map) and a continuous approach (relying on a continuous-time transport equation).

Beyond the analysis of pulse-coupled monotone oscillators, the theory developed in the
chapter leads to general results on partial differential equations (PDE). The analysis focuses
on transport equations with a monotone dynamics (derived from a monotone iPRC) and
provides existence, uniqueness, and global stability results for the stationary solution of the
PDE.

The chapter is organized as follows. In Section 5.1, we derive the transport equation
for the continuum of pulse-coupled oscillators. Section 5.2 presents numerical experiments
showing that the continuum model is characterized by a dichotomic behavior. In addition,
existence and uniqueness results are obtained for the stationary solution of the PDE. Sections
5.3 and 5.4 are quite technical. In Section 5.3, a strict Lyapunov function is proposed, which
is induced by a total variation distance and which is inspired from the results of Chapter 4.
In Section 5.4, we perform the convergence analysis of populations of monotone oscillators.
Finally, the parallel between finite and infinite populations, as well as some extensions of the
model, are discussed in Section 5.5.

The main contribution of the chapter is the global analysis of the PDE, a result that is
obtained through a particular Lyapunov function and that highlights the parallel between
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finite and infinite populations. The results presented in the chapter can be found in [72].

5.1 A transport equation for pulse-coupled oscillators

In this section, we derive the transport equation (continuity equation) for general pulse-
coupled oscillators (not necessary monotone integrate-and-fire oscillators). We obtain a non-
linear PDE, whose nonlinearity is induced by the impulsive coupling. The derivation of the
model is standard and similar developments are found in [3, 13, 60].

5.1.1 Phase density equation

For the sake of generality, we consider phase oscillators on the circle S1(0, 2π) characterized
by the phase dynamics (2.1), that is here denoted as θ̇ = v(θ, t). At this stage, no assumption
is made on the particular phase dynamics that corresponds to integrate-and-fire oscillators.

In the (thermodynamic) limit of a large number of N → ∞ oscillators, the infinite popu-
lation is a continuum characterized by a phase density function

ρ(θ, t) ≥ 0 ∈ C0(L1(0, 2π);R+) ,

with the quantity ρ(θ, t)dθ being the fraction of oscillators with a phase between θ and θ+dθ
at time t. The density is nonnegative and satisfies the normalization

∫ 2π

0
ρ(θ, t) dθ = 1 ∀t .

The time evolution of the density obeys the well-known continuity equation

∂

∂t
ρ(θ, t) = − ∂

∂θ

(

v(θ, t) ρ(θ, t)
)

. (5.1)

In the above equation, the function

v(θ, t) ρ(θ, t) , J(θ, t) (5.2)

is the (nonnegative) flux J(θ, t) ≥ 0 ∈ C0(L1(0, 2π);R+). The quantity J(θ, t)dt represents
the fraction of oscillators flowing through phase θ between time t and t+ dt. Since the phase
θ is defined on S1(0, 2π) ≡ R mod 2π, the flux must satisfy the boundary conditions

J(0, t) = J(2π, t) , J0(t) ∀t . (5.3)

For the sake of simplicity, we use in the sequel the notation J0 to denote the boundary flux
(5.3). For oscillators firing at phase θ = 0, J0(t) is also called the firing rate of the oscillators.
It plays a key role for the impulsive coupling.
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5.1.2 Continuous impulsive coupling

For a high number of oscillators (N ≫ 1), we define the impulsive coupling (3.1) with a
coupling strength ǫ inversely proportional to the number of oscillators, that is ǫ = K/N . This
precaution prevents the coupling to increase with the number of oscillators: the constant K
corresponds to the net influence of the whole population through the coupling, whatever the
number of oscillators. In the thermodynamic limit N → ∞, for instance, each oscillator of
the infinite population sends out an infinitesimal spike ǫ → 0 when firing.

Within large populations of integrate-and-fire oscillators, the influence of a single oscillator
is negligible. It follows that the sums in (3.1) can be considered over the whole population,
so that the dynamics becomes

ẋk = F (xk) +K
1

N

N∑

j=1

∞∑

l=0

δ(t− t
(j)
l ) , x ∈ [x, x] . (5.4)

Next, observing that the oscillators crossing θ = 0 at the firing times t
(j)
l induce a (discontin-

uous) flux J0(t) = 1
N

∑

j

∑

l δ(t− t
(j)
l ), we rewrite (5.4) as

ẋk = F (xk) +K J0(t) . (5.5)

In other words, the impulsive coupling is a coupling identical for all the oscillators and pro-
portional to the firing rate J0.

In case of infinite populations, the dynamics of the oscillators is still given by (5.5). But
now, the flux is continuous, so that the coupling is a continuous-time function. The cou-
pling is interpreted as an infinite sum of infinitesimal spikes that result from the uninter-
rupted firings of the continuum. Since the coupling corresponds to a continuous-time input
uimp(t) = K J0(t), the phase reduction is performed directly with the infinitesimal iPRC and
the phase dynamics (2.1) is given by

θ̇ = v(θ, t) = ω +K Z(θ)J0(t) . (5.6)

Actually, it follows from (3.3) that Zǫ ≈ ǫ Z(θ) = K/N Z(θ) when ǫ ≪ 1, so that (5.6) is
equivalent to the phase dynamics (3.2).

Remark 5.1.1. It is of interest to investigate the effect of an inhibitory coupling (negative
coupling constant) instead of an excitatory coupling (negative coupling constant). In the
case of finite populations, an inhibitory coupling leads to ill-defined situations. In contrast, a
noticeable advantage of the continuum model is that one can consider positive an excitatory
coupling as well as an inhibitory coupling with infinite populations. In this context, we see
below that the sign of the coupling strength influences the behavior, as does the dynamics of
the oscillators. ⋄

The final PDE for the continuum of pulse-coupled oscillators is derived as follows. At
phase θ = 0, (5.2) and (5.6) yield the relationship

J0(t) = v(0, t) ρ(0, t) = [ω +K Z(0)J0(t)] ρ(0, t) (5.7)

and the flux J0 is explicitly given by

J0(t) =
ω ρ(0, t)

1 −K Z(0) ρ(0, t)
.
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The continuity equation (5.1) thus leads to the nonlinear PDE for the density

∂ρ(θ, t)

∂t
= −ω∂ρ(θ, t)

∂θ
− K ω ρ(0, t)

1 −K Z(0) ρ(0, t)

∂

∂θ

(

Z(θ) ρ(θ, t)
)

. (5.8)

The boundary condition (5.3) is expressed in terms of density as

ρ(0, t)

1 −K Z(0) ρ(0, t)
=

ρ(2π, t)

1 −K Z(2π) ρ(2π, t)

(

=
J0(t)

ω

)

. (5.9)

The reader will notice that, in contrast to the periodicity condition on the flux, no peri-
odicity is assumed on the density ρ(θ, t). [In particular, ρ(0, t) 6= ρ(2π, t) if Z(0) 6= Z(2π).]

The density of the pulse-coupled oscillators evolves according to the nonlinear PDE (5.8)
with the boundary condition (5.9). The PDE is studied in detail in the rest of the chapter,
with a particular attention to the case of monotone iPRC. Observe that a monotone iPRC
implies that Z(0) 6= Z(2π).

5.2 A dichotomic behavior

Under the monotonicity assumption on the iPRC, the PDE exhibits a dichotomic asymptotic
behavior, that depends on the coupling sign (K > 0 or K < 0) and on the derivative Z ′ (or
equivalently dF/dx).

5.2.1 Asymptotic behavior

Without coupling (K = 0), the last term of (5.8) disappears and the PDE is a standard
transport equation. Its solution is a rigid translation of the initial density ρ(θ, 0) with a
constant velocity ω, that is, a traveling wave ρ(θ, t) = ρ((θ−ωt) mod 2π, 0). In this case, any
solution is periodic (with period 2π/ω) and the system is marginally stable. This situation is
equivalent to (3.30), where the motion of a finite population of uncoupled oscillators is only
dictated by the linear map L.

When the oscillators are coupled, the last term of (5.8) modifies the transport equation.
Under the influence of the coupling, the velocity depends on both time and phase and the
density is thereby “stretched” or “compressed”. This is illustrated when computing the total
time derivative along a characteristic curve Λ(t) defined by Λ̇ = v(Λ(t), t), that is

∂ρ

∂t
+
∂ρ

∂θ
v
(
Λ(t), t

)
=
dρ

dt
= −ρ(Λ(t), t

)
J0(t)K Z ′(Λ(t)

)
, (5.10)

where (5.8) and (5.9) have been used. The total derivative shows that the density is modi-
fied on a characteristic curve whenever the iPRC is not a constant. In addition to the rigid
translation, the density undergoes a nonlinear transformation, possibly leading to asymp-
totic convergence to a particular density function corresponding to a particular stationary
organization of the oscillators.

The total derivative (5.10) gives clear insight that the sign of the derivative K Z ′ is of
first importance. In fact, the sign of K Z ′ will enforce a dichotomic behavior. The condition
K Z ′(θ) < 0 ∀θ ∈ [0, 2π] — or K dF/dx > 0 ∀x ∈ [x, x] — will be shown to enforce convergence
to a uniform flux J(θ, t) = J∗ on S1(0, 2π). This situation, corresponding to the maximal
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spreading of the oscillators on the circle, is called the asynchronous state [3, 117] (Figure
5.1). In contrast, the reverse condition K Z ′(θ) > 0 ∀θ ∈ [0, 2π] — or K dF/dx < 0 ∀x ∈
[x, x] — will be shown to enforce convergence to a delta-like flux (Figure 5.2). This situation,
characterized by the synchronization of all the oscillators, is the synchronous state.

We remark that reversing the coupling sign (K > 0 or K < 0) has the same effect as
reversing the monotonicity of F (dF/dx > 0 or dF/dx < 0).
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Figure 5.1: When K Z ′ < 0, the solution converges to the asynchronous state. With the
monotone LIF dynamics ẋ = 2.1 − 2x, x ∈ [0, 1] and with an inhibitory coupling K = −0.1 <
0, the function K Z is monotone decreasing. (a) The density converges to a stationary solution
ρ∗ and (b) the flux J0(t) tends to a constant value J∗ ≈ 0.53.
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Figure 5.2: When K Z ′ > 0, the solution converges to the synchronous state. With the same
LIF dynamics as in Fig. 5.1, but with an excitatory coupling K = 0.1 > 0, the function K Z
is monotone increasing. (a) The density converges to a synchronous solution and (b) the flux
J0(t) tends to a Dirac function.

The two asymptotic behaviors — synchronous and asynchronous states — are the exact
analog of the synchronization and phase-locked clustering behaviors of finite populations (Sec-
tions 3.2 and 4.1). This is obvious in the case of synchronization, that occurs for both finite
and infinite populations when K > 0 and dF/dx < 0. Asynchronous state and phase-locked
clustering are also equivalent behaviors, that both occur when K > 0 and dF/dx > 0. They
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are both anti-synchronized behaviors, for which the clusters/oscillators evenly spread over
the circle S1(0, 2π). In addition, the firing frequency (3.7) of the clustering configuration is
well-approximated by ωclust ≈ 2π J∗ if the number of clusters Ng is very high (when ǫ ≪ 1).

The only difference between the two behaviors is that clustering is not observed in infinite
populations. The absorption mechanism is here ill-defined and the clusters correspond to
singularities in the continuum of oscillators. As a consequence, one has to prevent absorptions
from creating clusters through well-chosen parameters and initial conditions.

Remark 5.2.1 (Marginal stability). The limit case between the two situations corresponds
to a constant iPRC (neither increasing nor decreasing), yielding a total derivative (5.10) that
is equal to zero, as in the uncoupled case. In this case, the velocity v(t) = ω+K ZJ0(t) does
not depend on the phase and the density thereby undergoes a rigid translation. Any solution
evolves periodically and the stationary solution is marginally stable. An equivalent situation
for finite populations is investigated in Section 6.3. ⋄

5.2.2 Stationary asynchronous state

The stationary fixed point of the firing map corresponds to the phase-locked clustering con-
figuration. Similarly, the stationary solution of the PDE (5.1), characterized by a constant
flux J(θ, t) = J∗, corresponds to the asynchronous state.

It follows from (5.7) that the stationary density must satisfy

ρ∗(θ) =
J∗

ω +K Z(θ)J∗ . (5.11)

[This density could also be made uniform by a proper change of variable under which the
velocity θ̇ = ω+K Z(θ)J∗ becomes constant (see Section 6.6.1).] The stationary asynchronous
state thus exists if there exists a value J∗ > 0 so that the stationary density is nonnegative

J∗

ω +K Z(θ)J∗ ≥ 0 , ∀θ ∈ [0, 2π] (5.12)

and normalized ∫ 2π

0

J∗

ω +K Z(θ)J∗dθ = 1 . (5.13)

The following proposition gives necessary and sufficient conditions to ensure the existence
and uniqueness of the stationary solution.

Proposition 5.2.1. A stationary flux J∗ > 0 satisfying the conditions (5.12) and (5.13)
exists if and only if the inequality

lim
s→r
s>r

∫ 2π

0

1

K Z(θ) + s
dθ > 1 (5.14)

is satisfied with

r ,







0 if K Z(θ) ≥ 0 ∀θ ∈ [0, 2π] ,
∣
∣
∣minθ∈[0,2π]

(

K Z(θ)
)∣
∣
∣ otherwise .

Moreover, the solution is unique when it exists.
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Proof. Inequality (5.12) implies that the velocity ω +K Z(θ)J∗ is strictly positive, so that

J∗ ∈ J ,

(

0, lim
s→r
s>r

ω

s

)

.

The function

W (J) =

∫ 2π

0

J

ω +K Z(θ)J
dθ

satisfies W (0) = 0, is continuous on J , and is strictly increasing on J since

dW

dJ
=

∫ 2π

0

ω

[ω +K Z(θ)J ]2
dθ > 0 ∀J ∈ J .

As a consequence, the equation W (J) = 1, which is equivalent to condition (5.13), has a
(unique) solution J∗ ∈ J if and only if

lim
s→r
s>r

W (ω/s) = lim
s→r
s>r

∫ 2π

0

1

K Z(θ) + s
dθ > 1 ,

which concludes the proof.

Proposition 5.2.1 implies that the coupling constant K must be bounded. For integrate-
and-fire oscillators, the bounds on the coupling constant are computed analytically and are
given in the following corollary.

Corollary 5.2.1. For integrate-and-fire dynamics ẋ = F (x), a stationary flux J∗ > 0 fulfilling
the conditions (5.12) and (5.13) exists if the coupling constant satisfies

lim
s→Fmin
s<Fmin

∫ x

x

s

s− F (x)
dx < K < x− x , (5.15)

with Fmin = minx∈[x,x]

(
F (x)

)
.

Proof. If the coupling is excitatory (K > 0), it follows from (2.6) that K Z(θ) ≥ 0 ∀θ ∈ [0, 2π],
so that r = 0. Then, the condition (5.14) of Proposition 5.2.1 can be rewritten as

∫ 2π

0

1

K Z(θ)
dθ =

∫ x

x

1

K
dx > 1 ,

or equivalently
K < x− x . (5.16)

If the coupling is inhibitory (K < 0), it follows on similar lines that Proposition 5.2.1 implies
the lower bound in (5.15).

The upper bound in (5.15) leads to a more intuitive interpretation of the condition (5.14)
in Proposition 5.2.1. Consider that, after its firing, an oscillator of the continuum requires a
time ∆T to have a state increase equal to x−x and to fire again. Since the whole population
fires within the time interval ∆T , the time integration of the coupling term uimp = K J0(t) in
the dynamics ẋ = F (x) + uimp shows that the coupling induces over the time interval a state
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increase equal to K. Then, a coupling K = x−x implies that the natural dynamics ẋ = F (x)
cannot increase the state. One must have ∆T = 0, so that the velocity of the oscillator is
infinite. For finite populations, this situation is equivalent to “avalanche” phenomena igniting
a chain reaction of firings [when absorbed oscillators are allowed to emit a pulse (see Section
3.1)]. On the other hand, condition (5.16), which is equivalent to ǫ < (x − x)/N , prevents
absorptions from creating clusters.

Example 5.2.1. Corollary 5.2.1 is applied to different integrate-and-fire dynamics. It follows
from straightforward computations that the asynchronous state exists

• for LIF oscillators, if −∞ < K < 1 ;

• for QIF oscillators, if −∞ < K < x− x ;

• for the vector field F (x) = S + |x|1/2 (with x < 0 and x > 0), if

−2S
(√−x+

√
x
)

< K < x− x .

⋄

5.3 A strict Lyapunov function induced by the total variation
distance

Lyapunov analysis is a classical approach to study the stability of nonlinear PDE’s (see e.g.
[21, 22]). In this section, we extend the global stability results of Chapter 4 to construct a
strict Lyapunov function for the PDE (5.8). The Lyapunov function, inspired by the 1-norm
introduced in Section 4.2.2, is a L1 distance interpreted as the total variation distance between
quantile densities. The relevance of this distance in the present context is in contrast with the
results of [99] showing that the total variation distance is constant for systems of conservation
laws (except for those of a very particular class introduced in [107]).

5.3.1 Quantile density

The description of the population configuration, through the density ρ(θ), is not similar to the
description of finite populations, through the vector Θ = (θ1, · · · , θN−1). While the former
corresponds to the “amount” of oscillators as a function of the phase, the latter corresponds
to the phase as a function of the oscillator index. To establish an equivalence between finite
and infinite populations, we introduce an index for infinite populations of oscillators and use
the concept of quantile function.

For infinite populations, the oscillators can be continuously labeled on the interval I , [0, 1]
and an oscillator index ϕ ∈ I is defined as follows. Given a density function ρ : [0, 2π] 7→ R

+,
the cumulative density function P (θ) : [0, 2π] 7→ I , [0, 1], defined as

P (θ) =

∫ θ

0
ρ(s) ds ,

attributes an index ϕ = P (θ) ∈ I to each oscillator with phase θ. In particular, an index
ϕ = 0 (resp. ϕ = 1) is attributed to the oscillator at phase θ = 0 (resp. θ = 2π).
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Next, to complete the equivalent description of infinite populations, we introduce the
quantile function (widely used in statistics [85]): the quantile function Q : I 7→ [0, 2π] is the
inverse cumulative density function, that is,

Q(ϕ) = P−1(ϕ) = inf{θ|P (θ) ≥ ϕ} .

The (continuous) quantile function is equivalent to the (discrete) description Θ of finite pop-
ulations. Indeed, for a finite number of N distinct oscillators — for sake of simplicity, we

consider that no cluster is created — the phases θk are the N -quantiles θk = Q
(N)
k , that is

Θ = (θ1, · · · , θN−1) =
(

Q
(N)
1 , · · · , Q(N)

N−1

)

. (5.17)

When the number of oscillators tends to infinity, the N -quantiles are replaced by the continu-
ous quantile function Q. (Roughly speaking, the quantile function plays the role of the vector
Θ with an infinity of components.)

As the analog of the density ρ, the quantile density function [85], also called sparsity
function, is the function q : I 7→ R

+ that satisfies (see Figure 5.3)

Q(ϕ) =

∫ ϕ

0
q(s) ds .

The quantile density function, which is the derivative of the quantile function, expresses the
increase of phase per unit increase of oscillator index. The density function is linked to the
quantile density function by the relationship

q(ϕ) =
dQ

dϕ
=

1

ρ
(
Q(ϕ)

) . (5.18)

In order to avoid some ill-defined cases, the condition ρ > 0 must be satisfied on [0, 2π].

Figure 5.3: The density function ρ(θ) (left) has a cumulative density P (θ) (center). The
quantile function Q(ϕ) = P−1(ϕ) is the cumulative density function of the quantile density
function q(ϕ) (right).

The reader will notice that, as the oscillators density ρ(θ, t) depends on time in (5.1), the
corresponding quantile function and quantile density function also depend on time and are
then rigorously defined as the two-variable functions Q(ϕ, t) and q(ϕ, t). But for notational
convenience, the time variable is omitted when clear for the context. In addition, we denote
the quantile function and the quantile density associated to the stationary density (5.11) by
Q∗ and q∗ respectively.
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5.3.2 Total variation distance

The 1-norm introduced in Section 4.2.2 to study finite populations of monotone oscillators
leads to a L1 distance (between quantile densities) in the case of infinite populations, that
can be interpreted as a total variation distance.

For a finite population of N distinct oscillators, the 1-norm (4.10) induces a simple Lya-
punov function for the system: the distance (induced by the 1-norm) between a configuration
Θ and the fixed point Θ∗. It is expressed as

V(N) =
∣
∣
∣Q

(N)
1 −Q

∗(N)
1

∣
∣
∣+

N−2∑

k=1

∣
∣
∣

(

Q
(N)
k −Q

(N)
k+1

)

−
(

Q
∗(N)
k −Q

∗(N)
k+1

)∣
∣
∣+
∣
∣
∣Q

(N)
N−1 −Q

∗(N)
N−1

∣
∣
∣ , (5.19)

where the components θk are replaced by the N -quantiles (5.17). In the limit N → ∞, the
continuous equivalent of (5.19) corresponds to the L1-distance between the quantile density
functions:

V(ρ) =

∫ 1

0

∣
∣
∣
∣

∂Q

∂ϕ
− dQ∗

dϕ

∣
∣
∣
∣ dϕ = ‖q − q∗‖L1 ∀ρ > 0 ∈ C0([0, 2π]) . (5.20)

In contrast with the case of finite populations, there is no additional term corresponding to
the boundaries, since Q(0) = Q∗(0) = 0 and Q(1) = Q∗(1) = 2π. In addition, the second
equality is obtained through (5.18). One verifies that V(ρ) = 0 ⇔ q = q∗ a.e. ⇔ ρ = ρ∗ a.e.

Theorem 4.2.2 shows that, under mild conditions, quantity (5.19) decreases at the succes-
sive firings of the oscillators, given the contraction property of the 1-norm. We claim that, for
infinite populations, the continuous equivalent (5.20) also decreases at the successive firings
of the continuum, that is, (5.20) decreases continuously with time. The main result of this
chapter will thus establish (5.20) as a good Lyapunov function for the PDE (5.8).

The Lyapunov function (5.20) is interpreted as a total variation distance. Indeed, the total
variation distance between two random variables corresponds to the L1-distance between the
corresponding density functions (see [29] for further details). The notion of total variation
distance becomes clearer when one removes the integral from the expression (5.20). To do so,

we first introduce the critical points ϕ
(k)
c (k = 1, . . . , Nc) as the values corresponding to the

extreme differences between the two functions Q and Q∗. Formally, the critical points satisfy

∂Q

∂ϕ

∣
∣
∣
∣
ϕ=ϕ

(k)
c

=
dQ∗

dϕ

∣
∣
∣
∣
ϕ=ϕ

(k)
c

or equivalently q(ϕ(k)
c ) = q∗(ϕ(k)

c ) (5.21)

and

(−1)k ∂Q

∂ϕ
≥ (−1)k dQ

∗

dϕ
∀ϕ ∈ [ϕ

(k−1)
c , ϕ

(k)
c ]

(−1)k ∂Q

∂ϕ
> (−1)k dQ

∗

dϕ
for some ϕ ∈ (ϕ

(k−1)
c , ϕ

(k)
c )

(5.22)

with, by convention, ϕ
(0)
c = 0 < ϕ

(k−1)
c < ϕ

(k)
c < ϕ

(Nc+1)
c = 1, for k = 2, . . . , Nc. Without loss

of generality, one has assumed that ∂Q/∂ϕ ≤ dQ∗/dϕ for ϕ ∈ [0, ϕ
(1)
c ]. With this notation,

the Lyapunov function (5.20) is rewritten as

V(ρ) =
Nc+1∑

k=1

(−1)k
∫ ϕ

(k)
c

ϕ
(k−1)
c

(
∂Q

∂ϕ
− dQ∗

dϕ

)

dϕ = 2
Nc∑

k=1

(−1)k
[

Q(ϕ(k)
c ) −Q∗(ϕ(k)

c )
]

, (5.23)
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since Q(0) − Q∗(0) = Q(1) − Q∗(1) = 0. The total variation distance is then the sum of
the highest (and the lowest) value differences between the two quantile functions Q and Q∗

(Figure 5.4).

Figure 5.4: The Lyapunov function (5.23) is the total variation distance between two quantile
density functions, a distance which is equal to the sum V = 2

∑

k ∆(k) of the highest value
differences |Q−Q∗|.

5.3.3 Time evolution of the Lyapunov function

The candidate (5.20) is a good Lyapunov function. Its time evolution along the solutions of
(5.8)-(5.9) depends on the derivative of the iPRC. In particular, monotonicity properties of the
iPRC lead to a monotone time evolution of the Lyapunov function. The result is summarized
in Theorem 5.3.1.

Theorem 5.3.1. Let ρ(θ, t) ∈ C0(L1(0, 2π),R+) be a strictly positive solution of (5.8)-(5.9).
If the stationary density (5.11) exists and if either Z ′′(θ) ≥ 0 ∀θ ∈ [0, 2π] or Z ′′(θ) ≤ 0
∀θ ∈ [0, 2π], then the Lyapunov function (5.20) satisfies

J(0, t) min
θ∈[0,2π]

(

K Z ′(θ)
)

V(ρ) ≤ V̇(ρ) ≤ J(0, t) max
θ∈[0,2π]

(

K Z ′(θ)
)

V(ρ) . (5.24)

Proof. For the sake of simplicity, the time variable t is omitted in the sequel. Furthermore,
one supposes

∂Q

∂ϕ

∣
∣
∣
∣
0

≤ dQ∗

dϕ

∣
∣
∣
∣
0

without loss of generality, since the proof for the other case follows on similar lines. Under
this assumption, the critical points satisfy (5.21) and (5.22).

Since 0 < ρ(θ, t) < ∞ ∀t ∈ R
+, one has q(ϕ, t) < ∞ ∀t ∈ R

+ and the Lyapunov function
is well-defined. If ρ = ρ∗, then V = 0 and (5.24) is trivially verified. If ρ 6= ρ∗, the quantile
densities q and q∗ do not coincide and there exists at least one critical point, so that the
Lyapunov function is given by (5.23).
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Next, the time derivative can be written as

V̇(ρ) = 2
Nc∑

k=1

(−1)k ∂Q

∂t

∣
∣
∣
∣
ϕ

(k)
c

. (5.25)

Differentiating the expression θ ≡ Q(P (θ, t), t) with respect to time t leads to

0 =
dQ

dt
=
∂Q

∂t
+
∂Q

∂ϕ

∂P

∂t

or
∂Q

∂t
= −∂P

∂t

∂Q

∂ϕ
= −∂P

∂t

1

ρ
(
Q(ϕ)

) ,

given (5.18). Furthermore,

∂P

∂t
=

∫ θ

0

∂ρ

∂t

∣
∣
∣
∣
s
ds = −

∫ θ

0

∂J

∂θ

∣
∣
∣
∣
s
ds = J0 − J(θ)

and the expression (5.25) becomes

V̇(ρ) = 2
Nc∑

k=1

(−1)k J
(
Q(ϕ

(k)
c )

)− J0

ρ
(
Q(ϕ

(k)
c )

) .

Since it follows from (5.18) that the critical values satisfy

ρ
(
Q(ϕ(k)

c )
)

= ρ∗(Q∗(ϕ(k)
c )

)
, k = 1, . . . , Nc , (5.26)

one obtains, given (5.2), (5.6), and (5.11),

V̇(ρ) = 2
Nc∑

k=1

(−1)k



v
(
Q(ϕ(k)

c )
)− J0

ρ∗(Q∗(ϕ
(k)
c )

)





= 2
Nc∑

k=1

(−1)k
[

ω +K Z
(
Q(ϕ(k)

c )
)
J0 − ωJ0

J∗ −K Z
(
Q∗(ϕ(k)

c )
)
J0

]

. (5.27)

The boundary condition (5.9) yields a monotone relationship between the values ρ(0) and
ρ(2π), that is, ρ(0) > ρ∗(0) if and only if ρ(2π) > ρ∗(2π). Apart from the case ρ(0) = ρ∗(0),
ρ(2π) = ρ∗(2π), the number Nc of critical points, which satisfy (5.26), is even, owing to the
continuity of ρ and Q (ρ∗ and Q∗). Consequently, the terms (−1)k(ω − ωJ0/J

∗) in (5.27)
cancel each other. In the particular case ρ(0) = ρ∗(0), Nc is not necessarily even but it follows
from (5.9) that J0 = J∗(0) = J∗ and the above-mentioned terms are equal to zero. As a
consequence, one obtains

V̇(ρ) = 2J0

Nc∑

k=1

(−1)kK
[

Z
(
Q(ϕ(k)

c )
)− Z

(
Q∗(ϕ(k)

c )
)]

= 2J0

Nc∑

k=1

(−1)kK Z ′(ξk)
[

Q(ϕ(k)
c ) −Q∗(ϕ(k)

c )
]

, 2J0

Nc∑

k=1

T (k) , (5.28)
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where the second equality is obtained through the mean value theorem, with ξk ∈ [Q(ϕ
(k)
c ), Q∗(ϕ

(k)
c )]

or ξk ∈ [Q∗(ϕ
(k)
c ), Q(ϕ

(k)
c )].

It remains to consider separately each term T (k) in the sum (5.28). For the sake of

simplicity, we first consider the case K Z ′′ ≥ 0. Denoting (−1)k[Q(ϕ
(k)
c ) −Q∗(ϕ

(k)
c )] by ∆(k)Q,

we also distinguish two cases: ∆(k)Q > 0 and ∆(k)Q ≤ 0.
Case ∆(k)Q > 0. One has

T (k) = K Z ′(ξk)∆(k)Q ≤ max
θ∈[0,2π]

(

K Z ′(θ)
)

∆(k)Q (5.29)

and
T (k) = K Z ′(ξk)∆(k)Q ≥ min

θ∈[0,2π]

(

K Z ′(θ)
)

∆(k)Q . (5.30)

Case ∆(k)Q ≤ 0. We need to consider the addition of the term T (k) with the term T (k−1)

or T (k+1). By (5.22), one gets

−∆(k−1)Q < ∆(k)Q ≤ 0 , (5.31)

−∆(k+1)Q < ∆(k)Q ≤ 0 . (5.32)

It follows that

T (k−1) + T (k) = K Z ′(ξk−1)∆(k−1)Q+K Z ′(ξk)∆(k)Q ≤ K Z ′(ξk)
(

∆(k−1)Q+ ∆(k)Q
)

,

(5.33)
The assumption K Z ′′ ≥ 0 implies K Z ′(ξk−1) ≤ K Z ′(ξk), with ξk−1 ≤ ξk and the above
inequality then follows from (5.31). In addition, (5.31) also implies that the right hand in
inequality (5.33) is the multiplication of K Z ′ with the positive quantity ∆(k−1)Q + ∆(k)Q.
Hence, (5.33) can be rewritten as

T (k−1) + T (k) ≤ max
θ∈[0,2π]

(

K Z ′(θ)
) (

∆(k−1)Q+ ∆(k)Q
)

. (5.34)

Similarly, considering the addition of the terms T (k) and T (k+1) and using (5.32), one obtains

T (k) + T (k+1) ≥ min
θ∈[0,2π]

(

K Z ′(θ)
) (

∆(k)Q+ ∆(k+1)Q
)

. (5.35)

Next, the inequalities (5.29) and (5.34) imply that the expression (5.28) can be rewritten
as

V̇(ρ) = 2J0

Nc∑

k=1

T (k) ≤ J0 max
θ∈[0,2π]

(

K Z ′(θ)
)

V(ρ) . (5.36)

In the case ∆(k)Q ≤ 0, the two terms T (k) and T (k−1) are considered together. The
additional T (k−1) itself corresponds to the case ∆(k−1)Q > 0, and does not require to be
associated in turn with another term. In addition, there is no boundary problem since the
term T (1) satisfies ∆(1)Q > 0, given (5.22) and Q(0) = Q∗(0) = 0.

Similarly, the inequalities (5.30) and (5.35) lead to

V̇(ρ) = 2J0

Nc∑

k=1

T (k) ≥ J0 min
θ∈[0,2π]

(

K Z ′(θ)
)

V(ρ) . (5.37)
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In the case K Z ′′ ≤ 0, the inequalities (5.34) and (5.35) are reversed, that is, the sum
T (k−1) + T (k) has a lower-bound and the sum T (k) + T (k+1) has an upper-bound. Hence, the
inequalities (5.36) and (5.37) still hold, which completes the proof.

If there is no coupling or if the iPRC is constant, (5.8) is a (marginally stable) standard
transport equation (see Remark 5.2.1) and Theorem 5.3.1 implies that the Lyapunov function
is constant along the solutions of (5.8). This is in agreement with the fact that the total
variation distance is a conserved quantity for most of the systems of conservation laws [99].
But whereas the distance is constant with a standard transport equation, the distance is not
constant under the influence of the coupling: the nonlinear coupling term in (5.8), which de-
pends on K Z ′, induces a variation (5.24) of the Lyapunov function. A monotone decreasing
function K Z implies a decreasing Lyapunov function along the solutions. This is discussed
in detail in the next section.

A parallel with the analysis of finite populations has emphasized the importance of consid-
ering (i) quantile densities instead of densities and (ii) a L1 distance (total variation distance)
instead of a L2 distance. The importance of these two points is illustrated in the two following
paragraphs.

Quantile density vs. density function. The Lyapunov function (5.20) is induced by the
total variation distance between quantile densities. An alternative choice would be the total
variation distance between density functions, that is,

Vbis(ρ) =

∫ 2π

0
|ρ− ρ∗| dθ ∀ρ ≥ 0 ∈ C0([0, 2π]) . (5.38)

Introducing the analog notation to (5.21), the critical phases θ
(k)
c (k = 1, . . . , Nc) are defined

as the values satisfying

ρ(θ(k)
c , t) = ρ∗(θ(k)

c , t) . (5.39)

The Lyapunov function (5.38) is rewritten as

Vbis(ρ) =
Nc+1∑

k=1

(−1)k
∫ θ

(k)
c

θ
(k−1)
c

(ρ− ρ∗)dθ

and its time derivative is given by

V̇bis =
Nc+1∑

k=1

(−1)k
∫ θ

(k)
c

θ
(k−1)
c

∂ρ

∂t
dθ =

Nc+1∑

k=1

(−1)k
[

J(θ(k−1)
c ) − J(θ(k)

c )
]

, (5.40)

where we used (5.1). A simple argument shows that the Lyapunov function cannot be strictly
decreasing along the solutions of (5.8). Indeed, for any density satisfying ρ(0) = ρ∗(0), one
must also have J0 = J∗(0) = J∗ since it follows from (5.9) that there is a bijection between

the values ρ(0) and J0. But then, (5.2) and (5.39) imply that J(θ
(k)
c ) = J∗(θ

(k)
c ) = J∗ for all

k and the derivative (5.40) leads to V̇bis = 0. Even though one actually shows that V̇ ≤ 0, La
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Salle principle (see [55]) cannot be used to prove the stability, since it is not obvious to prove
the precompactness of the trajectories.

This argument shows that a direct application of the total variation distance on density
functions does not lead to a good candidate Lyapunov function for the PDE (5.8). A key
point is to apply the total variation distance on quantile functions instead.

L1 distance vs. L2 distance. The Lyapunov function (5.20) is induced by a L1 distance.
An alternative choice would be a Lyapunov function induced by a (more common) L2 distance,
that is Vter = ‖q − q∗‖L2 . However, straightforward computations (not presented here) show
that this candidate Lyapunov function satisfies V̇ter(ρ) > 0 for some ρ. Actually, the analysis
of finite populations gives clear insight that a L1 distance must be considered, instead of
the L2 distance. As an illustration, condition (4.6), necessary for the contraction under the
2-norm, is increasingly conservative as the number of oscillators grows, and it is particularly
so in the extreme case of infinite populations.

5.4 Convergence analysis for monotone oscillators

The result of Theorem 5.3.1 has a strong implication in the case of monotone iPRC. It implies
that the Lyapunov function (5.20) has a monotone time evolution if the iPRC is monotone.
In this situation, the Lyapunov function either converges to a lower bound or to an upper
bound. These two bounds correspond to the two particular behaviors which characterize the
dichotomy. They are given by

0 ≤ V(ρ) ≤ ‖q‖L1 + ‖q∗‖L1 = Q(1) −Q(0) +Q∗(1) −Q∗(0) = 4π .

At the lower bound, the function is equal to zero if and only if the density is the asynchronous
(stationary) density (5.11). On the other hand, the Lyapunov function tends to the upper
bound 4π if the density ρ tends to a Dirac function (synchronous state).

5.4.1 Exponential convergence to the asynchronous state

Theorem 5.3.1 will be used to study convergence to the asynchronous state for monotone
decreasing functions K Z(θ). However, in order to apply (5.24) along the solutions, we need
to show independently that the flux J0(t) remains strictly positive and bounded for all time.
This condition will restrict the set of admissible initial conditions. In particular, the initial
conditions have to ensure that 0 < J0 < ∞ when any oscillator crosses θ = 2π for the
first time. [This is equivalent to preventing the initial absorptions of the oscillators in finite
populations (see below).] Formally, we consider the characteristic curves Λθ(t) defined by
Λ̇θ = v(Λθ(t), t), Λθ(0) = θ ∈ [0, 2π], Λθ(tθ) = 2π (Figure 5.5).

The (strictly positive) initial density ρ(θ, 0) > 0 must be such that the value of the flux
at the intersection of the characteristic curves with θ = 2π is strictly positive and bounded,
that is

ρ(θ, 0) > 0 ⇒ 0 < J
(
Λθ(tθ) = 2π, tθ

)
= J0(tθ) < ∞ ∀ θ ∈ [0, 2π] . (5.41)

Condition (5.41) is the condition that is imposed on the initial conditions to ensure that the
flux satisfies 0 < J0(t) < ∞ for t ∈ [0, t0]. But if the flux is bounded for t ∈ [0, t0], then



86 Chapter 5. Global analysis for a continuum of monotone oscillators

Figure 5.5: The characteristic curve Λθ(t) is defined by Λ̇θ = v(Λθ(t), t), with the initial value
Λθ(0) = θ, and reaches 2π at time tθ.

the flux is bounded for all time and Theorem 5.3.1 can be applied to prove the exponential
decreasing of the Lyapunov function. The result is summarized in the following proposition.

Proposition 5.4.1. Consider the transport PDE (5.8)-(5.9) and assume that Z(θ) is such
that (i) the stationary density (5.11) exists, (ii) K Z ′(θ) < 0 ∀θ ∈ [0, 2π], and (iii) either
Z ′′(θ) ≥ 0 ∀θ ∈ [0, 2π] or Z ′′(θ) ≤ 0 ∀θ ∈ [0, 2π]. Then all solutions ρ(θ, t) ∈ C0(L1(0, 2π),R+)
with an initial condition satisfying (5.41) exponentially converge to the asynchronous state and
the Lyapunov functional (5.20) is exponentially decreasing along them.

Proof. One considers a characteristic curve Λ(t), with Λ(t) = 0 and Λ(t) = 2π. Solving the
total derivative equation (5.10) on Λ(t) yields

ρ(0, t) exp

(

−
∫ t

t
J0(t)K Z ′(Λ(t)

)
dt

)

= ρ(2π, t) .

Next, using (5.2) and expressing the integral in the space variable Λ along the characteristic
curve leads to

J0(t)

ω +K Z(0)J0(t)
exp

(

−
∫ 2π

0

J0

ω +K Z(Λ) J0
K Z ′(Λ) dΛ

)

=
J0(t)

ω +K Z(2π)J0(t)
.

If the flux is constant on [t, t], then J0(t) = Jm = JM , with Jm , mint∈[t,t] J0(t) and

JM , maxt∈[t,t] J0(t). Otherwise, since K Z ′ is negative, replacing J0 in the integral of the
above expression by the bounds Jm and JM and computing the integral yield the strict in-
equalities

J0(t)

ω +K Z(0)J0(t)

ω +K Z(0)Jm

ω +K Z(2π)Jm
<

J0(t)

ω +K Z(2π)J0(t)
<

J0(t)

ω +K Z(0)J0(t)

ω +K Z(0)JM

ω +K Z(2π)JM
.

By definition, Jm ≤ J0(t) ≤ JM and one obtains

Jm

ω +K Z(2π)Jm
<

J0(t)

ω +K Z(2π)J0(t)
<

JM

ω +K Z(2π)JM

or equivalently

Jm < J0(t) < JM . (5.42)
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Within any interval [t, t], the flux remains either constant or satisfies (5.42). By induction,
there holds

Jmin ≤ J0(t) ≤ Jmax ∀t > 0 ,

with Jmin , mint∈[0,t0] J0(t) and Jmax , maxt∈[0,t0] J0(t). In addition, the initial condition
(5.41) implies that Jmin > 0 and Jmax < ∞.

Since ρ(θ, 0) > 0, the exponential evolution of the density along (all) the characteristic
curves implies that the density remains strictly positive for all t > 0. The result of Theorem
5.3.1 is then applied and yields

Jmin min
θ∈[0,2π]

(

K Z ′(θ)
)

V(ρ) ≤ V̇(ρ) ≤ Jmax max
θ∈[0,2π]

(

K Z ′(θ)
)

V(ρ)

or, equivalently,

− Jmax max
θ∈[0,2π]

∣
∣
∣K Z ′(θ)

∣
∣
∣V(ρ) ≤ V̇(ρ) ≤ −Jmin min

θ∈[0,2π]

∣
∣
∣K Z ′(θ)

∣
∣
∣V(ρ) ≤ 0

since K Z ′ < 0. It follows that the Lyapunov function is exponentially decreasing, which
concludes the proof.

Proposition 5.4.1 is a strong result showing that, provided that the function K Z(θ) is de-
creasing, the solution ρ(·, t) remains, for all time, in a particular set of functions {ρ|V(ρ) < C},
with the constant C > 0. Inside this set, the solution eventually converges at exponential rate
toward the stationary solution ρ∗, corresponding to V(ρ∗) = 0.

The restriction (5.41) on the initial condition is rather weak for decreasing functions
K Z(θ), as shown by the following proposition.

Proposition 5.4.2. Assume that K Z ′(θ) < 0 ∀θ ∈ [0, 2π]. If K Z(2π) ≤ 0, then (5.41) is
always satisfied. If K Z(2π) > 0, then (5.41) is satisfied if

ρ(θ, 0) <
1

K Z(θ)
∀θ ∈ [0, 2π] . (5.43)

Proof. Case K Z(2π) ≤ 0. Using the boundary condition (5.9), the condition 0 < J0(tθ) < ∞
is turned into a condition on ρ(2π, tθ) and (5.41) is equivalent to

ρ(θ, 0) > 0 ⇒ ρ(2π, tθ) > 0 ∀ θ ∈ [0, 2π] . (5.44)

For θ = 2π, condition (5.44) is satisfied, since t2π = 0. Next, we proceed by induction on θ:
given θ and assuming that (5.44) is satisfied for all θ̃ > θ, we prove that (5.44) also holds at
θ. The total derivative equation (5.10) is well-defined on the characteristic curve Λθ(t) since
0 < J0(t) < ∞ for all t < tθ. Solving (5.10) along the characteristic curve yields

ρ(2π, tθ) = ρ(θ, 0) exp

(

−
∫ tθ

0
J0(t)K Z ′(Λθ(t)

)
dt

)

(5.45)

and ρ(θ, 0) > 0 implies ρ(2π, tθ) > 0. Condition (5.41), equivalent to (5.44), is then always
satisfied.
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Case K Z(2π) > 0. Using (5.9), the condition 0 < J0(tθ) < ∞ is turned into a condition
on ρ(2π, tθ) and (5.41) is equivalent to

ρ(θ, 0) > 0 ⇒ 0 < ρ(2π, tθ) <
1

K Z(2π)
∀ θ ∈ [0, 2π] . (5.46)

The strict condition ρ(θ, 0) > 0 always implies ρ(2π, tθ) > 0, as in the case K Z(2π) ≤ 0.
Hence, we focus on the additional upper bound on the density ρ(2π, tθ). For θ = 2π, condition
(5.43) implies (5.46), since t2π = 0. Next, we proceed by induction on θ: given θ and assuming
that (5.46) is satisfied for all θ̃ > θ, we prove that (5.46) also holds at θ (provided that
condition (5.43) is satisfied). Using (5.45) with condition (5.43) leads to

ρ(2π, tθ) <
1

K Z(θ)
exp

(

−
∫ tθ

0
J0(t)K Z ′(Λθ(t)

)
dt

)

.

Expressing the integral in the space variable along the characteristic curve yields

ρ(2π, tθ) <
1

K Z(θ)
exp

(

−
∫ 2π

θ

J0

ω +K Z(Λθ)J0
K Z ′(Λθ) dΛθ

)

.

Since K Z ′ is negative, the flux J0 can be replaced by its maximal value, that is, J0 → ∞ and
the above inequality leads to

ρ(2π, tθ) <
1

K Z(θ)
exp

(

−
∫ 2π

θ

1

Z(Λθ)
Z ′(Λθ) dΛθ

)

. (5.47)

The relation (5.47) is well-defined since Z(θ) 6= 0 for all θ ∈ [0, 2π]. Finally, computing the
integral in (5.47) implies that ρ(2π, tθ) < 1/[K Z(2π)]. Condition (5.41), equivalent to (5.46),
is then satisfied. This concludes the proof.

When the conditions of Proposition 5.4.2 are not satisfied, condition (5.41) may fail to
hold, in which case the flux blows-up (finite escape time to infinity). In the case K Z(2π) > 0,
there is a positive feedback between the flux and the velocity: a high value of J0 increases the
velocity through the coupling, which in turn increases the flux. When the density approaches
the critical value

ρ(2π, t) =
1

K Z(2π)
, (5.48)

the flux is high enough to blow-up through the positive feedback.

This finite escape time phenomenon is related to the absorption phenomenon observed for
finite populations. For finite populations, the initial condition (5.43) of Proposition 5.4.2 can
be rewritten as

1

N ∆θ
<

∆x

K ∆θ
,

where ∆x and ∆θ are respectively the state distance and the phase distance between two
successive oscillators. The initial condition then imposes a minimal distance ∆x > K/N = ǫ
between any two oscillators, so that an absorption cannot occur.
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5.4.2 Finite time convergence to a synchronous state

For increasing functions K Z(θ), Theorem 5.3.1 implies that the Lyapunov function (5.20)
is strictly increasing, and a synchronous behavior is observed in finite time, for any initial
condition. Either the flux J0(t) becomes infinite in finite time or the density ρ(0, t) becomes
infinite in finite time. The behavior is similar to the behavior of finite populations, where
synchronization is achieved in finite time through the absorption phenomenon.

The finite time convergence to synchronization is established in Proposition 5.4.3. As a
preliminary to this result, we need the following lemma.

Lemma 5.4.1. The Lyapunov function (5.20) satisfies

V = ‖q − q∗‖L1 ≤ 4π − 2 qmin

with

qmin = min

(

min
ϕ∈[0,1]

q(ϕ), min
ϕ∈[0,1]

q∗(ϕ)

)

.

Proof. The proof of Lemma 5.4.1 can be found in Appendix A.3.

Through Theorem 5.3.1 and the preceding lemma, the following proposition establishes
the finite time convergence to the synchronous state.

Proposition 5.4.3. Consider the transport PDE (5.8)-(5.9) and assume that Z(θ) is such
that (i) the stationary density (5.11) exists, (ii) K Z ′(θ) > 0 ∀θ ∈ [0, 2π], and (iii) either
Z ′′(θ) ≥ 0 ∀θ ∈ [0, 2π] or Z ′′(θ) ≤ 0 ∀θ ∈ [0, 2π]. Then all solutions converge in finite time to
a synchronous state. That is, if K Z(0) ≥ 0, the flux satisfies J(0, tfin) = ∞, or if K Z(0) < 0,
the density satisfies ρ(0, tfin) = ∞, with tfin < ∞.

Proof. An infinite flux J0(t) or a infinite density ρ(0, t) is obtained when the density ρ(2π, t)
reaches a critical value. If K Z(0) ≥ 0, the value K Z(2π) is positive since K Z is increasing.
Hence, the flux J0 becomes infinite when the density ρ(2π, t) exceeds the critical value (5.48).
If K Z(0) < 0, the velocity (5.6) at θ = 0 is equal to zero when the flux reaches the value
J0(t) = ω/|K Z(0)| or equivalently, given (5.9), when the density reaches the value

ρ(2π, t) =
1

K Z(2π) −K Z(0)
. (5.49)

With a velocity equal to zero at θ = 0, the relationship (5.2) implies that the density is infinite
at θ = 0. (If K Z(0) < 0 along with K Z(2π) > 0, the reader will notice that the value (5.48)
has no importance, since (5.48) is greater than (5.49).)

Next, we show that the density ρ(2π, t) must necessarily reach the critical value (5.48)
or (5.49) in finite time tfin. Let us consider a characteristic curve Λ(t), with Λ(t) = 0 and
Λ(t) = 2π and assume that the synchronous state is not reached within [t, t], so that ρ(θ, t) >
0 ∈ C0(L1(0, 2π), [t, t]). Applying Theorem 5.3.1 and integrating (5.24), one has

min
θ∈[0,2π]

(

K Z ′(θ)
) ∫ t

t
J0(t) dt ≤

∫ V(t)

V(t)

1

V dV ≤ max
θ∈[0,2π]

(

K Z ′(θ)
) ∫ t

t
J0(t) dt .
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Since [t, t] is the time interval corresponding to the complete evolution of an oscillator from
θ = 0 to θ = 2π , the integral of the flux J0 in the above equation is equal to one and it
follows that

exp

(

min
θ∈[0,2π]

(

K Z ′(θ)
)
)

≤ V(t)

V(t)
≤ exp

(

max
θ∈[0,2π]

(

K Z ′(θ)
)
)

.

The condition K Z ′ > 0 implies that the Lyapunov function strictly increases within the time
interval [t, t]. Considering n successive intervals [0, t1], . . . , [tn, tn], with ti+1 = ti, one obtains

V(tn)

V(0)
≥ exp

(

n min
θ∈[0,2π]

(

K Z ′(θ)
)
)

.

Hence, a given value V > V(0) is reached within at most nmax time intervals, with

nmax ≤ log
(V/V(0)

)

minθ∈[0,2π]

(

K Z ′(θ)
) .

Since the time length of each interval [tk, tk] (k = 1, . . . , nmax) is finite, any value V < 4π
is reached in finite time. By Lemma 5.4.1, V = V implies that qmin ≤ (4π − V)/2. When
considering values V close to 4π, the minimum of the quantile density q reaches in finite time
any given value close to zero. Given (5.18), this implies that the maximum of the density ρM

reaches in finite time any given value (provided that the critical value (5.48) or (5.49) is not
already reached). In particular, the value

ρM = ρc exp

(

max
θ∈[0,2π]

(

K Z ′(θ)
)
)

, (5.50)

with ρc denoting the critical value (5.48) or (5.49), is reached in finite time. Then, the
maximum value ρM (obtained at θM at time tM ) decreases along the characteristic curve
Λ(t), with Λ(tM ) = θM . Solving the total derivative equation (5.10), one shows that the
variation along the characteristic curve is bounded:

ρ(2π, tfin) = ρM exp

(

−
∫ tfin

tM

J0(t)K Z ′(Λ(t)
)
dt

)

≥ ρM exp

(

− max
θ∈[0,2π]

(

K Z ′(θ)
)
)

,

where the inequality is obtained since the integral of J0 on [tM , tfin] is less than one. With
ρM given by (5.50), the density exceeds the critical value in finite time tfin, which concludes
the proof.

Proposition 5.4.3 shows that oscillators with monotone increasing functions K Z converge
to a synchronous behavior corresponding to a solution with a finite escape time to infinity.
If the coupling is excitatory (0 ≤ K Z(0) < K Z(2π)), the flux J0 blows-up and is infinite
at time tfin, as well as the velocity v(2π, tfin). This behavior corresponds to the absorption
phenomenon occurring in finite populations of oscillators (see also the end of Section 5.4.1).
If the coupling is inhibitory (K Z(0) < 0), the velocity v(0, t) reaches the value zero at time
tfin and the oscillators accumulate at θ = 0, yielding an infinite density ρ(0, tfin).
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5.5 Implications for infinite populations of oscillators

The results of Section 5.4 are quite technical. In this section, their implications on the behavior
of (monotone) oscillators are discussed with more details.

5.5.1 Parallel with finite populations

The results of Proposition 5.4.1 and Proposition 5.4.3 apply to oscillators characterized by
a monotone iPRC. In the case of integrate-and-fire oscillators, the results thereby apply to
oscillators with a monotone F (including the popular LIF oscillators), drawing a parallel with
the results of Chapter 4 for finite populations.

When K Z ′ > 0 (K dF/dx < 0), the oscillators achieve synchrony.

Theorem 5.5.1. Consider a continuum of identical pulse-coupled integrate-and-fire oscilla-
tors ẋ = F (x) characterized by (i) a monotone property K dF/dx < 0 and (ii) an iPRC with
a curvature of constant sign. Then, provided that the asynchronous state exits (cf. Corollary
5.2.1), the continuum converges to the synchronous state in finite time.

When K Z ′ < 0 (K dF/dx > 0), the oscillators converge to the asynchronous state.

Theorem 5.5.2. Consider a continuum of identical pulse-coupled integrate-and-fire oscilla-
tors ẋ = F (x) characterized by (i) a monotone property K dF/dx > 0 and (ii) an iPRC with
a curvature of constant sign. Then, provided that the asynchronous state exits (cf. Corollary
5.2.1), either the initial conditions do not fulfill (5.41) and the flux tends to infinity in finite
time, or the continuum exponentially converges to the asynchronous state.

The curvature condition on the iPRC is verified for the LIF oscillators [(2.10) in Section
2.3.3]. We note that this condition corresponds to the curvature condition on the scalar firing
map (see Remark 5.5.1). In addition, the condition is also satisfied by the iPRC (2.2) of
oscillators close to a homoclinic bifurcation (Example 2.3.1), so that the result also applies to
Morris-Lecar oscillators (under particular sets of parameters).

Theorem 5.5.1 and Theorem 5.5.2 are the exact analogs of Theorem 4.1.1 and Theo-
rem 4.2.3. While the results of Theorem 5.5.1 and Theorem 5.5.2 are stability results for
continuous-time transport equations (infinite populations), the results of Theorem 4.1.1 and
Theorem 4.2.3 are stability results for the equivalent discrete-time firing maps (finite popula-
tions). The above results therefore establish a strong link between a discrete-time approach
and a continuous-time approach.

Remark 5.5.1. The results of finite populations impose conditions on the particular PRC
Zǫ (3.3), and not on the iPRC Z. As a consequence, compared with the results of infinite
populations, the results of finite populations rely on assumptions slightly less conservative. For
instance, it follows from (3.9) and (3.10) that the monotonicity condition |h′| < 1 (Z ′

ǫ < 0)
is equivalent to Z(θ) > Z(θ + Zǫ(θ)), which is less conservative than Z ′ < 0. Similarly,
elementary computations show that a curvature condition h′′ ≥ 0 (Z ′′

ǫ ≥ 0) is equivalent to
Z ′(θ) < Z ′(θ + Zǫ(θ)), which is less conservative than Z ′′ > 0. ⋄

The results reinforce the numerical observations presented in Section 5.2.1 and prove that
the behaviors of monotone oscillators are dichotomic, not only for finite populations but also
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for infinite populations. Hence, the continuum approximation of large networks of pulse-
coupled oscillators leads to coherent results and is a relevant approximation.

5.5.2 Transmission delays and non-instantaneous coupling

In the present dissertation, we mainly focus on an instantaneous impulsive coupling, where a
given oscillator influences the other oscillators only at the very instant when θ = 0. However,
other studies have considered transmission time delays, with a non-instantaneous coupling.
For instance, [3, 117] considered LIF oscillators (F (x) = S + γ x, γ < 0) characterized by the
dynamics

ẋk = F (xk) +K

∫ t

∞
E(t− τ)J0(τ) dτ . (5.51)

The coupling is realized by means of a series of smoothed finite-width pulses E(t) correspond-
ing to α-functions E(t) = α2 t exp(α(t)), instead of a series of δ-like pulses. The α-function
is a common synaptic response widely used in computational neuroscience. When α → ∞,
the α-functions tend to Dirac functions (E(t) → δ(t)) and the dynamics (5.51) is equivalent
to (5.5). The model investigated in this chapter is recovered and thereby appears as the limit
case (instantaneous coupling) of the model studied in [3, 117] (non-instantaneous coupling).
In particular, the stability results presented in this chapter are in accordance with the local
stability results of [3, 117], for α ≫ 1.

In [117], the study of (5.51) shows that transmissions delays influence the behavior of the
oscillators, which is not necessary dichotomic. Under a critical value αc, that is, for slow
transmissions and wide pulses, a Hopf bifurcation occurs and a periodic flux (firing pattern)
is observed instead of the asynchronous state, a situation that corresponds to a quasiperiodic
behavior of the individual oscillators. This behavior, different from the dichotomic behavior
presented in this chapter, is triggered by transmission delays. In Chapter 6, we show that
a similar behavior is obtained when considering particular non-monotone integrate-and-fire
dynamics.

In spite of the evident interest of a model with transmission delays, we have restricted
attention to instantaneous coupling, an approximation that is relevant for many realistic
systems characterized by negligible transmission time delays. In addition, considering a non-
instantaneous coupling presents some drawbacks that are not encountered with an instanta-
neous coupling.

First, the theoretical results are weaker in the case of a non-instantaneous coupling. While
the stability analysis for a non-instantaneous coupling merely relies on a local linearization of
the dynamics in the neighborhood of the equilibrium, a global approach is proposed here for
the instantaneous coupling.

Furthermore, it is shown in [128] that some high frequency modes are not captured by
the thermodynamic limit (N → ∞) for the model (5.51), so that the stability properties
are not preserved through the continuum approximation. The ratio α/N , which should be
kept constant, actually tends to zero when N → ∞. In contrast, the case of an instanta-
neous coupling is characterized by the ratio α/N = ∞, so that the ratio remains constant
in the thermodynamic limit. It turns out that, in this case, the thermodynamic limit is a
correct approximation and the obtained stability results are in agreement with the behavior
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of finite populations (as it is mentioned in Section 5.5.1). This reinforces the interest of the
instantaneous coupling.

5.5.3 Adding noise

Noise is often introduced in models of pulse-coupled oscillators networks. A common stochas-
tic component can play the role of a coupling that leads to organized collective behaviors.
For instance, uncoupled oscillators driven by common independent Gaussian white noises [79]
or by random Poisson impulses [23, 80] can achieve perfect synchrony, a phenomenon called
noise-induced synchronization.

In addition, noise can also introduce some heterogeneity in the network, approximating
discrepancies between non-identical oscillators. The continuum limit is particularly appropri-
ate to investigate such a stochastic extension, since the law of large numbers implies that the
density of oscillators is identical to the probability density induced by the stochastic dynam-
ics. In this framework, the evolution of the density is dictated by a generalized continuity
equation, known as the Fokker-Planck equation.

In the case of noisy pulse-coupled oscillators, it was shown in [3] that noise stabilizes the
asynchronous state. In addition, we showed that a strong coupling reduces the effect of noise,
a logical fact highlighting that strongly coupled non-identical oscillators behave as identical
oscillators. Those preliminary results are not detailed in the present dissertation, because the
study of noisy oscillators is beyond the scope of the thesis.

5.6 Conclusion

Finite and infinite populations of monotone oscillators exhibit an equivalent dichotomic be-
havior, which illustrates the strong parallel existing between the two situations. In particular,
the global results of Chapter 4 are extended to the case of infinite populations, a process that
yields a Lyapunov function induced by a total variation distance between quantile densities.
In a more general context, the result provides an original Lyapunov function for a particular
class of PDE’s.

The case of monotone pulse-coupled oscillators is completely studied, both for finite and
infinite populations. In the next chapter, we study oscillators that have no monotonicity
property, such as QIF oscillators.





Chapter 6

Beyond monotone oscillators

While a wealth of studies have investigated many extensions of pulse-coupled monotone (LIF)
oscillators, few studies have considered non-monotone pulse-coupled oscillators, aside from
rare examples [16]. In particular, even though the QIF model is widely used (e.g. [14, 41]),
there is no study of QIF oscillators with a pure impulsive coupling, to the author’s knowledge.
In this chapter, we therefore address the problem of non-monotone pulse-coupled integrate-
and-fire oscillators, with a particular attention to the QIF model, a main motivation of the
thesis.

A remarkable result is that the dichotomic behavior proved for monotone oscillators per-
sists with QIF oscillators. In this case, the dichotomic behavior of the oscillators is dictated by
the average properties of the (non-monotone) QIF dynamics. Interestingly, a non-dichotomic
behavior is however observed with a specific “QIF-like” model, suggesting that the dichotomic
behavior proved for two oscillators does not always extend to N > 2 oscillators.

Chapter 4 already shows that generalizing the global study of two monotone oscillators to
larger populations (to higher dimensions) is not a simple task. The dichotomic behavior of
QIF oscillators, although clearly suggested by numerical simulations, has remained a standing
conjecture (QIF conjecture) for the entire duration of this thesis. Even a local stability analysis
has proved elusive so far. Beyond the original motivations for considering non-monotone
dynamics, this situation enhances the interest of studying non-monotone oscillators from a
mathematical point of view.

In the chapter, we report both on several advances for the QIF conjecture and on related
results for “QIF-like” oscillators. The chapter is organized as follows. In Section 6.1, we show
how the dichotomic behavior of two “QIF-like” oscillators can be extended to larger networks.
Section 6.2 highlights the difficulties that emerge with the study of large populations of non-
monotone oscillators and suggests that a local analysis is sufficient to determine the behavior
of the oscillators. In Section 6.3, we investigate the transition between the two dichotomic
behaviors: a conservative limit case. The main advances on the QIF conjecture, which rely on
a local stability analysis, are presented in Section 6.4. In Section 6.5, we propose an example
of “QIF-like” oscillators that are not characterized by a dichotomic behavior, but by a more
complex non-dichotomic behavior. Finally, the dichotomic behavior of infinite populations is
considered in Section 6.6.

The main contributions of the chapter are the local stability results, on the one hand
providing sufficient conditions to ensure that the behavior is dichotomic, and on the other hand
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highlighting situations that cannot exhibit a dichotomic behavior. Some results presented in
this chapter are published in [70] and in [74].

6.1 Dichotomic behavior: from two oscillators to large popu-
lations

Two pulse-coupled “QIF-like” oscillators (satisfying Assumption 1) are characterized by a
dichotomic behavior (Proposition 3.3.2). The dichotomic behavior is a global behavior : de-
pending on the conditions summarized in Table 6.1, the fixed point of the scalar firing map
is either globally stable (phase-locked behavior) or globally anti-stable (synchronization). For
N > 2 oscillators, we define the dichotomic behavior in the same way, as a global behavior that
results from the global stability (phase-locked clustering) or anti-stability (synchronization)
of the fixed point, according to the conditions summarized in Table 6.1.

Equivalent conditions
Phase-locked behavior

(stable fixed point)
Synchronization

(anti-stable fixed point)

Thresholds x+ x > 0 x+ x < 0

Evolution function (2.4) Concave-up in the mean Concave-down in the mean

Z(θ) = Ze(θ − θ) (2.14) θ < π θ > π

h(· + ∆) = h−1(·) − ∆ (3.12) ∆ > 0 ∆ < 0

Table 6.1: Equivalent conditions for the dichotomic behavior of “QIF-like” oscillators.

A first glimpse to understand the dichotomic behavior in large populations of “QIF-like”
oscillators is the following observation. When “reversing” the thresholds x and x, the firing
map becomes similar to the inverse firing map.

Property 7. Consider two models (a) and (b) that both have the same dynamics satisfying
Assumption 1, but with different thresholds satisfying x(a) = −x(b) and x(a) = −x(b) (opposite

values x+ x). Then, the corresponding scalar firing maps satisfy h(b) = h−1
(a).

Proof. It follows from (2.15) and (2.17) that

φ(b)(x) =
2π

ω
− φ(a)(x) and φ−1

(b)(θ/ω) = −φ(a)

(

(2π − θ)/ω
)

,

so that (2.4) implies

f(b)(θ) = −f(a)(2π − θ) and f−1
(b) (x) = 2π − f−1

(a) (−x) .

Then, one has

h(b) = f−1
(b)

(

f(b)(2π − θ) + ǫ
)

= 2π − f−1
(a)

(

− f(b)(2π − θ) − ǫ
)

= 2π − f−1
(a) (θ)

(

f(a) − ǫ
)

= h−1
(a) .
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Property 7 is the analog of Property 4 showing that the two models have mirrored iPRC’s.

For higher dimensions, a noticeable difference is that H(b) 6= H−1

(a) : the equality holds, up
to a linear change of coordinates. This is summarized as follows:

Proposition 6.1.1. Consider the models (a) and (b) defined in Property 7. Then, the mul-
tidimensional firing maps satisfy

H(b) = T−1H−1

(a)T , (6.1)

where T = PL, with L given by (3.29) and with the permutation matrix

P =







0 1

. .
.

1 0






.

Proof. We use the particular structure (3.28) of the firing map. It follows from Property 7
that N(b) = N−1

(a). In addition, N is a repeated nonlinearity and is thus invariant under the
permutation change of coordinates P. Then, one obtains

H(b) = N(b)L = N−1

(a)L = P−1N−1

(a)P L .

It is easy to show that LPL = P and one has finally

H(b) = (L−1P−1L−1) N−1

(a)PL = L−1P−1 H−1

(a) PL = T−1H−1

(a)T .

Remark 6.1.1. The permutation matrix satisfies P−1 = P, so that the transformation matrix
also satisfies T−1 = T. ⋄

Property 7 and Proposition 6.1.1 give a first insight of the dichotomic behavior mechanism.
When the thresholds are “reversed”, the successive iterations of the new scalar firing map h(b)

are the backward iterations of the former scalar firing map h(a). For higher dimensions, the
successive iterations of firing map H(b) are the backward iterations of the firing map H(a),
up to a change of coordinates. In particular, when the thresholds are reversed, the stability of
the fixed point is also reversed. Depending on the thresholds (see Table 6.1), the firing map
has two opposite time evolutions, resulting in two opposite behaviors with opposite stability.
However, the property is not sufficient to prove the dichotomic behavior, since it does not
imply a global convergence (or divergence) to the fixed point.

In addition, the two properties show a difference between the scalar firing map and its
multidimensional generalization. Property 7 does not directly extend to higher dimensions
but requires a change of variables, a fact which suggests that the stability analysis of the
scalar case is not directly extended to higher dimensions (see also Section 6.3). Hence, gener-
alizing the study of two oscillators to larger populations is not trivial: there is an increase of
complexity between the stability analysis of the scalar firing map and the stability analysis of
the multidimensional firing map.
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6.2 Difficulties and limitations

For “QIF-like” oscillators, it is not obvious whether the dichotomic behavior shown with
two oscillators still persist in larger populations. While large populations of QIF oscillators
always seem to exhibit a dichotomic behavior, other “QIF-like” models exhibit non-dichotomic
behaviors (Section 6.5). In other words, the known dichotomic behavior of the scalar firing
map does not directly extend to higher dimensions, but depends on finer properties of the
scalar firing map.

Numerical simulations clearly suggest that large populations of QIF oscillators have a
dichotomic behavior. However, a global stability analysis showing that QIF oscillators have
a (global) dichotomic behavior has so far remained an open problem, leading to the following
conjecture.

Conjecture 1 ((Global) QIF conjecture). The behavior of QIF oscillators is always di-
chotomic. That is, for all Ng ≥ 2, the fixed point of the (Ng − 1)-dimensional firing map
is a global attractor whenever x+ x > 0 and a global repeller whenever x+ x < 0.

It is obvious that the conjecture is verified in the case x > 0 or in the case x < 0,
corresponding to a monotone dynamics (with known global stability results).

In this section, we explain why a global stability analysis is a problem that is more involved
in the case of non-monotone dynamics. In addition, we show that a local analysis in the
neighborhood of the fixed point is sufficient to have a good insight of the behaviors.

6.2.1 What is lost with non-monotone dynamics

In the case of monotone oscillators, the firing map is characterized by global stability results:
the monotonicity property of the dynamics implies that the firing map is a contraction (Chap-
ter 4). In contrast, when the dynamics is not monotone, the firing map is not a contraction,
so that a global analysis is much more intricate (as illustrated in Figure 6.1).

0.704 0.705

3.31

3.309

θ1

θ5

(a) Monotone dynamics

0.614 0.615

3,183

3,184

θ1

θ5

(b) Non-monotone QIF dynamics

Figure 6.1: The trajectory of the (Ng − 1)-dimensional firing map is more complex when the
dynamics is not monotone. The figures represent a projection of the trajectory of the firing
map in the neighborhood of the fixed point, with ǫ = 0.01, Ng = 10, and with the dynamics
(a) ẋ = 0.2 + x, x ∈ [0, 1] and (b) ẋ = 0.2 + x2, x ∈ [−1, 1.5].
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The global analysis of monotone oscillators fully exploits the special structure of the firing
map. The (1-norm) distance between two trajectories is not modified by the linear map
L. In addition, the distance captures the monotonicity property of the nonlinear map N:
it is characterized by a monotone (increasing or decreasing) variation at each iteration of
the nonlinear map. Thus, the distance is a quantity that has a monotone evolution at each
iteration of the firing map H = N ◦ L.

For non-monotone oscillators, a similar approach does not work. Even though the same
distance could be used with the same efficiency with respect to the linear map L, difficulties
arise with the nonlinear map N. Indeed, the nonlinear map has no monotonicity property:
it is contracting in a region of the state space and expanding in the complementary region.
Then, the distance is not characterized by a monotone variation at each iteration.

With the monotonicity property, it is sufficient to consider only one iteration of the firing
map to show the contraction. Without the monotonicity property, the contraction must be
captured over several iterations Hn = N ◦ L ◦ · · · ◦ N ◦ L. The linear map is interpreted as
a mixing map that spreads the trajectories over the whole state space, alternately in the
contracting and expanding regions. As a result, the map is contracting (or expanding) in
the mean over the successive iterations. For a (Ng − 1)-dimensional firing map, the property
(−L)Ng = I suggests that it could be necessary to consider n = Ng iterations, that is, to
consider the return map R = HNg .

The main difficulty is the mixing effect induced by the linear map, a process that is
repeated at each iteration. Since the two maps N and L are not commutative, it is not
obvious how to capture the contraction property of the nonlinear map while preserving the
invariance of the linear map over more than one iteration. So far, the global analysis of the
firing map has remained an open question (see Conjecture 1).

Remark 6.2.1 (Absorptions and clusters). Another difference is that the result of Proposi-
tion 4.1.1 does not apply to non-monotone dynamics. After the initial phase of absorptions
(described by the algorithm of Section 3.4.1), nothing precludes the clusters to aggregate
through further absorptions. It is therefore more difficult to predict the final number of
clusters Ng as well as the dimension Ng − 1 of the firing map dictating the evolution of the
network. ⋄

6.2.2 A local analysis for a global behavior

In Section 6.1, we have defined the dichotomic behavior as a global behavior of the oscillators.
However, as explained in Section 6.2.1, it is difficult to obtain global stability results in the
case of non-monotone dynamics. In this section, an intuitive argument shows that a local
analysis in the neighborhood of the fixed point is actually convenient to describe the global
dichotomic behavior.

We investigate how a set A of the state space is mapped by the firing map to the set

H(A) ,
{

Θ ∈ [0, 2π]Ng−1 | H−1(Θ) ∈ A
}

.

For “QIF-like” oscillators, the overall behavior of the firing map is known. The following
property shows that there exists a large set including the domain (3.21) that is invariant,
either under the map H or under the map H−1.
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Property 8. Consider a dynamics satisfying Assumption 1. Then, the corresponding (Ng−1)-
dimensional firing map (Ng > 2) satisfies

{

H(Ũ) ⊂ Ũ if x+ x > 0 ,

Ũ ⊂ H(Ũ) if x+ x < 0 ,

where Ũ ,
{

Θ ∈ [0, h−1(0)]Ng−1 | θk < θk+1, k = 1, . . . , Ng − 2
}

.

Proof. It is trivial that LΘ ∈ [0, h−1(0)]Ng−1. Then, one has H(Θ) = N(LΘ) ∈ [0, h(0)]Ng−1.
If x+ x > 0, ∆ > 0 and it follows from Property 6 that h−1(0) = h(∆) + ∆ > h(0). Since H

preserves the phase ordering, one verifies that H(Ũ) ⊂ Ũ . For x+ x < 0, the proof follows on
similar lines.

Remark 6.2.2. Property 8 is not valid with the natural domain of the firing map U (3.21),
but with a larger set Ũ ⊃ U . For instance, it is not true that H(U) ⊂ U if x+ x > 0. Indeed,
for some Θ ∈ U , an absorption could occur, so that H(Θ) /∈ U . ⋄

Property 8 shows that the overall behavior of the firing map over Ũ only depends on the
sign of x+ x. Whatever the “QIF-like” dynamics, the set Ũ shrinks whenever x+ x > 0 and
stretches whenever x+ x < 0. Interestingly, the overall behavior is always in agreement with
the global behavior of the scalar firing map, and therefore with a dichotomic behavior (see
Table 6.1).

The firing map is not characterized by a contraction property, as it is for monotone oscil-
lators, but is characterized by an average contraction property. The firing map is contracting
in the mean when x+ x > 0, while it is expanding in the mean when x+ x < 0.

Property 8 characterizes the behavior of the firing map, far from the fixed point. Then, a
local stability analysis in the vicinity of the fixed point complements the study of the global
behavior. A local analysis is not only significant to clearly suggest the global dichotomic
behavior, but it is also sufficient to detect situations where the behavior cannot be dichotomic.
When local stability is in agreement with the overall behavior, it suggests that the fixed point
has global stability properties (dichotomic behavior). On the other hand, when local stability
contradicts the overall behavior, it is sufficient to show that the fixed point is neither a global
attractor nor a global repeller (non-dichotomic behavior) (Figure 6.2). In the latter case, the
global dichotomic behavior of the scalar firing map does not extend to the multidimensional
firing map.

In the sequel, local stability analysis confirms the (conjectured) dichotomic behavior for
QIF oscillators and for exponential integrate-and-fire oscillators ẋ = S exp(x2) (Section 6.4).
The analysis also shows that piecewise linear integrate-and-fire oscillators ẋ = S+γ|x| do not
exhibit a dichotomic behavior (Section 6.5).

6.3 A conservative limit case

As a preamble to the study of the dichotomic behavior in large networks of “QIF-like” os-
cillators, we discuss the limit case characterized by x + x = 0 (or equivalently by ∆ = 0,
θ = π, and by an function f with a zero mean-curvature). Even though it is a very particular
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(a) Dichotomic behavior (b) Non-dichotomic behavior

Figure 6.2: When x + x > 0, the overall behavior of the firing map suggests global stability
(here in two dimensions). A local analysis complements the overall behavior of the firing map.
(a) A locally stable fixed point is compatible with global stability (dichotomic behavior). (b)
A locally unstable fixed point shows that the behavior is neither globally stable nor globally
anti-stable (non-dichotomic behavior).

situation, the study is worth of interest: it provides an insight of the problem complexity
for large populations of non-monotone oscillators, but is completely tractable through local
analysis.

In the sequel, the parameters and values corresponding to the limit case are written with
the “ˇ”.

6.3.1 Quasiperiodic behavior

Since the limit case is characterized by ∆ = 0, it follows from Property 6 that ȟ = ȟ−1: the
trajectories of the scalar firing map are 2-periodic orbits. In a network of two clusters, a
cluster has always the same phase at each firing of the other cluster.

For higher dimensions, however, the behavior of the firing map is not 2-periodic. Even
though the nonlinear map satisfies Ň = Ň−1, one has the inequality Ȟ 6= Ȟ−1. Indeed, the
two models (a) and (b) of Proposition 6.1.1 are identical, so that (6.1) implies Ȟ = T−1Ȟ−1T.
Because of the transformation T, two iterations of Ȟ do not yield the identity (Figure 6.3).

At least in the vicinity of the fixed point, numerical simulations show that the trajectories
of the (discrete-time) firing map are quasiperiodic trajectories on a dense orbit (Figure 6.4).
Several iterations of the firing map Ň ◦ L ◦ · · · ◦ Ň ◦ L never map a point Θ to itself. The
linear map L prevents successive nonlinear maps Ň = Ň−1 from combining to yield Ň ◦ Ň = I.
Because of the (mixing) linear map, the firing map has no periodicity property, but seems to
exhibit an aperiodic behavior.

In large networks, the clusters have a quasiperiodic behavior. At each firing of the same
cluster, the other clusters have not fixed phases, but slightly drift away from their previous
positions.
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Figure 6.3: Two iterations of the firing map — that is, Ȟ ◦ Ȟ = Ȟ ◦ T−1Ȟ−1T — do not
map a point Θ to itself. The mapping of the inverse Ȟ−1 is realized in other coordinates
determined by the linear transformation T.

θ1

θ2

0

2π

2π

Figure 6.4: For different initial conditions, the trajectories of the discrete-time firing map are
dense orbits encircling the fixed point (here in two dimensions).

Remark 6.3.1 (Monotone dynamics). In contrast, the limit case for monotone dynamics is
characterized by dF/dx = 0 and has a periodic behavior. In this situation, the scalar firing
map is given by ȟ(θ) = 2π − θ + ǫ, so that the nonlinear map is Ň = (2π + ǫ)1 − I, with
1 = (1, · · · , 1)T . After Ng iterations of the (Ng − 1)-dimensional firing map Ň ◦ L, all the
cross terms induced by (2π−ǫ)1 cancel, while the last term (−L)Ng = I. Hence, the orbits are
Ng-periodic, a simpler behavior than the quasiperiodic behavior of non-monotone dynamics.

For infinite populations, the equivalent situation is characterized by a constant iPRC. The
continuum of oscillators evolves according to a standard transport equation whose solution is
periodic (Remark 5.2.1). ⋄

6.3.2 Marginal stability

The limit case is a conservative case: the fixed point is not a stable attractor nor an unstable
repeller, but a marginally stable center. The Jacobian matrix at the fixed point has a palin-
dromic characteristic polynomial with all its roots on the unit circle. This is the statement of
Proposition 6.3.1.
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A palindromic polynomial p(z) is a polynomial with symmetric coefficients pk = pn−k. In
full generality, such a polynomial has the following property: if λ is a root of p, then so is
1/λ. With additional conditions, the roots can lie on the unit circle [62, 96]. In the case we
are interested in, the polynomial coefficients are sorted and the following lemma shows that
the roots are on the unit circle.

Lemma 6.3.1. Let p(z) be a polynomial with real coefficients

p(z) = pnz
n + pn−1z

n−1 + pn−2z
n−2 + · · · + p2z

2 + p1z + p0 ,

such that

• pk = pn−k ∀k,

• pn ≥ pn−1 ≥ . . . p⌊n/2⌋ > 0, with ⌊n/2⌋ denoting the integer part of n/2.

Then all n roots of p are distinct and lie on the unit circle.

Proof. The proof, which is due to J. Hendrickx and A. Megretski, is not detailed in the present
manuscript. The trick of the proof is to multiply the polynomial by (z−1). Then it is straight-
forward to show that there exist ⌊n/2⌋ distinct values θ ∈ (0, π) such that p(eθ) = p(e−θ) = 0.
If n is odd, −1 is the nth root.

Remark 6.3.2. Beyond its present application to the local stability analysis of the firing
map, the result of Lemma 6.3.1 on palindromic polynomials has noticeable implications. The
result implies that the trigonometric equation

an cosnθ + an−1 cos(n− 1)θ + · · · + a1 cos θ + a0 = 0 ,

with an ≥ an−1 ≥ · · · ≥ a0 > 0, has n distinct real solutions on [0, π]. Equivalently, linear
combinations of Chebyshev polynomials [90] have n roots on [−1, 1], if the weighted coefficients
are sorted.

To the author’s knowledge, Lemma 6.3.1 is a new result among the numerous studies on
the zeros of palindromic polynomials (e.g. [62, 96]) and on the zeros of linear combinations
of Chebyshev polynomials (e.g. [8]). ⋄

With Lemma 6.3.1, the result of Proposition 6.3.1 is proved.

Proposition 6.3.1. If the dynamics satisfies Assumption 1 with thresholds such that x+ x = 0,
then the fixed point of the (Ng − 1)-dimensional firing map is locally marginally stable, for all
Ng ≥ 2.

Proof. The characteristic polynomial of the (Ng − 1) × (Ng − 1) Jacobian matrix at the fixed
point is given by (see (4.1))

p̌(z) =

Ng−1
∑

k=0

p̌k z
k = zNg−1 + ȟ′

Ng−2z
Ng−2 + ȟ′

Ng−3ȟ
′
Ng−2z

Ng−3 + · · · +

Ng−2
∏

k=1

ȟ′
kz +

Ng−2
∏

k=0

ȟ′
k ,

with ȟ′
0 = |ȟ′(θ̌∗

Ng−1)| and ȟ′
k = |ȟ′(θ̌∗

Ng−1 − θ̌∗
k)| for k = 1, . . . , Ng − 2.
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Next, one shows that the characteristic polynomial p̌(z) is palindromic. First, the fixed
point satisfies Ȟ−1(Θ̌∗) = Θ̌∗. Then, it follows from the relationship Ȟ = T−1Ȟ−1T that
Ȟ(TΘ̌∗) = TΘ̌∗. Since the fixed point is unique (Proposition 3.4.1), one has the equality
TΘ̌∗ = Θ̌∗, or equivalently, LΘ̌∗ = PΘ̌∗. Then, it follows that

ȟ′
k =

∣
∣
∣ȟ′(θ̌∗

Ng−1 − θ̌∗
k)
∣
∣
∣ =

∣
∣
∣ȟ′(θ̌∗

Ng−1−k)
∣
∣
∣ =

∣
∣
∣ȟ′
(

h(θ̌∗
Ng−1 − θ̌∗

Ng−2−k)
)∣
∣
∣ k = 1, . . . , Ng − 2

and
ȟ′

0 =
∣
∣
∣ȟ′
(

ȟ(θ̌∗
Ng−1 − θ̌∗

Ng−2)
)∣
∣
∣ .

Property ȟ = ȟ−1 implies that

ȟ′(θ) =
(
ȟ−1(θ)

)′
=
[

ȟ′
(

ȟ−1(θ)
)]−1

=
[

ȟ′
(

ȟ(θ)
)]−1

and, therefore,
ȟ′

k ȟ
′
Ng−2−k = 1 k = 0, . . . , Ng − 2 . (6.2)

Hence, one has p̌k = p̌Ng−2−k and the polynomial is palindromic.

In addition, it follows from (3.14) of Property 6 that ȟ′
k < 1 ∀k > ⌊(Ng − 1)/2⌋, so that

p̌Ng−1 ≥ p̌Ng−2 ≥ · · · ≥ p̌⌊(Ng−1)/2⌋ > 0. Then, Lemma 6.3.1 implies that all the eigenvalues
(roots of p̌(z)) lie on the unit circle, which completes the proof.

Proposition 6.3.1 shows that, whatever the “QIF-like” dynamics, the limit case is charac-
terized by a marginally stable fixed point, a conservative behavior between the two opposite
behaviors (x + x > 0 and x + x < 0). In addition, the local stability analysis is completely
tractable. Interestingly, this is in contrast with the open problems encountered in the situa-
tions x+ x ≶ 0.

6.4 Advances on the QIF conjecture

As shown in Conjecture 1, the global stability analysis of QIF oscillators is an open problem.
Interestingly, even a local stability analysis is elusive, so that the local stability problem yields
a second conjecture on the dichotomic behavior of QIF oscillators. We report on several
advances on this second conjecture.

6.4.1 A second conjecture

We claim that the local stability of the QIF oscillators is in agreement with a dichotomic be-
havior. After deriving a general expression for the characteristic polynomial of the Jacobian
matrix, we conjecture that, in the case of QIF oscillators, all the eigenvalues are inside the
unit disk whenever x+ x > 0.

In full generality, the characteristic polynomial of the (Ng − 1)× (Ng − 1) Jacobian matrix
at the fixed point is given by

p(z) =

Ng−1
∑

k=0

pk z
k = zNg−1 +

Ng−2
∑

k=0

zk
Ng−2
∏

j=k

h′
j , (6.3)
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with h′
0 = |h′(θ∗

Ng−1)| and h′
k = |h′(θ∗

Ng−1 − θ∗
k)| for k = 1, . . . , Ng − 2.

From the fixed point equation, it follows that







f(θ∗
1) = f(2π − θ∗

Ng−1) + ǫ

f(θ∗
2) = f(2π − θ∗

Ng−1 + θ∗
1) + ǫ

...
f(θ∗

Ng−1) = f(2π − θ∗
Ng−1 + θ∗

Ng−2) + ǫ

. (6.4)

Then, (3.10) implies

h′
j =

F
(
f(θ∗

j+1) − ǫ
)

F
(
f(θ∗

j+1)
) =

F (x∗
j+1)

F (x∗
j+1 + ǫ)

, (6.5)

where one has introduced the notation x∗
j = f(θ∗

j ) − ǫ.
In addition, the x∗

i ’s can be determined through the fixed point equation. Given (6.4),
one writes







f−1(x∗
1) = 2π − θ∗

Ng−1 = 2π − f−1(x∗
Ng−1 + ǫ)

f−1(x∗
2) = 2π − θ∗

Ng−1 + θ∗
1 = 2π − f−1(x∗

Ng−1 + ǫ) + f−1(x∗
1 + ǫ)

...
f−1(x∗

n) = 2π − θ∗
Ng−1 + θ∗

Ng−2 = 2π − f−1(x∗
Ng−1 + ǫ) + f−1(x∗

Ng−2 + ǫ)

,

and it follows from the definition of f [see (2.5) and (2.4)] that the x∗
j ’s are determined by







∫ x∗

1
x

1
F (s) ds =

∫ x
x∗

Ng−1+ǫ
1

F (s) ds
∫ x∗

2
x∗

1+ǫ
1

F (s) ds =
∫ x

x∗

Ng−1+ǫ
1

F (s) ds

...
∫ x∗

Ng−1

x∗

Ng−2+ǫ
1

F (s) ds =
∫ x

x∗

Ng−1+ǫ
1

F (s) ds

. (6.6)

With a QIF dynamics, numerical simulations suggest great evidence that the eigenvalues
— that is, the roots of (6.3) — are asymptotically stable whenever x+x > 0, a fact that rein-
forces Conjecture 1 on the dichotomic behavior of QIF oscillators. The following conjecture,
summarizing (6.3), (6.5), and (6.6), is a weak (local) version of Conjecture 1.

Conjecture 2 (Local QIF conjecture). For the QIF model F (x) = S+x2 and for all Ng ≥ 2,
the fixed point of the (Ng − 1)-dimensional firing map is locally stable if and only if x+x > 0.
In other words, all the roots of the polynomial

p(z) = zNg−1 +

Ng−2
∑

k=0

zk
Ng−1
∏

j=k+1

F (x∗
j )

F (x∗
j + ǫ)

, (6.7)

with
∫ x∗

1

x

1

F (x)
dx =

∫ x∗

j+1

x∗

j
+ǫ

1

F (x)
dx =

∫ x

x∗

Ng−1+ǫ

1

F (x)
dx 1 ≤ j ≤ Ng − 2 , (6.8)

are inside the unit disk if and only if x+ x > 0.
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When x+x = 0, it is straightforward that (6.7) is a palindromic polynomial, corresponding
to the conservative limit case studied in Section 6.3.2.

The proof of Conjecture 2 should rely on two points: (i) extract from (6.8) the essential
properties of the x∗

j ’s, and (ii) use the resulting properties of (6.7) to determine the location
of the roots. In the sequel, we present some advances on Conjecture 2.

6.4.2 The case of three clusters

A network of Ng = 3 clusters, with a QIF dynamics, is characterized by a dichotomic behavior.
Indeed, Conjecture 2 can be solved for a polynomial of degree Ng − 1 = 2.

We consider the function Fǫ(x) = F (x)/F (x + ǫ), which plays a key role in the local
stability analysis, since it determines the coefficients of the polynomial (6.7). As shown in
Figure 6.5, the graph of Fǫ(·), which corresponds to a QIF dynamics, has two extrema for the
values

x(1)
e =

−ǫ−
√
ǫ2 + 4S

2
,

(6.9)

x(2)
e =

−ǫ+
√
ǫ2 + 4S

2
.
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e

Figure 6.5: For the QIF model F (x) = S + x2, the function Fǫ(x) = F (x)/F (x + ǫ) has two

extrema, at x = x
(1)
e and x = x

(2)
e .

The QIF model is characterized by a noticeable property: the two values (6.9) satisfy

∫ x
(1)
e

−∞

1

F (x)
dx =

1

2

∫ x
(2)
e

x
(1)
e +ǫ

1

F (x)
dx =

∫ ∞

x
(2)
e +ǫ

1

F (x)
dx =

1√
S

arctan

(

−ǫ+
√
ǫ2 + 4S

2
√
S

)

.

(6.10)
In the case of Ng − 1 = 2, the property is of great interest when compared with (6.8) and
Conjecture 2 can be solved.

Proposition 6.4.1. For the QIF model, the fixed point of the 2-dimensional firing map is
locally stable if and only if x+ x > 0.

Proof. We consider the different positions of x∗
1 and x∗

2 with respect to the extremum values

x
(1)
e and x

(2)
e , when x+ x > 0.
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• x∗
1 ≤ x

(1)
e and x∗

2 ≤ x
(2)
e

With these conditions, we have x∗
1 + x∗

2 ≤ −ǫ. It follows from condition (6.8), that is

∫ x∗

1

x

1

F (x)
dx =

∫ x∗

2

x∗

1+ǫ

1

F (x)
dx =

∫ x

x∗

2+ǫ

1

F (x)
dx , (6.11)

that x∗
1 + (x∗

2 + ǫ) > 0 since x + x > 0 and since 1/F (x) is even. However, this is in
contradiction with the above condition. The situation is thus impossible.

• x
(1)
e ≤ x∗

1 < x∗
2 ≤ 0

Since x∗
1 + ǫ < x∗

2, the conditions imply x∗
1 +x∗

2 + ǫ < 2x∗
2 ≤ 0. But again, it follows from

(6.11) and x+ x > 0 that x∗
1 + x∗

2 + ǫ > 0. There is a contradiction and the situation is
impossible.

• x∗
1 ≤ x

(1)
e and x∗

2 ≥ x
(2)
e

It follows from (6.11) that

∫ x
(2)
e

x
(1)
e +ǫ

1

F (x)
dx ≤

∫ x∗

2

x∗

1+ǫ

1

F (x)
dx =

∫ x

x∗

2+ǫ

1

F (x)
dx ≤

∫ ∞

x
(2)
e +ǫ

1

F (x)
dx.

This is in contradiction with the relationship (6.10) imposing

∫ x
(2)
e

x
(1)
e +ǫ

1

F (x)
dx >

∫ ∞

x
(2)
e +ǫ

1

F (x)
dx.

The situation is thus impossible.

• 0 ≤ x∗
1 < x∗

2

In this case, Fǫ(x) < 1 ∀x ∈ [x, x]. By the Eneström-Kakeya theorem [48], the two roots
of the polynomial (6.7), that is

p(z) = z2 + Fǫ(x
∗
2)z + Fǫ(x

∗
1)Fǫ(x

∗
2) , (6.12)

are inside the unit disk.

• x
(1)
e ≤ x∗

1 ≤ 0 ≤ x∗
2 ≤ x

(2)
e

It follows from x+ x > 0 and (6.11) that x∗
1 + x∗

2 + ǫ > 0. In addition, for any situation
x∗

1 + x∗
2 + ǫ = 0, one easily shows that Fǫ(x

∗
1)Fǫ(x

∗
2) = 1. Then, we consider without

loss of generality a transition from x∗
1 + x∗

2 + ǫ = 0 to x∗
1 + x∗

2 + ǫ > 0 where x∗
1 remains

constant while x∗
2 increases. Since dFǫ/dx < 0 for all x ∈ (x

(1)
e , x

(2)
e ), it follows that

Fǫ(x
∗
1)Fǫ(x

∗
2) < 1. As Fǫ(x

∗
2) < 1 holds, the polynomial (6.12) has all its roots inside

the unit disk.

• x
(1)
e ≤ x∗

1 ≤ 0 and x∗
2 ≥ x

(2)
e

Since Fǫ(x
∗
2) < 1, it remains to show that Fǫ(x

∗
1)Fǫ(x

∗
2) < 1 in order to prove that the

polynomial (6.12) has all its roots inside the unit circle.

We first consider the case x = ∞. Since x
(1)
e + ǫ = −x(2)

e , it follows from (6.10) that

∫ x
(2)
e

0

1

F (x)
dx =

∫ ∞

x
(2)
e +ǫ

1

F (x)
dx.
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Then, (6.11) implies that x∗
1 = −ǫ when x∗

2 = x
(2)
e . If x∗

1 > −ǫ/2, then Fǫ(x
∗
1) < 1 and it

directly follows that Fǫ(x
∗
1)Fǫ(x

∗
2) < 1. As a consequence, we only focus on the critical

interval (x∗
1, x

∗
2) ∈ I = [−ǫ,−ǫ/2]×[x

(2)
e , x

(2)
⋆ ], where x

(2)
⋆ > x

(2)
e is computed from (6.11)

such that x∗
2 = x

(2)
⋆ when x∗

1 = −ǫ/2 (Figure 6.6). When varying the threshold x, the
variation of x∗

1 as a function of x∗
2 is obtained from (6.11) and we have

x∗
1(x∗

2) =
(x∗

2)2 − ǫx∗
2 − S − ǫ2

2x∗
2 + ǫ

.

The equation Fǫ
(
x∗

1(x∗
2)
)
Fǫ(x

∗
2) = 1 has two real roots

x∗
2 =







(

−ǫ−
√
ǫ2 + 3S

)

/3 < 0
(

−ǫ+
√
ǫ2 + 3S

)

/3 < x
(2)
e

,

so that Fǫ(x
∗
1)Fǫ(x

∗
2) 6= 1 for every pair (x∗

1, x
∗
2) ∈ I. Since the product is continuous on

I and Fǫ(−ǫ/2)Fǫ(x
(2)
⋆ ) = Fǫ(x

(2)
⋆ ) < 1, one obtains that Fǫ(x

∗
1)Fǫ(x

∗
2) < 1 ∀(x∗

1, x
∗
2) ∈ I.

Next, we show that the proof still holds for any x < ∞. Without loss of generality,
we consider a transition from x = ∞ to x < ∞, where the value x∗

1 remains constant

while the value x∗
2 decreases. Since dFǫ/dx > 0 for x > x

(2)
e , the product Fǫ(x

∗
1)Fǫ(x

∗
2)

decreases and still satisfies Fǫ(x
∗
1)Fǫ(x

∗
2) < 1 when x < ∞.

− ǫ
2

−ǫ
x

(2)
e x

(2)
⋆

x

Fǫ(x)

1

x∗
1 x∗

2

Figure 6.6: The critical interval I, with −ǫ ≤ x∗
1 ≤ −ǫ/2 and x

(2)
e ≤ x∗

2 ≤ x
(2)
⋆ .

Proposition 6.4.1 shows that the clustering configuration of Ng = 3 clusters (of QIF
oscillators) is locally stable when x+x > 0. The (local) conjecture on the dichotomic behavior
of the QIF oscillators is then verified for three clusters.

To prove local stability in dimensions Ng − 1 > 2, a similar argument fails. The proof of
Proposition 6.4.1 uses Property (6.10), which can only be related to the conditions (6.8) when
Ng − 1 = 2. As a consequence, there is no hope to generalize the proof to higher dimensions
and a general proof of Conjecture 2 must rely on a different approach.

6.4.3 Curvature of the scalar firing map: a sufficient condition

With the condition h′′(θ) < 0 ∀θ, a local stability analysis is tractable and suggests that the
behavior is dichotomic. This result solves Conjecture 2 for a certain range of parameters and
shows that exponential integrate-and-fire oscillators have always a dichotomic behavior.
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As a preliminary to this result, we need the following lemma.

Lemma 6.4.1. Let
p(z) = anbnz

n + an−1bn−1z
n−1 + · · · + a0b0. (6.13)

If the following conditions hold:

• an > an−1 > · · · > a0 > 0 ,

• bn−k = bk ∀k ,

• The sequence {b0, b1, . . . , bn} is positive and convex, i.e. bk > 0 for all k and bk − bk−1

≤ bk+1 − bk for k = 1, . . . , n− 1,

then all roots of p(z) are strictly inside the unit disk.

Proof. The proof is not detailed here. Refer to [70] for a detailed sketch of the proof and to
[71] for the complete proof.

The coefficients bj are the coefficients of a palindromic polynomial, so that Lemma 6.4.1
is a generalization of Lemma 6.3.1.

Under the assumption h′′(θ) < 0 ∀θ, the local stability of the multidimensional firing maps
is established through Lemma 6.4.1.

Theorem 6.4.1. Provided that the dynamics satisfies Assumption 1 and that the correspond-
ing scalar firing map verifies h′′(θ) < 0 ∀θ ∈ [0, 2π], the fixed point of the (Ng −1)-dimensional
firing map (Ng > 2) is locally stable if and only if x+ x > 0.

Proof. The derivative h′ is related to Fǫ through (3.10) and h′′ < 0 ∀θ ∈ [0, 2π] implies
dFǫ/dx < 0 ∀x ∈ [x, x].

First, let’s consider an upper threshold x̌ = −x so that we have the conservative limit
case x + x̌ = 0. To this situation corresponds the coefficients ȟ′

j (see Section 6.3.2). If one
increases the upper threshold to recover the initial value x (that is, to recover x + x > 0),
(6.8) implies that all the values x∗

j increase. Since Fǫ is decreasing, it follows from (6.5) that
the values h′

j decrease and can therefore be expressed as the decomposition

h′
j = αj ȟ

′
j , j = 0, · · · , Ng − 2 , (6.14)

with 0 < αj < 1. In addition, it follows from the assumption h′′ < 0 that

0 < ȟ′
j < ȟ′

j−1, j = 1, · · · , Ng − 2 . (6.15)

Next, we show that the characteristic polynomial (6.3) is of the form of (6.13). Setting
aNg−1 = bNg−1 = 1 and

ak =

Ng−2
∏

j=k

αj , bk =

Ng−2
∏

j=k

ȟ′
j , k = 0, · · · , Ng − 2 ,

the inequality 0 < αj < 1 leads to aNg−1 > aNg−2 > · · · > a0 > 0 and (6.2) implies bNg−1−k = bk.

Finally, it follows from (ȟ′
k − 1)2 ≥ 0 and ȟ′

k−1 > ȟ′
k (6.15) that ȟ′

kȟ
′
k−1 + 1 − 2ȟ′

k ≥ 0. Since

ȟ′
k = bk/bk+1, one has the convexity condition bk − bk−1 ≤ bk+1 − bk for k = 1, · · · , Ng − 2.

Since the characteristic polynomial (6.3) satisfies the assumptions of Lemma 6.4.1, all the
eigenvalues are inside the unit disk and the fixed point is locally stable, which concludes the
proof.
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Through Theorem 6.4.1, the curvature condition on the scalar firing map appears as a
sufficient condition to ensure that the behavior of large networks is dichotomic. In other
words, this is a sufficient condition on the scalar firing map to extend the stability properties
of the scalar firing map to higher dimensions.

Theorem 6.4.1 yields important corollaries. Even though the QIF model does not satisfy
the property h′′(θ) < 0 ∀θ ∈ [0, 2π] in full generality, Theorem 6.4.1 solves Conjecture 2 when
the thresholds are between two bounds. The first corollary is summarized as follows:

Corollary 6.4.1. For the QIF model and for all Ng ≥ 2, the fixed point of the (Ng − 1)-

dimensional firing map is locally stable if and only if x + x > 0, provided that x > x
(1)
e and

x < x
(2)
e [see (6.9)].

Proof. The function Fǫ(x) is strictly decreasing for all x ∈ (x
(1)
e , x

(2)
e ). Then, (3.10) implies

that h′′(θ) < 0 ∀θ ∈ [0, 2π] if [x, x] ⊂ (x
(1)
e , x

(2)
e ). The result follows from Theorem 6.4.1.

The second Corollary clearly suggests that oscillators with an exponential integrate-and-
fire dynamics always exhibit a dichotomic behavior. This is of interest since they have a
dynamics similar to the dynamics of QIF oscillators.

Corollary 6.4.2. For the exponential vector field F (x) = S exp(x2) and for all Ng ≥ 2, the
fixed point of the (Ng − 1)-dimensional firing map is locally stable if and only if x+ x > 0.

Proof. The function Fǫ(x) = exp
( − (2ǫx + ǫ2)

)
is strictly decreasing on R. Then, (3.10)

implies that h′′(θ) < 0 ∀θ ∈ [0, 2π] and the result follows from Theorem 6.4.1.

Asymptotic limit of measures. The curvature condition h′′ < 0 is sufficient to solve the
local stability problem. Interestingly, the condition is also sufficient to obtain global results
in dimension Ng − 1 = 2. The following proposition characterizes the asymptotic limit of the
Lebesgue measure of a set, under the iterations of the firing map.

Proposition 6.4.2. Consider a dynamics satisfying Assumption 1 and such that the scalar
firing map satisfies h′′(θ) < 0 ∀θ. Then, for any set A ⊆ U , the corresponding 2-dimensional
firing map (Ng > 2) satisfies







lim
n→∞µL [Hn(A)] = 0 if x+ x > 0 ,

lim
n→∞µL

[
H−n(A)

]
= 0 if x+ x < 0 ,

where µL is the Lebesgue measure.

Proof. We first consider the case x+ x > 0. With the Jacobian matrix J, one has

µL [Hn(A)] =

∫

A

n−1∏

k=0

det
[

J
(
Hk(Θ)

)]

µ(dΘ) =

∫

A

n−1∏

k=0

|h′(θ(k)
1 )h′(θ(k)

2 )|µL(dθ1dθ2) ,

where Θ(k) = (θ
(k)
1 , θ

(k)
2 ), k ∈ N, is a trajectory of

θ
(k+1)
1 = h(θ

(k)
2 )

θ
(k+1)
2 = h(θ

(k)
2 − θ

(k)
1 )
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with the initial condition (θ
(0)
1 , θ

(0)
2 ) = (θ1, θ2). Then, one writes

µL [Hn(A)] =

∫

A

∣
∣
∣h′(θ(0)

1 )h′(θ(n−1)
2 )

∣
∣
∣

n−2∏

k=0

∣
∣
∣h′(θ(k+1)

1 )h′(θ(k)
2 )

∣
∣
∣ µL(dθ1dθ2) ,

=

∫

A

∣
∣
∣h′(θ(0)

1 )h′(θ(n−1)
2 )

∣
∣
∣

n−2∏

k=0

∣
∣
∣h′(h(θ

(k)
2 )

)
h′(θ(k)

2 )
∣
∣
∣ µL(dθ1dθ2) ,

≤
[

max
θ

( ∣
∣h′(θ)h′(h(θ)

)∣
∣

)]n

max
( ∣
∣
∣h′(θ(0)

1 )h′(θ(n−1)
2 )

∣
∣
∣

)

µL[A] .

(6.16)

Next, Property 6 yields h
(
h(θ) + ∆

)
= θ − ∆ with ∆ > 0 and it follows that

∣
∣h′(h(θ) + ∆

)
h′(θ)

∣
∣ = 1

Since h′ < 0 and h′′ < 0, one has |h′(h(θ) + ∆
)| > |h′(h(θ)

)| so that
∣
∣h′(θ)h′(h(θ)

)∣
∣ < 1 ∀θ,

which implies that

max
θ

( ∣
∣h′(θ)h′(h(θ)

)∣
∣

)

, C1 < 1 . (6.17)

In addition, Property 8 implies that H(Ũ) ⊂ Ũ so that θ
(n−1)
2 ∈ [0, h−1(0)] and h′(θ(n−1)

2 ) is
bounded. Then, one has

max
( ∣
∣
∣h′(θ(0)

1 )h′(θ(n−1)
2 )

∣
∣
∣

)

= max
θ∈[0,h−1(0)]

( ∣
∣h′(θ)

∣
∣2
)

, C2 < ∞ . (6.18)

Injecting (6.17) and (6.18) in (6.16) yields µL [Hn(A)] ≤ Cn
1 C2 µL[A], and µL [Hn(A)] → 0

when n → ∞.
The proof for the case x+ x < 0 relies on the proof for the case x+ x > 0. Consider the

firing maps H(a) and H(b) corresponding respectively to x(a) + x(a) < 0 and to the reversed
thresholds x(b) + x(b) = −(x(a) + x(a)) > 0. Then, Proposition 6.1.1 implies that

µL[Hn

(b)(A)] = µL[(T−1H(a)T)n(A)] = µL[T−1H−n

(a)T(A)] = µL[H−n

(a)(A)] ,

since one easy shows that the Lebesgue measure is invariant under L and therefore under
T = PL. The first part of the proof shows that µL[Hn

(b)(A)] → 0 when n → ∞, and so does

µL[H−n

(a)(A)]. This completes the proof.

This global result confirms the dichotomic behavior highlighted by the local result of
Theorem 6.4.1, for QIF oscillators (in some situations) and for exponential oscillators. When
x + x < 0, Proposition 6.4.2 implies that a network of three oscillators (or clusters) achieve
synchrony for almost every initial condition. The proof relies on a measure-based framework
similar to the approach used in [75] to prove synchronization of monotone oscillators. When
x+ x > 0, Proposition 6.4.2 does not prove global convergence to the phase-locked clustering
configuration, but implies that a closed dense orbit cannot be a limit set of the trajectories.
This precludes the existence of closed dense orbits, a phenomenon that is precisely observed
when the behavior is not dichotomic (Section 6.5).

For higher dimensions Ng − 1, the argument of Proposition 6.4.2 does not hold. Indeed, if
the dimension is greater than 2, the key property (6.17) is not sufficient to prove the result.
However, such a measure-based approach is closely related to ergodic theory and to operator-
theoretic methods (Perron-Frobenius operator) [64] that seem to be promising to obtain new
advances on the QIF problem.
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6.5 When the behavior is not dichotomic

When local stability is in contradiction with the overall behavior of the firing map (cf. Section
6.2.2), the fixed point has no global stability property and the behavior is not dichotomic. In
this section, we discuss a criterion, derived from the local analysis, that determines whether
a model has a dichotomic behavior or not. In addition, we provide a concrete example where
a network of “QIF-like” pulse-coupled oscillators does not exhibit a dichotomic behavior,
showing that the dichotomic behavior is not a general property of the “QIF-like” oscillators,
but a more subtle property that is not observed for every model. Non-dichotomic behaviors
are described in the rest of the section.

6.5.1 A criterion for the dichotomic behavior ?

In Section 6.4.3, we have seen that the curvature condition h′′ < 0 ∀θ, equivalent to the
condition dFǫ/dx < 0 ∀x, is sufficient to ensure that the local stability is in accordance with
a dichotomic behavior. This result suggests that the length of the interval

D , {x|dFǫ/dx < 0}

could be a good criterion to estimate whether the dichotomic behavior holds for a dynamics
ẋ = F (x).

• When D = R (the case of exponential oscillators), the length of D is infinite and local
stability results suggest that the behavior is always dichotomic (Theorem 6.4.1).

• If the interval D is short — it is not possible to have D = ∅ — then one can find values
x∗

k /∈ D, k ∈ {1, 2}, and a simple argument shows that a dichotomic behavior does not
always hold in dimension Ng − 1 = 2. This is summarized in the following proposition,
which provides a sufficient condition to ensure that the behavior is not dichotomic.

Proposition 6.5.1. Let a dynamics ẋ = F (x) satisfy Assumption 1. If there exists a real
X > ǫ/2 such that the values x∗

1 and x∗
2 satisfying

∫ x∗

1

−X

1

F (x)
dx =

∫ x∗

2

x∗

1+ǫ

1

F (x)
dx =

∫ X

x∗

2+ǫ

1

F (x)
dx (6.19)

are not in D, then the 2-dimensional firing map is not dichotomic for thresholds x ≈ −X and
x ≈ X. That is, the fixed point is locally unstable when x+ x > 0.

Proof. The hypothesis implies that there exist values {x∗
1, x

∗
2}, corresponding to the conser-

vative limit case Fǫ(x
∗
1)Fǫ(x

∗
2) = 1, such that x∗

k /∈ D for k = {1, 2}. Then, a slight increase
of x to get x + x & 0 increases the values x∗

k, so that Fǫ(x
∗
1)Fǫ(x

∗
2) & 1 since dFǫ/dx > 0 in

the neighborhood of x∗
k. The characteristic polynomial (6.12) implies that the fixed point is

unstable for x+ x & 0, which contradicts a dichotomic behavior.

The piecewise linear vector field F (x) = S + γ|x| is characterized by a short interval D (as
suggested in Figure 6.7) and satisfies the hypothesis of Proposition 6.5.1. Then, piecewise
linear oscillators can exhibit a non-dichotomic behavior. This is summarized in the following
corollary.
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Corollary 6.5.1. For F (x) = S + γ|x| with thresholds x + x ≈ 0, the behavior of the 2-
dimensional firing map is not dichotomic.

Proof. For piecewise linear dynamics, one has D = (−ǫ, 0). It follows from (6.19) that
x∗

1 + ǫ < 0 and x∗
2 > 0 so that x∗

k /∈ D, k ∈ {1, 2}, for any x ∈ R
+. Then, the proof fol-

lows from Proposition 6.5.1.

The reader will note that a non-dichotomic behavior is not a particular behavior that
results from the discontinuity of dF/dx at x = 0. Indeed, the proof of Corollary 6.5.1 clearly
shows that smoothing F (x) in a small neighborhood of x = 0 — so that F ∈ C∞ — does not
change the result. In addition, Proposition 3.3.2 implies that two piecewise linear oscillators
always exhibit a dichotomic behavior, in spite of the discontinuous dynamics.

D

−ǫ 0 x

Fǫ(x)

1

Figure 6.7: The function Fǫ for the piecewise linear vector field F (x) = S + γ|x| has a short
interval D = (−ǫ, 0).

The length of the interval D is a good criterion to determine whether a dichotomic behavior
holds. We have found a sufficient condition on large intervals to ensure that the behavior is
dichotomic (D = R) as well as a sufficient condition on short intervals to ensure that the
behavior is not dichotomic (see Proposition 6.5.1). However, finding out a necessary and
sufficient condition on the length of D to ensure that the behavior is dichotomic is so far an
open question.

The QIF dynamics has a medium-length interval D and satisfies none of both sufficient
conditions. The QIF model corresponds to an intermediate situation between two known
models: between the exponential model (dichotomic behavior) and the piecewise linear model
(non-dichotomic behavior). This intermediate situation makes the analysis of the QIF oscil-
lators difficult.

6.5.2 Non-dichotomic behavior

When the behavior is not dichotomic, the fixed point of the firing map has no global stability
property. Whereas local stability implies that the trajectories are attracted in the neighbor-
hood of the fixed point, the overall behavior implies that the trajectories are repelled far from
the fixed point, and vice versa. It is therefore obvious that the non-dichotomic dynamics is
more complex.

In the sequel, we describe the non-dichotomic behaviors, considering piecewise linear
integrate-and-fire oscillators.
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Two dimensions For the piecewise linear dynamics with thresholds x + x ≈ 0, the phase
portrait of the 2-dimensional firing map clearly shows the existence of a closed dense orbit,
which is either an ω-limit set1 of the trajectories (x+x > 0) or an α-limit set2 of the trajectories
(x+ x < 0).

• When x + x > 0, the fixed point is locally unstable while the overall behavior is con-
tracting, a situation characterized by a stable dense orbit. For any initial conditions,
the trajectories converge to the dense orbit and the behavior is quasiperiodic [Figure
6.8 (a)].

• When x+x < 0, the fixed point is locally stable while the overall behavior is expanding,
a situation characterized by an unstable dense orbit that corresponds to the boundary of
the basin of attraction of the fixed point. Consequently, two behaviors can be observed,
depending on the initial condition. For an initial condition inside the basin of attraction,
the trajectory asymptotically converges to the fixed point. On the other hand, for an
initial condition outside the basin of attraction, the trajectory converges to the boundary
of the domain (absorption) [Figure 6.8 (b)].

θ1

θ2

0

2π

2π

(a) Stable dense orbit (x + x > 0)

θ1

θ2

0

2π

2π

(b) Unstable dense orbit (x + x < 0)

Figure 6.8: When the behavior is not dichotomic, the fixed point has no global property and
a closed dense orbit is observed (ẋ = S + |x|, ǫ = 0.1, x = 1). (a) For x = −0.9 (case
x+ x > 0), the two trajectories converge to the closed dense orbit (black). (b) For x = −1.2
(case x+x < 0), a closed dense orbit is unstable: the trajectories either converge to the fixed
point (blue) or to the boundary of the domain (red).

The behavior is different from the dichotomic behavior. With thresholds x + x > 0, the
behavior of three clusters is quasiperiodic. With thresholds x+ x < 0, the behavior depends
on the initial condition: (i) the three clusters converge to the phase-locked configuration or
(ii) an absorption occurs and the two remaining clusters synchronize.

1The ω-limit set of a point Θ ∈ U is defined as the set
⋂

n>0
cl
(⋃

n>n
H

n(Θ)
)
, where cl denotes the closure

of the set.
2The α-limit set of a point Θ ∈ U is defined as the set

⋂

n>0
cl
(⋃

n>n
H

−n(Θ)
)
.
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Higher dimensions. When the behavior is non-dichotomic in higher dimensions, the fixed
point is a saddle-focus, so that a unidimensional dense orbit is still observed (Figure 6.9).

• When x + x > 0, the fixed point has two unstable eigenvalues and the two unstable
directions force convergence to the stable dense orbit. The behavior is quasiperiodic
[Figure 6.9 (a)].

• When x + x < 0, the fixed point has two stable eigenvalues. But contrary to the
2-dimensional case, the fixed point remains unstable since the other directions are un-
stable. The basin of attraction of the fixed point, delimited by the dense orbit, has zero
measure. Then, almost every trajectory converges to the boundary of the domain and
synchronization is achieved for almost every initial condition.

(a) Stable dense orbit (x+x > 0) (b) Unstable dense orbit (x + x < 0)

Figure 6.9: In higher dimensions, the fixed point is a saddle-focus. (For the sake of clarity,
the discrete-time trajectory is represented as a continuous one, in three dimensions.) (a) The
trajectory converges to the unidimensional dense orbit. (b) The trajectory converges neither
to the dense orbit nor to the fixed point.

Hopf bifurcations The closed dense orbit observed along with a non-dichotomic behavior is
always characterized by the same stability as the fixed point when the behavior is dichotomic.
In addition, Proposition 6.5.1 shows that the behavior is non-dichotomic for values x+x ≈ 0,
but does not preclude that the behavior be dichotomic for higher values. This suggests that
a non-dichotomic behavior is the result of a Hopf bifurcation that occurs when decreasing the
value |x+ x| from a high value.

• In the case x+ x > 0, a supercritical bifurcation occurs: the stable fixed point is turned
into a (unstable) saddle-focus with a stable closed orbit.

• In the case x+x < 0, a subcritical bifurcation occurs: the unstable fixed point is turned
into a (unstable) saddle-focus with an unstable closed orbit.

In the studies on LIF pulse-coupled oscillators with delayed transmissions [117], similar Hopf
bifurcations are observed for high coupling delays (seen also Section 5.5.2). Introducing delays



116 Chapter 6. Beyond monotone oscillators

actually suppresses the monotonicity and the symmetry properties of the oscillators dynamics
(see Section 7.2.3), so that it is not surprising that a dichotomic behavior does not persist
with important delays. In contrast, the present section shows that the dichotomic behavior
can be lost even with symmetric and non-delayed “QIF”-like dynamics.

Remark 6.5.1. In peculiar situations, the behavior is never dichotomic, even for the case
|x+ x| ≫ 0 that is characterized by a periodic behavior. A Hopf bifurcation is not observed,
but the periodic behavior becomes a quasiperiodic behavior when the closed dense orbit
appears. ⋄

Conservative limit case. Since the behavior is non-dichotomic for values x+x ≈ 0, it is of
interest to consider the conservative limit case x+ x = 0. The behavior in the neighborhood
of the fixed point is similar to the behavior observed in the dichotomic case (Section 6.3.1):
the fixed point, which is a marginal stable center, is encircled by a family of closed dense
orbits. However, the trajectories far from the fixed point can exhibit very complex patterns
(Figure 6.10) that contrast with the simple dynamics corresponding to a dichotomic behavior
(Figure 6.4).

(a) (b)

Figure 6.10: The trajectories of the 2-dimensional firing map exhibit complex evolutions.
(ẋ = 0.3 + |x|, ǫ = 0.2). (a) Near the fixed point, closed dense orbits encircle the fixed
point (red trajectories). (b) A zoom far from the fixed point shows complex patterns (blue
trajectories).

6.6 Infinite populations

The previous sections give clear insight that determining the dichotomic behavior of QIF and
“QIF-like” oscillators from the scalar firing map h(·) is a difficult question. In this section, we
focus on infinite populations of oscillators, investigating whether the continuum approximation
may lead to some advances on the conjectures that prevail with finite populations.

Numerical simulations clearly suggest that the behavior of infinite populations is in agree-
ment with the behavior of finite populations. For instance, infinite populations of QIF os-
cillators always exhibit a dichotomic behavior (convergence to either synchronous state or
asynchronous state). In contrast, infinite populations of piecewise linear integrate-and-fire
oscillators may exhibit a non-dichotomic behavior.
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Unfortunately, it appears that the local stability problem is still elusive, so that the contin-
uum approximation does not help to solve the QIF conjectures. However, the developments on
the local analysis presented in the section are important preliminaries for the results presented
in Chapter 7.

6.6.1 Local analysis

To investigate the dichotomic behavior of the “QIF-like” oscillators, we linearize the PDE
(5.1)-(5.3) around the stationary solution (5.11) and derive an eigenvalue equation for the
local analysis of the stationary solution.

The derivation of the eigenvalue equation is classical and follows similar lines as in [3, 117].
For the sake of simplicity, a new phase variable is introduced, which satisfies

dϑ

dθ
=

2πJ∗

ω +K Z(θ)J∗ , (6.20)

with ϑ = 0 (resp. ϑ = 2π) corresponding to θ = 0 (resp. θ = 2π). The new phase is such that
the oscillators have a constant velocity ϑ̇ = 2πJ∗ under the asynchronous regime J0 = J∗.
Next, the phase dynamics (5.6) is rewritten as

ϑ̇ =
dϑ

dθ
v(θ, t) = 2πJ∗ + (J0 − J∗)K Zϑ(ϑ) . (6.21)

The function

Zϑ(ϑ) =
dϑ

dθ
Z(θ) =

2πJ∗ Z(θ)

ω + J∗K Z(θ)
(6.22)

is interpreted as an iPRC related to phase ϑ and corresponds to the oscillators phase sensitivity
to a perturbation of the asynchronous regime. Defining the density ρϑ so that ρϑ dϑ = ρ dθ,
one has

J = ϑ̇ ρϑ . (6.23)

Next, considering the small variations j = J − J∗ (and j0 = J0 − J∗) around the stationary
solution, (6.21)-(6.23) are linearized and the density can be expressed as

ρϑ =
1

2π
+

1

2π J∗ j − K

4π2 J∗Zϑ(ϑ) j0 . (6.24)

The continuity equation
∂ρϑ

∂t
= −∂J

∂ϑ
,

which is equivalent to (5.1), becomes through (6.24) the linear PDE

∂j

∂t
= −2πJ∗ ∂j

∂ϑ
+
K

2π
Zϑ(ϑ)

dj0
dt

. (6.25)

To compute the eigenspectrum of the equation, an exponential solution j(ϑ, t) = j̄(ϑ) exp(λt)
is injected in (6.25). The linear differential equation for a mode j̄ has the solution

j̄(ϑ) = j̄(0) e−λϑ/(2π J∗)

(

1 +
K λ

4π2 J∗

∫ ϑ

0
Zϑ(s) eλs/(2π J∗)ds

)

. (6.26)
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Finally, evaluating (6.26) in ϑ = 2π and using the boundary condition (5.3), we obtain the
eigenvalue equation

eλ/J∗ − 1 =
K λ

4π2 J∗

∫ 2π

0
Zϑ(ϑ) eλϑ/(2π J∗)dϑ . (6.27)

The eigenvalue equation (6.27) has an infinity of solutions λn (n ∈ Z) whose real parts
determine the stability of the asynchronous state. When the real parts of the eigenvalues
are all negative, the asynchronous state is locally stable. When they are all positive, all the
modes are unstable and the flux tends to a Dirac function. When Z(θ) (and therefore Zϑ(ϑ))
is constant (for instance in the uncoupled case K = 0), the eigenvalues are λn = i n 2πJ∗ and
all lie on the imaginary axis: the asynchronous state is marginally stable (see also Remark
5.2.1).

Local analysis provides a useful insight to determine whether the behavior of the infinite
population is dichotomic. When the behavior is dichotomic, the eigenmodes are either all
stable or all unstable (depending on the value x+ x and on the coupling K). In other words,
the real part of all the eigenvalues must have the same sign.

As a preliminary result, the following proposition provides general properties of the eigen-
values.

Proposition 6.6.1. 1. 0 , λ0 is a solution of (6.27);
2. If λn is a solution of (6.27), then its complex conjugate λ†

n , λ−n is also a solution;
3. There exist solutions satisfying ℑ{λn} → ∞ which tend to

λ∞ , J∗ log

(
ω + J∗K Z(2π)

ω + J∗K Z(0)

)

+ i n 2πJ∗ (n → ∞) .

Proof. The first two points are trivial. The latter is proved as follows. Integrating by parts
the right hand of (6.27) yields

eλ/J∗ − 1 =
K

2π

[

Zϑ(2π)eλ/J∗ − Zϑ(0)
]

− K

2π

∫ 2π

0

dZϑ

dϑ
eλϑ/(2π J∗)dϑ . (6.28)

Considering that ℑ{λ} → ∞, the Riemann-Lebesgue lemma [18] implies that the integral in
(6.28) vanishes. Then it follows from (6.22) that (6.28) writes

eλ/J∗

=
ω + J∗ Z(2π)

ω + J∗ Z(0)
.

The solution of this equation is λ∞, which concludes the proof.

Proposition 6.6.1 implies that the real part ℜ{λ∞} has the same sign as K[Z(2π) − Z(0)].
Then, it follows from (2.6) that “QIF-like” oscillators are characterized by stable high fre-
quency modes — that is, ℜ{λ∞} < 0 — when K(x + x) > 0. This is in agreement with
the stability conditions presented in Table 6.1, conditions that correspond to a dichotomic
behavior with an excitatory coupling K > 0. As a consequence, the stability of the high
frequency modes, which depends on the sign of K(x+ x) only, always supports a dichotomic
behavior. However, since the eigenvalues of lower frequency can have real parts of opposite
sign, the result is not sufficient to ensure that a dichotomic behavior holds.
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The result of Proposition 6.6.1 (infinite populations) can be related with the result of
Property 8 (finite populations). Indeed, both results show that some stability properties —
overall behavior for finite populations or high frequency modes for infinite populations — are
always in agreement with a dichotomic behavior.

In the same idea, Proposition 6.1.1 has also its analog result:

Proposition 6.6.2. Consider two models (a) and (b) that both have the same “QIF-like”
dynamics satisfying Assumption 1, but with different thresholds satisfying x(a) = −x(b) and
x(a) = −x(b) (opposite values x + x). Then, the respective eigenvalues, solutions of (6.27),
satisfy ℜ{λn,(a)} = −ℜ{λn,(b)}.

Proof. Property 4 implies Z(a)(θ) = Z(b)(2π − θ) and it follows from (6.20) and (6.22) that
one has also Zϑ,(a)(ϑ) = Zϑ,(b)(2π− ϑ). In addition, one easily shows that the stationary flux
J∗ is the same for the two models. Then, the eigenvalue equation (6.27) for Zϑ,(a) can be
rewritten as

eλ/J∗ − 1 =
K λ

4π2 J∗

∫ 2π

0
Zϑ,(b)(2π − ϑ) eλϑ/(2π J∗)dϑ

or, after a change of variables,

e−λ/J∗ − 1 =
K (−λ)

4π2 J∗

∫ 2π

0
Zϑ,(b)(ϑ) e−λϑ/(2π J∗)dϑ .

If λn,(a) is an eigenvalue for Zϑ,(a), then −λn,(a) , λ−n,(b) is an eigenvalue for Zϑ,(b). Since

Proposition 6.6.1 implies λ−n,(b) = λ†
n,(b), one has ℜ{λn,(a)} = −ℜ{λn,(b)}, which completes

the proof.

Proposition 6.6.2 shows how models satisfying Assumption 1 are the most likely to exhibit
dichotomy: two opposite values x+ x (corresponding to two mirrored iPRC’s) yield two be-
haviors with opposite stability.

In spite of the above results, a complete local stability analysis of the continuum model
cannot be achieved, so that the continuum approximation fails to prove the QIF conjecture.
Whether the model satisfies Assumption 1 or not, the whole set of solutions of (6.27) can only
be obtained numerically: it is impossible to obtain an analytical characterization of all the
eigenvalues. (In the next chapter, an analytical characterization of the eigenvalues becomes
available, through the weak coupling limit.)

Remark 6.6.1 (Conservative limit case). In the limit case x+ x = 0, an infinite number of
eigenvalues lie on the imaginary axis. The asynchronous state is marginally stable, a behavior
that is in agreement with the behavior described in Section 6.3.

In the conservative limit case, one has θ = π and the oscillators have a symmetric iPRC
Z(θ) = Z(2π − θ). Given the resulting symmetry of Zϑ(ϑ) = Zϑ,e(ϑ− π), with Zϑ,e(·) an even
function, the eigenvalue equation (6.27) is written as

eλ/(2J∗) − e−λ/(2J∗) =
K λ

4π2 J∗

∫ π

−π
Zϑ,e(ϑ) eλϑ/(2π J∗)dϑ .

Assuming a purely imaginary solution λ = i|λ|, the equation becomes

sin

( |λ|
2 J∗

)

=
K |λ|

4π2 J∗

∫ π

0
Zϑ,e(ϑ) cos

( |λ|ϑ
2π J∗

)

dϑ
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and has an infinity of solutions. A symmetric iPRC Z(θ) = Z(2π − θ) is a necessary condition
to ensure an infinity of eigenvalues on the imaginary axis. ⋄

6.6.2 Dichotomic and non-dichotomic behaviors

As mentioned in Chapter 5, there is a perfect parallel between the behavior of finite popula-
tions and the corresponding behavior of infinite populations: finite and infinite populations
exhibit a similar behavior under identical assumptions.

Dichotomic behavior. Numerical simulations of the PDE, as well as the numerical solu-
tions of the eigenvalue equation (6.27), clearly suggest that the dichotomic behavior of QIF
oscillators and of exponential integrate-and-fire oscillators persists in the continuum limit.
The behavior is not described in this section since it is similar to the dichotomic behavior of
infinite populations of monotone oscillators (see Figure 5.1 and Figure 5.2).

Non-dichotomic behavior. For piecewise linear integrate-and-fire oscillators, one recovers
the (non-dichotomic) behavior of finite populations (Section 6.5.2). For high values x + x
(θ ≈ 0), the asynchronous state is stable, as for oscillators with a dichotomic behavior. When
x+x is decreased under a critical value, the system undergoes a supercritical Hopf bifurcation
and the flux oscillates under the influence of the second (unstable) mode (Figure 6.11).

It is noticeable that the situation of periodic flux corresponds to a quasiperiodic behavior of
finite populations. Actually, even in infinite populations, a single oscillator in the continuum
does not fire in phase with the flux but has a quasiperiodic behavior. While macroscopic
quantities evolve periodically, microscopic quantities evolve in a quasiperiodic way. A similar
situation was initially described in [60, 117] for LIF oscillators with delayed transmissions.
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Figure 6.11: Near the Hopf bifurcation, (a) the flux is periodic and (b) there are two high
density regions, in which the oscillators tend to gather. (The oscillators have the dynamics
ẋ = 1 + |x|, with x = −0.6, x = 1, and K = 0.5.)

An important observation is the phenomenon of clustering. Under the influence of the
unstable mode, Figure 6.11 (b) clearly shows that the oscillators tend to gather into 2 clusters.
The phenomenon is accentuated for x+x ≈ 0 (θ ≈ π), a situation where no stable limit cycle
is observed, so that the unstable mode strongly affects the behavior. The (second) unstable
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mode grows exponentially and the flux tends to a series of Dirac functions, characterized by
two Dirac functions per period [Figure 6.12 (a)]. In this situation, the continuum of oscillators
clearly splits into two distinct clusters [Figure 6.12 (b)].

The present clustering behavior is different from the clustering behavior of finite popu-
lations, which is described in Chapter 4. In the present case, it is not a consequence of an
absorption phenomenon, but a (more inherent) consequence of the non-dichotomic dynamics
of the oscillators. In addition, the number of clusters does not depend on the initial conditions,
but is determined by the number n of the unstable mode.
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Figure 6.12: For x+x ≈ 0, (a) the flux is a series of Dirac functions, with two Dirac functions
per oscillator period (T ≈ 0.9), and (b) the oscillators gather in two clusters. (The dynamics
is the same as in Figure 6.11, except for x = −0.8.)

6.7 Conclusion

This chapter, which was devoted to the study of “QIF-like” oscillators, has showed that a
local analysis is significant to capture the global dichotomic behavior of the oscillators and
sufficient to detect situations characterized by a non-dichotomic behavior. Interestingly, the
local analysis suggests that the dichotomic behavior still persists in large populations of QIF
oscillators whereas it does not persist with piecewise linear oscillators, in which case the
population may exhibit rich and complex non-dichotomic behaviors. As a consequence, the
dichotomic behavior is not an obvious and regular property of large populations of “QIF-like”
oscillators.

The stability problem of the QIF oscillators is a standing conjecture that holds both for
finite and infinite populations. However, the stability problem is solved with other models.
On the one hand, finer assumptions on the firing map ensure the dichotomic behavior of
exponential integrate-and-fire oscillators. On the other hand, strong conditions ensure the
non-dichotomic behavior of piecewise linear integrate-and-fire oscillators. The QIF oscillators,
that satisfy none of these conditions, appear as an intermediate situation between the two
simpler situations, an intermediate situation for which the conjecture is “surrounded” by the
results obtained for smaller networks and/or for the other dynamics (Table 6.2).

A promising approach to solve the QIF conjecture is to exploit the strong average prop-
erties of the firing map. In the present chapter, the property of the dynamics have been
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considered only over one iteration of the firing map. However, it could be of interest to fo-
cus on a larger time horizon by considering statistical time averages over several iterations
through operator-theoretic methods (Perron-Frobenius operator).

In the next chapter, we simplify the study of “QIF-like” oscillators by considering the
weak coupling limit. This approximation is more amenable to local stability analysis and
solves the (local) QIF conjecture. In addition, the weak coupling approximation is suitable
for averaging techniques that may capture the average properties of the dynamics.

Number
of clusters

Monotone
(LIF, etc.)

Exponential, QIF
with bounded [x, x]

QIF

Ng = 2

Ng = 3

Ng > 3

Table 6.2: Summarizing the results obtained for the dichotomic behavior of different integrate-
and-fire models, the table shows that the QIF conjecture (white cell) is “surrounded” by the
other global results (dark gray cells) and local results (light gray cells).



Chapter 7

Weak coupling limit and averaging

As highlighted in Chapter 6, the study of large networks of non-monotone pulse-coupled
oscillators is not trivial. The analysis of the remarkable dichotomic behavior of QIF oscillators
is elusive, both for finite and infinite populations, leading to a standing conjecture not only
for the global analysis but also for the local analysis. In the present chapter, we show that the
weak coupling approximation overcomes all these difficulties and solves the QIF conjecture.
Through a weak coupling assumption, local analysis is completely tractable and yields an
explicit criterion for the dichotomic behavior of the oscillators. In particular, while Chapter
6 suggests that the continuum limit does not help to solve the conjectures, the weak coupling
approximation shows that the continuum limit is more amenable to study in the case of
general models of pulse-coupled oscillators.

Beyond local results, networks of weakly (pulse-coupled) oscillators are amenable to av-
eraging techniques. As shown in [58], averaging the dynamics of the oscillators yields an
averaged model that is similar to the Kuramoto model [4, 59, 104]. Since the averaging tech-
niques capture the average properties of the network in a better way than the firing map
does, a global analysis of the averaged model is more tractable. For instance, the results of
Chapter 4 are exploited to show that the averaged model has strong contraction properties,
a global result that can be related to consensus problems in multiagent systems. In addition,
averaging is a promising approach to the global stability problem.

The chapter is organized as follows. In Section 7.1, we derive the stability criteria for
the behaviors of finite and infinite populations. The two criteria are applied in Section 7.2 to
solve the local QIF conjecture and to highlight the dichotomic behavior in infinite populations
of “QIF-like” oscillators. In addition, the section is also devoted to the study of delayed
transmissions and to the study of more complex dynamics (e.g. Hodgkin-Huxley model).
In Section 7.3, we consider the averaged dynamics of the pulse-coupled oscillators both for
monotone and QIF dynamics.

The main contributions of the chapter are (i) the two stability criteria, that are efficiently
applied to solve a QIF conjecture and to study extensions of the original model and (ii)
the contraction property of the averaged dynamics of monotone oscillators. Some results
presented in this chapter are published in [74].
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7.1 Local analysis of finite and infinite populations

In the preceding chapter, the local stability analysis is limited because the eigenvalue equation
has no analytical solution (both for finite and infinite populations). Only qualitative properties
of the eigenvalues can be derived from the eigenvalue equation. In contrast, an analytical
characterization of the eigenvalues becomes available when the coupling is weak. Indeed, the
eigenvalue equation for a weak coupling (ǫ ≈ 0, K ≈ 0) can be linearized around the known
solutions of the uncoupled case (ǫ = K = 0), a process that provides an explicit expression
of the eigenvalues. Through this process, similar stability criteria are obtained for finite and
infinite populations, showing the strong parallel between finite and infinite populations.

Under the weak coupling assumption, absorptions never occur so that a cluster is never
observed. Thus, one always considers Ng = N throughout the present chapter.

7.1.1 A stability criterion for finite populations

In this section, we consider the characteristic polynomial (6.7) and we investigate how the
eigenvalues corresponding to the uncoupled case are modified when a weak coupling is added.
This yields a general criterion for the stability of finite populations of weakly pulse-coupled
oscillators.

The coefficients of (6.7) are linearized around the values corresponding to the uncoupled
case. In the uncoupled case, the fixed point is the splay state θ∗

j = j2π/N (x∗
j = f(j2π/N)),

according to (6.4). Then, one has

F (x∗
j )

F (x∗
j + ǫ)

= 1 − ǫ
dF

dx
(x∗

j )
1

F (x∗
j )

+ O(ǫ2) = 1 + ǫZ ′
(

j
2π

N

)

+ O(ǫ2) , (7.1)

where the last equality follows from (2.9). [Equality (7.1) can also be obtained through
(3.9) and (6.5). Indeed, (3.3) implies Zǫ ≈ ǫ Z for a weak coupling and one has h(θ) =
2π − θ + ǫ Z(2π − θ).] Next, the coefficients of the polynomial are given by

pk =
N−1∏

j=k+1

F (x∗
j )

F (x∗
j + ǫ)

= 1 + ǫ
N−1∑

j=k+1

Z ′
(

j
2π

N

)

+ O(ǫ2)

an expression that involves the first derivative of the iPRC. Then, for a weak coupling ǫ ≪ 1,
(6.7) is rewritten as

p(z) =
N−1∑

k=0

zk + ǫ
N−2∑

k=0

N−1∑

j=k+1

Z ′
(

j
2π

N

)

zk . (7.2)

The first sum is the characteristic polynomial for the uncoupled oscillators; the second sum
appears as a perturbation of the first sum.

At this stage, an important trick is to multiply (7.2) by (z − 1) — as in the proof of
Lemma 6.3.1. Such a modification, whose motivation is intuitively explained in Section 7.1.3,
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dramatically simplifies the polynomial (7.2). Indeed, we obtain

(z − 1) p(z) = zN − 1 + ǫ
N−2∑

k=0

N−1∑

j=k+1

Z ′
(

j
2π

N

)

(zk+1 − zk) ,

= zN − 1 + ǫ
N−1∑

k=1

N−1∑

j=k

Z ′
(

j
2π

N

)

zk − ǫ
N−2∑

k=0

N−1∑

j=k+1

Z ′
(

j
2π

N

)

zk ,

= zN − 1 + ǫ
N−1∑

k=1

Z ′
(

k
2π

N

)

zk − ǫ
N−1∑

k=1

Z ′
(

k
2π

N

)

.

The polynomial is thus the polynomial zN − 1 perturbed according to

(z − 1) p(z) = zN − 1 + ǫ e(z) ,

where the perturbation polynomial e(z) = eNz
N + eN−1z

N−1 + · · · + e0 has the coefficients

e0 = −
N−1∑

k=1

Z ′
(

k
2π

N

)

,

ek = Z ′
(

k
2π

N

)

k = 1, . . . , N − 1 , (7.3)

eN = 0 .

In the sequel, we analyze the sensitivity of the eigenvalues to the perturbation. Since the
roots of zN −1 lie on the unit circle, we investigate whether all the roots λn, n = 0, . . . , N−1,
move into the unit circle under the effect of the (infinitesimal) perturbation ǫ e(z). First, the
roots must satisfy

d

dǫ

[

λN
n − 1 + ǫ e(λn)

]

=

(

λN−1
n + ǫ

N∑

k=1

ekλ
k−1
n

)

dλn

dǫ
+ e(λn) = 0 .

For ǫ = 0, the roots are λn = ein2π/N and move under the perturbation according to the
direction

dλn

dǫ

∣
∣
∣
∣
ǫ=0

= −
N∑

k=0

ek e
i

2π(k+1)n

N .

This direction points inward if and only if

ℜ
{(

N∑

k=0

ek e
i

2π(k+1)n

N

)
(

ei 2πn
N

)†
}

= ℜ
{

N∑

k=0

ek e
i 2πkn

N

}

≥ 0 ∀n ∈ {0, . . . , N − 1} . (7.4)

[We note that the condition is equivalent to ℜ{V.(e0 . . . eN )T } ≥ 0, where V is the Vander-
monde matrix of the roots exp(i2πn

N ).]

Finally, injecting (7.3) in (7.4), we obtain the following criterion for the stability of the
fixed point of the firing map.
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Criterion 1. Under the assumption of weak coupling, all the eigenvalues (roots of (6.7)) are
stable if and only if

−
N−1∑

k=1

Z ′
(

k
2π

N

)

+
N−1∑

k=1

Z ′
(

k
2π

N

)

cos

(
kn2π

N

)

≥ 0 ∀n ∈ {0, . . . , N − 1} . (7.5)

All the eigenvalues are unstable if the inequality is inverted.

For the value n = 0, the above expression is always equal to zero. Actually, this situation
corresponds to the root z = 1 that we have previously introduced by multiplying the polyno-
mial by (z − 1). Since this root does not vary under the effect of the coupling, it is logical
that its sensitivity to the perturbation is equal to zero.

It is noticeable that local stability of finite populations requires little information on the
iPRC. Indeed, Criterion 1 imposes conditions on the derivative of the iPRC at N − 1 given
phase values only: θ = 2π/N, 4π/N, . . . , 2π(N − 1)/N . The other values have no influence on
the local stability.

Criterion 1 is of paramount importance to determine the behavior of weakly pulse-coupled
oscillators. If the criterion is satisfied, it indicates a dichotomic behavior. When the criterion
is not satisfied for some values n, the corresponding eigenvalues are not stable, while the other
eigenvalues are stable, a situation that is characteristic of a non-dichotomic behavior.

The stability criterion is very general, since it imposes no condition on the iPRC. In
particular, it applies to oscillators that do not satisfy Assumption 1, and even to pulse-coupled
oscillators that do not have an integrate-and-fire dynamics.

7.1.2 A stability criterion for infinite populations

To complement the previous result, we introduce a stability criterion equivalent to Criterion
1, but for infinite populations of weakly pulse-coupled oscillators.

In the uncoupled case, the stationary density (5.11) is a constant ρ∗ = J∗/ω and it follows
that 2π J∗ = ω since ρ∗ is normalized on [0, 2π]. Then, (6.20) implies ϑ = θ and (6.22) leads
to Zϑ(ϑ) = Z(θ). In addition, the eigenvalues, solutions of (6.27) with K = 0, are given by
λn = i n ω.

For a weak coupling K ≪ 1, the eigenvalue equation (6.27) is linearized around the
solutions of the uncoupled case. Considering the small variations λn = i n ω + δλn and
J∗ = ω/2π + δJ∗, the linearization of (6.27) leads to

2π

ω
δλn − i

4π2 n

ω
δJ∗ = i

nK

2π

∫ 2π

0
ei nθZ(θ) dθ + O(K2) . (7.6)

Taking the real part of (7.6) finally yields

ℜ{δλn} = ℜ{λn} = −K nω

4π2

∫ 2π

0
Z(θ) sin(nθ) dθ + O(K2) ,

or equivalently

ℜ{λn} =
K nω

2π
ℑ{Ẑn} + O(K2) , (7.7)
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with Ẑn the nth Fourier coefficient of the iPRC, that is

Ẑn =
1

2π

∫ 2π

0
Z(θ) e−inθ dθ .

The result is summarized in the following criterion.

Criterion 2. Under the assumption of weak coupling, all the eigenvalues (solutions of (6.27))
are stable if and only if

K

∫ 2π

0
Z(θ) sin(nθ) dθ ≥ 0

(

or K ℑ{Ẑn} ≤ 0
)

∀n ≥ 0 (n ∈ N) . (7.8)

All the eigenvalues are unstable if the inequality is inverted.

For the value n = 0, the above expression is always equal to zero. This situation corre-
sponds to the eigenvalue λ0 = 0.

Contrary to Criterion 1, Criterion 2 is in fact not new: the expression (7.7) appears in
[3, 60] to study the local stability of weakly pulse-coupled LIF oscillators. However, Criterion
2 is general, so that we will fully exploit the result to study more general oscillators, including
the QIF oscillators. In Section 7.2, we solve the (local) QIF conjectures not only for infinite
populations, through Criterion 2 but also for finite populations through Criterion 1.

7.1.3 Parallel between finite and infinite populations

The results of Chapter 4 and Chapter 5 on monotone oscillators underline the strong parallel
between the analysis of finite populations and the analysis of infinite populations. In addition,
Chapter 6 shows the same coherence for the dichotomic behavior of finite and infinite popu-
lations of “QIF-like” oscillators. As a brief digression, we still put emphasis on this elegant
analogy, highlighting the strong relations between a discrete-time system for finite populations
(the firing map) and a continuous-time system for infinite populations (the transport PDE).

Eigenvalues. In the uncoupled case ǫ = K = 0, for finite populations, the eigenvalues of
the time-Discrete firing map, roots of (6.7), are given by λD = exp(i n2π/N). For infinite
populations, in contrast, the eigenvalues of the time-Continuous transport equation, solutions
of (6.27), are given by λC = i n 2πJ∗. This suggests a relationship between the eigenvalues of
the discrete-time and continuous-time systems:

λD ≡ exp

(
λC

NJ∗

)

. (7.9)

Through this relationship, the eigenvalue equation (6.27) with K = 0 is rewritten as the
polynomial

λN
D − 1 = 0 . (7.10)

Interestingly, the characteristic polynomial (6.7) with ǫ = 0 is not (7.10) but

λN−1
D + λN−2

D + · · · + λD + 1 = 0 . (7.11)
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While λD = 1 (λC = 0) is an eigenvalue for (7.10), it is not an eigenvalue for (7.11). But if
this eigenvalue is introduced in the polynomial, that is, if (7.11) is multiplied by (λ− 1), then
the two polynomials become identical.

For finite populations, the dimension of the system (N − 1) is not equal to the number of
oscillators N , since the oscillator firing at phase θ = 0 is artificially removed. This reduced
dimension corresponds to a “modified dynamics” for which a global analysis (such as in
Chapter 4) is more tractable. Surprisingly, for the local stability, an elegant mathematical
expression is lost with the modified dynamics (see (7.11)). As a consequence, reintroducing a
rigid (marginally stable) mode through the additional eigenvalue simplifies the local analysis
(see (7.10)). The proof of Lemma 6.3.1 and the derivation of Criterion 1 are illustrations of
such a simplification.

In full generality, the eigenvalue equation (6.27) for infinite populations is closely related
to the characteristic polynomial (6.7) for finite populations. Indeed, according to (7.9), the
eigenvalue equation (6.27) is interpreted as the polynomial (6.7) of infinite degree and multi-
plied by (z − 1).

Stability criterion. To complement the above discussion, it is also easy to see that Cri-
terion 2 is the continuous analog of Criterion 1. Indeed, integrating (7.8) by parts and
considering an excitatory coupling K > 0 yield

−
∫ 2π

0
Z ′(θ) dθ +

∫ 2π

0
Z ′(θ) cos(nθ) dθ ≥ 0 ,

an inequality that is similar to (7.5). While local stability of finite populations only depends
on N −1 values of the iPRC, local stability of infinite populations depends on N → ∞ values,
that is, it depends on the iPRC over the whole interval [0, 2π].

The two criteria show that local stability is closely related to the derivative of the iPRC.
According to Criterion 1, local stability of finite populations depends on the Fourier coefficients
of a discrete sample of Z ′(θ). Similarly, local stability of infinite populations is also related
to the Fourier coefficients of Z ′(θ), since (7.7) yields

ℜ{λn} =
K ω

2π
[Z(2π) − Z(0)] − K ω

2π
ℜ{Ẑ ′

n} =
K ω

2π

(

Ẑ ′
0 − ℜ{Ẑ ′

n}
)

.

These observations are in agreement with the results of Chapter 5, which highlight the key
role of the derivative of the iPRC.

The main difference between Criterion 1 and Criterion 2 is that Criterion 2 is easier to
use: it is simpler to handle integrals instead of series. In the case of large numbers N , we will
therefore prefer Criterion 2, which is more amenable to analytical calculations.

7.2 Dichotomic behavior of weakly coupled oscillators

Criterion 1 and Criterion 2 are powerful results to study the dichotomic behavior of weakly
pulse-coupled oscillators: when the criteria show that all the eigenvalues have the same sta-
bility, they support a dichotomic behavior of the oscillators. A noticeable result is that the
stability criteria prove the dichotomic behavior of QIF oscillators for finite and infinite pop-
ulations, so that the QIF conjecture is solved in the weak coupling limit. Through Criterion
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2, one also recovers, in the case of infinite populations, all the results known for finite popu-
lations of “QIF-like” oscillators (see Chapter 6). In addition, the stability criterion applies to
more general situations: oscillators with delayed transmissions and oscillators that have not
an integrate-and-fire dynamics (such as the realistic Hodgkin-Huxley and Fitzhugh-Nagumo
oscillators).

7.2.1 Weakly coupled QIF oscillators have a dichotomic behavior

In this section, we solve the (local) QIF conjecture both for finite and infinite populations,
showing that weakly pulse-coupled QIF oscillators always exhibit a dichotomic behavior.

Finite populations. The main result, obtained through Criterion 1, is given in Proposition
7.2.1. As a preliminary to this result, we need the following lemma.

Lemma 7.2.1. Consider N ∈ N with N ≥ 2 and a ∈ (0, 1). Then, for all n = 1, . . . , N − 1,

sin
(

N−1
N aπ

)

sin
(

aπ
N

) − 1

2
(−1)n




sin
(

N−1
N (nπ + aπ)

)

sin
(

1
N (nπ + aπ)

) +
sin
(

N−1
N (nπ − aπ)

)

sin
(

1
N (nπ − aπ)

)



 > 0 . (7.12)

Proof. The proof of Lemma 7.2.1 can be found in Appendix A.4.

Proposition 7.2.1. For weakly pulse-coupled QIF oscillators and for all N ≥ 2, the fixed
point of the (N − 1)-dimensional firing map is locally stable if and only if x+ x > 0.

Proof. According to Table 2.1, the iPRC of QIF oscillators is given by Z(θ) = ω
S cos2

(√
S

ω (θ − θ)
)

.

Using the equality

N−1∑

k=1

sin(k x+ b) =
sin
(

N−1
2 x

)

sin(x/2)
sin

(
N x

2
+ b

)

,

straightforward but lengthy computations of (7.5) yield

−
N−1∑

k=1

Z ′
(

k
2π

N

)

+
N−1∑

k=1

Z ′
(

k
2π

N

)

cos

(
kn2π

N

)

=
1√
S

sin

(

2
√
S

ω
(π − θ)

)

×



sin
(

N−1
N

2
√

S
ω π

)

sin
(

1
N

2
√

S
ω π

) − 1

2
(−1)n




sin
(

N−1
N (nπ + 2

√
S

ω π)
)

sin
(

1
N (nπ + 2

√
S

ω π)
) +

sin
(

N−1
N (nπ − 2

√
S

ω π)
)

sin
(

1
N (nπ − 2

√
S

ω π)
)







 .

(7.13)

In addition, one easily shows that (see Table 2.1)

ω > 2
√
S , 2

√
S|π − θ|/ω < π . (7.14)

Lemma 7.2.1 with a = 2
√
S/ω < 1 implies that the sign of (7.13) is given by the sign of

sin
(

2
√

S
ω (π − θ)

)

. Then, it follows from (7.14) that (7.13) is positive for θ < π, or equivalently

for x+x > 0 (see Property 4 and Table 6.1). Criterion 1 is thus satisfied if and only if x+x > 0,
which completes the proof.
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Through Proposition 7.2.1, Conjecture 2 is proved under the assumption of weak coupling.
This is a noticeable advance on the open problems arising from the study of QIF oscillators.

The proof of Proposition 7.2.1, as well as the proof of Lemma 7.2.1, is tedious. In con-
trast, the next paragraph shows that an equivalent proof for infinite populations is more
straightforward.

Infinite populations. Infinite populations of weakly pulse-coupled QIF oscillators also
exhibit a dichotomic behavior. The result, obtained through Criterion 2, is summarized in
the following proposition.

Proposition 7.2.2. For a continuum of weakly pulse-coupled QIF oscillators, the asyn-
chronous state is locally stable if and only if K (x+ x) > 0.

Proof. According to Table 2.1, the iPRC of QIF oscillators is given by Z(θ) = ω
S cos2

(√
S

ω (θ − θ)
)

.

Then, straightforward computations of (7.8) lead to

K

∫ 2π

0
Z(θ) sin(nθ) dθ = K

2π nω3 sin(4π2
√
S/ω)

S(ω2n2 − 4S)
sin

[

2
√
S

ω

(

π − θ
)
]

, n > 0 .

It follows from (7.14) that the above expression is positive for K (π − θ) > 0, or equivalently
for K (x + x) > 0 (see Property 4 and Table 6.1). Criterion 2 is thus satisfied if and only if
K (x+ x) > 0, which completes the proof.

Proposition 7.2.2 extends the result of Proposition 7.2.1 to infinite populations. In con-
trast with the lengthy proof of Proposition 7.2.1, the proof of Proposition 7.2.2 is much
more straightforward, a simplification that illustrates the interest of approximating a large
population by its continuum limit.

7.2.2 “QIF-like” oscillators

In Chapter 6, some results have been obtained on the dichotomic behavior of finite populations
of “QIF-like” oscillators. In contrast, no equivalent result has been obtained for infinite
populations. In this section, we apply Criterion 2 to study the behavior of infinite populations
of “QIF-like” oscillators and we recover the results known in the case of finite populations.
This still reinforces the parallel between finite and infinite populations.

Curvature of the iPRC. Section 6.4.3 provides a sufficient condition on the curvature of
the firing map to ensure that the behavior is dichotomic, in the case of finite populations.
The following proposition complements the result for infinite populations.

Proposition 7.2.3. Consider a continuum of weakly pulse-coupled integrate-and-fire oscilla-
tors which (i) satisfy Assumption (1) and (ii) have an iPRC satisfying Z ′′(θ) < 0 ∀θ ∈ [0, 2π].
Then, the asynchronous state is locally stable if and only if K (x+ x) > 0.

Proof. It follows from Property 4 that the iPRC can be rewritten as (2.14), with Z ′′
e (θ) < 0.

Then, we define

In(θ) ,
∫ 2π

0
Z(θ) sin(nθ) dθ =

∫ 2π

0
Ze(θ − θ) sin(nθ) dθ
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and compute the variation of In(θ) (n > 0) corresponding to a variation of the symmetry
point θ. This yields

dIn

dθ
= −

∫ 2π

0
Z ′

e(θ − θ) sin(nθ) dθ =
1

n

(

Z ′
e(2π − θ) − Z ′

e(−θ) −
∫ 2π

0
Z ′′

e (θ − θ) cos(nθ) dθ

)

<
1

n

(

Z ′
e(2π − θ) − Z ′

e(−θ) −
∫ 2π

0
Z ′′

e (θ − θ) dθ

)

= 0 .

When θ = π (conservative limit case), the 2π-periodic function Z(·) is even, so that In(θ) = 0.
Then, it follows that In(θ) > 0 ∀n > 0 for θ < π, or equivalently for x+ x > 0 (see Property
4 and Table 6.1). Criterion 2 is thus satisfied if and only if K (x + x) > 0, which completes
the proof.

Provided they have a concave-down iPRC, infinite populations of “QIF-like” oscillators
exhibit a dichotomic behavior. One easily verifies — through (2.9) — that the result applies
to exponential integrate-and-fire oscillators.

The curvature condition on the iPRC is the analog of a curvature condition on the firing
map, so that Proposition 7.2.3 for infinite populations corresponds to Theorem 6.4.1 for finite
populations.

Piecewise linear oscillators. Previous results show that finite populations of piecewise
linear integrate-and-fire oscillators are not always characterized by a dichotomic behavior.
Through Criterion 2, we show that it is still the case for infinite populations, confirming the
numerical experiments presented in Section 6.6.2.

According to Table 2.1, the iPRC of piecewise linear integrate-and-fire oscillators is given
by Z(θ) = ω

S exp(− γ
ω |θ − θ|). In the weak coupling limit, straightforward computations of

(7.7) yield the eigenvalues

ℜ{λn} =
K n2 ω3

2π2S(γ2 + n2ω2)

[

−γ

n
sin(n θ) + ω e−πγ/ω sinh

(
γ

ω
(θ − π)

)]

.

The second term of the right hand, which dominates for n ≫ 1, has a constant sign for all n.
However, the first term is not negligible for lower values n and has a sign which depends on
n. For some parameters, the values ℜ{λn} with a low n can be both positive and negative,
depending on n (see Figure 7.1), so that there is always at least one unstable eigenvalue. As
in the case of a finite population, the behavior is not dichotomic.

7.2.3 Transmission delays

In the weak coupling limit, considering transmission delays is a straightforward extension of
the model. In particular, for infinite populations, we show that Criterion 2 is perfectly suited
to consider a distribution of time delays and leads to an elegant formulation of the stability.
We investigate whether delays modify or preserve the dichotomic behavior of the oscillators.

Transmissions delays can be induced by a non-instantaneous coupling, characterized by
smoothed pulses E(t) instead of δ-like pulses (see e.g. α-functions in Section 5.5.2). Then,
as shown in [118], oscillators with delayed transmissions are equivalent to oscillators with no
delay but characterized by the equivalent iPRC

Zd(θ) =

∫ ∞

0
Z(θ + ξ)E(ξ/ω) dξ , (7.15)
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Figure 7.1: Piecewise linear oscillators have not a dichotomic behavior. When x < −0.5, one
has ℜ{λ2} > 0 while ℜ{λ1} < 0. (The parameters are S = 1, γ = 1, K = 0.005, and x = 1.)

where Z is assumed to be 2π-periodic.
For infinite populations, an equivalent framework is to consider a distribution of delays.

When the transmission between the oscillators is delayed by t = τ , an oscillator receives a
pulse when the emitting oscillator is at phase ξ = ωτ . If the delay is weak and constant,
it is equivalent to consider oscillators with no delay, but characterized by the shifted iPRC
Zd(θ) = Z(θ + ξ) [60]. If the delays are not constant, but randomly distributed, the phase lags
ξ are also randomly distributed with a probability density function g(ξ). Then, for infinite
populations, [69] shows that oscillators with delayed transmissions are equivalent to oscillators
with no delay but characterized by the equivalent iPRC

Zd(θ) =

∫ ∞

0
Z(θ + ξ) g(ξ) dξ . (7.16)

The comparison between (7.15) and (7.16) implies that, for infinite populations, a smoothed
pulse is equivalent to a distribution of delays, according to the relationship g(ξ) ≡ E(ξ/ω).
As a consequence, the following results on (randomly distributed) delays equivalently apply
to smoothed pulses.

In the case of infinite populations, Criterion 2 is applied to the equivalent iPRC obtained with
transmission delays.

• For a constant delay, the Fourier coefficients of the equivalent iPRC are given by
Ẑd,n = Ẑn exp(inξ), so that Criterion 2 implies stability provided that

K ℑ{Ẑd,n} = K
(

ℑ{Ẑn} cos(nξ) + ℜ{Ẑn} sin(nξ)
)

≥ 0 ∀n ≥ 0 . (7.17)

• For delays distributed according to the distribution g(ξ), with a support in [0, 2π],
relationship (7.16) implies Zd(θ) = Zd(θ)⊙g(2π−θ), where ⊙ is the circular convolution
on [0, 2π]. The Fourier coefficients of the equivalent iPRC are Ẑd,n = Ẑn ĝ

†
n, so that

Criterion 2 implies stability provided that

K ℑ{Ẑd,n} = K
(

ℑ{Ẑn}ℜ{ĝn} − ℜ{Ẑn}ℑ{ĝn}
)

≥ 0 ∀n ≥ 0 . (7.18)
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Delayed transmissions affect the stability properties of the network and the oscillators can
consequently lose their dichotomic behavior. For instance, (7.17) implies that if the stability
criterion is satisfied for the model without delay (i.e. K ℑ{Ẑn} ≥ 0), then the stability
criterion is likely not to be satisfied when a delay is introduced (i.e. K ℑ{Ẑn,d} < 0 for
some n). As explained above, delays (or equivalently smoothed pulses) modify the iPRC so
that even monotone LIF oscillators can lose their monotonicity properties and can exhibit
non-dichotomic behaviors (see [60, 117] and Section 5.5.2).

Interestingly, while distributions of delays usually preclude the dichotomic behavior of
the oscillators, particular distributions can preserve a dichotomic behavior or even induce a
dichotomic behavior in (initially) non-dichotomic models.

Delays preserving a dichotomic behavior. Particular distributions do not modify the
stability property of the oscillators: they are so that ℑ{Ẑn,d} ≥ 0 whenever ℑ{Ẑn} ≥ 0. In
this case, the delays preserve the dichotomic behavior of the oscillators. This is illustrated in
the following examples.

Example 7.2.1 (Even distributions). When the delay distribution is even, that is g(2π−ξ) =
g(ξ), one has ℑ{ĝn} = 0 so that condition (7.18) is rewritten as

K ℑ{Ẑn} ℜ{ĝn} ≥ 0 ∀n ≥ 0 . (7.19)

Provided that the values ℜ{ĝn} ≥ 0 for all n > 0 [see Figure 7.2 (a)], stability of the model
without delay (K ℑ{Ẑn} ≥ 0) implies stability of the model with delays (7.19). ⋄

Example 7.2.2 (Odd distributions). When the delay distribution is odd, that is g(2π− ξ) =
−g(ξ), one has ℜ{ĝn} = 0 ∀n > 0 so that condition (7.18) is rewritten as

K ℜ{Ẑn} ℑ{ĝn} ≤ 0 ∀n ≥ 0 .

Provided that the values ℑ{ĝn} ≥ 0 for all n > 0 [see Figure 7.2 (b)], stability of the model
with delay is determined by the sign of the coefficients ℜ{Ẑn} (instead of ℑ{Ẑn}). If they are
all positive, or all negative, a dichotomic behavior is preserved. ⋄

2π ξ

g(ξ)

(a) Even distribution

π ξ

g(ξ)

(b) Odd distribution

Figure 7.2: (a) The even delay distribution g satisfies ℑ{ĝn} = 0 and ℜ{ĝn} ≥ 0 for all n > 0.
Then, the delays do not modify the stability property of the network. (b) The odd delay
distribution g satisfies ℜ{ĝn} = 0 and ℑ{ĝn} ≥ 0 for all n > 0. Then, stability depends on
the coefficients ℜ{Ẑn}.
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Delays inducing a dichotomic behavior. The delay distribution can modify the iPRC
in such a way that non-dichotomic oscillators exhibit a dichotomic behavior. Indeed, the delay
distribution can be so that (7.18) is satisfied, even though (7.8) is not satisfied for Z. This is
illustrated in the the following example.

Example 7.2.3 (Piecewise linear oscillators). Networks of piecewise linear oscillators, with
delayed transmissions, can exhibit a dichotomic behavior. The non-dichotomic behaviors of
(non-delayed) piecewise linear oscillators arise because Criterion 2 is not satisfied for n = 2.
If the delay distribution is the even distribution presented in Figure 7.2 (a), then one easily
computes that ℜ{ĝn} = 0 for all n even. In particular, the case n = 2 corresponds to a zero
value in condition (7.19), condition that is therefore satisfied. Thus, the behavior of delayed
piecewise linear oscillators is dichotomic. ⋄

7.2.4 General models

The weak coupling limit is relevant not only for integrate-and-fire oscillators but also for more
general (pulse-coupled) models of oscillators, including realistic biological models. Indeed, the
phase reduction of multidimensional dynamics in the neighborhood of a limit cycle is valid only
under the weak coupling assumption. In addition, to the weak coupling limit are associated
Criterion 1 and Criterion 2, that can apply to very realistic iPRC’s, however complex they
are.

General models of oscillators do not exhibit a (global) dichotomic behavior, as defined
in the previous chapters. Since the oscillators are not integrate-and-fire oscillators, their
dynamics does not involve the thresholds x and x that determine the dichotomic behavior. In
addition, in contrast with “QIF-like” oscillators, a local stability analysis gives no guarantee
about the global stability of the trajectories. However, local analysis is still of interest to
investigate whether locally stable phase-locked configurations (or asynchronous states) are
observed within the network.

In the sequel, we apply Criterion 1 and Criterion 2 to two realistic neuron models: the
well-known Hodgkin-Huxley (HH) model [45, 50] (see also Example 2.1.1) and the Fitzhugh-
Nagumo (FN) model [34, 50, 78] (see also Example 2.1.2), whose respective iPRC is given in
Figure 2.4. (The phase θ = 0, which defines the precise firing instant when a pulse is sent
out, is assigned to the maximal value of the membrane voltage on the limit cycle.)

For weakly pulse-coupled HH oscillators or FN oscillators, a phase-locked configuration is
never observed with finite populations and, similarly, an asynchronous state is never observed
with infinite populations. Indeed, Figure 7.3 shows that Criterion 1 and Criterion 2 are never
satisfied with these models. Except for FN oscillators with N = 5, several stable eigenvalues
coexist along with several unstable eigenvalues. This suggests that the behavior could be
more complex than the non-dichotomic behavior of “QIF-like” oscillators, for which only
two eigenvalues have an opposite stability with respect to all the others (see Section 6.5.2).
Further investigations require numerical experiments that are beyond the scope of the present
dissertation.

Local stability of finite populations (Criterion 1) is coherent with local stability of infinite
populations (Criterion 2). More precisely, a finite population with few oscillators is well-
approximated by an infinite population. For instance, Figure 7.3 (c) and Figure 7.3 (d) are
similar and coherent, similar for the low frequency eigenvalues and coherent since the infinite
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spectrum of Figure 7.3 (d) has no influence on the behavior (the imaginary part of the high
frequency eigenvalues rapidly decreases to zero, when n increases). This observation shows
that the behavior of only N = 20 oscillators is equivalent to the behavior of an infinite
population.
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Ẑ

n
}

STABLE

UNSTABLE

(d) Infinite population

Figure 7.3: The eigenvalues are not all stable, whether for the HH model (red cross markers)
or the FN model (blue star markers). (a,b,c) In the case of finite populations, the markers
correspond to the values (7.5) of Criterion 1 for every n < N/2 (the other values are identical
to the first values). (d) In the case of infinite populations, the markers correspond to the
values (7.8) of Criterion 2. (For the sake of clarity, the values corresponding to the FN model
have been divided by 5.)

The above results have underlined that the phase-locked configuration (or the asyn-
chronous state) is always unstable. Indeed, Criterion 1 and Criterion 2 are not satisfied.
However, in some situations, the criteria are satisfied. For instance, close to a Hopf bifurca-
tion (observed with the FN model) or a Bautin bifurcation (observed with the HH model),
the iPRC is well-approximated by a sinusoidal function (see [13]) and has therefore only one
nonzero Fourier coefficient, so that the criteria can be satisfied.

For infinite populations, local stability of the asynchronous state is also obtained with
particular delay distributions. For instance, consider an even distribution (ℑ{ĝn} = 0) satis-
fying ℜ{ĝn} = C ℑ{Ẑn}, n > 0, where C is a positive constant (with g(θ) > 0 ∀θ and ĝ0 = 1).
Then, it follows from (7.19) that Criterion 2 is satisfied. This is illustrated with HH oscillators
in Figure 7.4.
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Figure 7.4: For infinite populations of HH oscillators, the asynchronous state is locally stable
with a particular delay distribution. (a) The delay distribution is even and satisfies ℜ{ĝn} =
6 ℑ{Ẑn}. (b) The delays yield an iPRC that satisfies Criterion 2: (c) Condition (7.8) is
positive for all n > 0.

7.3 Averaging

In the weak coupling limit, averaging techniques can be applied to the dynamics of the pulse-
coupled oscillators and lead to a very general averaged model, whose particular case is the
well-known Kuramoto model. In this context, the results obtained in the previous chapters
are exploited to derive new results on the general averaged model on the one hand and to
derive a new formulation of the QIF conjecture on the other hand.

7.3.1 Averaged phase dynamics

When averaging techniques (see [55] for an overview) are applied to weakly coupled oscillators,
the averaged phase dynamics has a universal form, characterized by a coupling that depends
on the phase differences between the oscillators [47, 58]. The averaged phase dynamics is
given by

θ̇k = ω +
N∑

j=1
j 6=k

Γ(θk − θj) , (7.20)
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where Γ(·) is the 2π-periodic coupling function. A well-known model of the form (7.20) is the
Kuramoto model [59].

Example 7.3.1 (Kuramoto model). The Kuramoto model is characterized by the coupling
function Γ(θ) = −K/N sin(θ), a function that can be considered as the first odd Fourier
harmonic of more complex coupling functions. The constant K is the coupling strength.

The measure of synchrony

V(Θ) =

∥
∥
∥
∥
∥

N∑

k=1

eiθk

∥
∥
∥
∥
∥

2

is a quadratic Lyapunov function for the model. It follows that the global behavior is very
simple:

• When the coupling is excitatory (K > 0), the oscillators achieve perfect synchrony;

• When the coupling is inhibitory (K < 0), the oscillators globally converge toward an
incoherent state characterized by

N∑

k=1

eiθk = 0 .

In spite of the simple behavior of the identical Kuramoto oscillators, the model is however
worth of interest. Indeed, the study of non-identical Kuramoto oscillators, though amenable
to mathematical analysis, leads to intricate open problems. Investigating heterogeneous pop-
ulations in the Kuramoto model is a major issue on which there is an extensive literature
[4, 104]. ⋄

The analysis of identical Kuramoto oscillators is trivial because the coupling function is
odd, that is Γ(θ) = −Γ(2π − θ). Indeed, when the coupling function is odd, the system is a
gradient system, therefore characterized by strong global stability properties [47].

In contrast, the analysis is more involved in the case of pulse-coupled oscillators. In this
case, the coupling function is expressed as a function of the iPRC and is therefore not odd:
the system is no longer a gradient system. The derivation of the coupling function is explained
in the following paragraph, adapted from [60].

In the weak coupling limit, (3.3) implies that Zǫ ≈ ǫZ. In addition, the phases can be
decomposed as θk = ωt + ζk, where ζk is a slow phase deviation from the uniform natural
oscillation ω t. Then, the pulse-coupled phase dynamics (3.2) is rewritten as

ζ̇k = ǫ Z ((ωt+ ζk) mod 2π)
N∑

j=1
j 6=k

∞∑

l=0

δ(t− t
(j)
l ) .

The modulo operation is introduced because we consider that the iPRC is defined in [0, 2π]
only. Next, averaging the above dynamics over a period ∆T ≈ 2π/ω and under fixed ζk, we
obtain

ζ̇k =
1

∆T

∫ t+∆T

t
ǫ Z ((ωs+ ζk) mod 2π)

N∑

j=1
j 6=k

∞∑

l=0

δ(s−t(j)
l ) ds =

ω

2π
ǫ

N∑

j=1
j 6=k

(

Z(ωt(j) + ζk) mod 2π
)

,
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since each oscillator fires once over the period. The firing times satisfy ωt(j) + ζj = 0, so that
one finally gets

ζ̇k = ǫ
ω

2π

N∑

j=1
j 6=k

Z
(
(ζk − ζj) mod 2π

)

or equivalently

θ̇k = ω + ǫ
ω

2π

N∑

j=1
j 6=k

Z
(
(θk − θj) mod 2π

)
.

Thus, the averaged dynamics is of the form (7.20), with a coupling function related to the
iPRC according to

Γ(θ) = ǫ
ω

2π
Z(θ mod 2π) . (7.21)

Apart from the conservative limit case x+ x = 0, the coupling function is discontinuous,
that is Γ(0−) 6= Γ(0+). However, it is important to note that the 2π-periodicity condition
imposes Γ(0) = Γ(2π) (Figure 7.5). If the condition is not satisfied, synchronized states are
ill-defined.

Figure 7.5: The coupling function of the pulse-coupled oscillators is discontinuous but satisfies
the 2π-periodicity condition, so that Γ(0) = Γ(2π).

7.3.2 Links to pulse-coupled oscillators

In the case of pulse-coupled oscillators, the study of the averaged phase dynamics is valuable.
Inspired by the results obtained on monotone pulse-coupled oscillators (Chapter 4), we show
that the averaged dynamics has a strong contraction property when the coupling function is
monotone. In addition, we obtain an elegant reformulation of the (global) QIF conjecture.

Monotone oscillators

Networks of monotone pulse-coupled oscillators are characterized by a strong contraction
property (Chapter 4). Since the iPRC of the oscillators is monotone, the coupling function
of the averaged dynamics (7.20) is monotone on (0, 2π), according to (7.21). This suggests
a general property related to consensus problems: the general phase dynamics (7.20) with a
monotone coupling function on (0, 2π) is characterized by a contraction property.
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As explained in [76], the study of phase oscillators that evolve according to (7.20) within
a semicircle is equivalent to a trivial consensus problem on the real line. [For instance, the
oscillators with phases within the interval (−π/2, π/2) are mapped to the real line through
the change of coordinates θ 7→ x = tan(θ).] Then, a simple argument shows that, if the
coupling function is monotone increasing, the convex hull of the individual oscillators can
only shrink along the solution of (7.20), that is, the distance max{θk} − min{θk} decreases.
As a consequence, all the oscillators asymptotically reach a consensus value: they achieve
perfect synchrony.

We emphasize that, when the oscillators are not within a semicircle, the above argument
fails since the problem is not equivalent to a consensus problem on the real line. Actually,
the whole N -torus T

N is not a convex set and a distance between the oscillators (such as the
“min-max” distance) cannot capture the collective behavior of the oscillators (an extensive
survey on consensus problems on the circle — in contrast with consensus on the real line —
can be found in [95]).

In the sequel, we address the above issue, exploiting the global results presented in Chapter
4 (in particular Theorem 4.2.2) and thereby extending the known result of a trivial consensus
problem on the real line to a more significant result on the N -torus. In particular, we show
that the phase dynamics has a strong contraction property with respect to a 1-norm, a result
that can be compared with the result of [83] showing that a quadratic Lyapunov function
does not exist for consensus algorithms on the real line (with time-dependent connectivity).

In the previous chapters, the pulse-coupled oscillators are described through a phase dif-
ference with respect to the firing oscillator (at phase θ = 0). To exploit the results of Chapter
4, the phase dynamics (7.20) is similarly expressed in terms of phase differences, in a rotating
frame associated with an oscillator (without loss of generality, we choose oscillator 1). De-
noting the phase differences by θ̃k = θk+1 − θ1 for k = 1, . . . , N − 1, we obtain the N − 1
equations

˙̃θk = Γ(θ̃k) +
N−1∑

j=1
j 6=k

Γ(θ̃k − θ̃j) −
N−1∑

j=1

Γ(−θ̃j) . (7.22)

Whereas the dynamics (7.20) is invariant with respect to a rigid rotation of the oscillators,
the change of coordinates removes the marginally stable rigid mode. Moreover, a trajectory
Θ̃ is not defined in T

N , but in the cone C = {Θ̃ ∈ (0, 2π)N−1|θ̃k < θ̃k+1}, an open set that is
the equivalent of U (3.21).

The dynamics (7.22) has several fixed points (Figure 7.6). The only fixed point in the
interior of the cone C corresponds to the phase-locked configuration of the oscillators. Given
the periodicity of the coupling function, it is the splay state

θ̃∗
k = k

2π

N
. (7.23)

The other fixed points are in the boundary of C, where at least two oscillators are synchronized.
The (unique) synchronized configuration of all the oscillators is represented by N different
fixed points

{

θ∗
k = 0 for k < j

θ̃∗
k = 2π for k ≥ j

j = 1, . . . , N . (7.24)
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Finally, the last fixed points, denoted by Pk in Figure 7.6, correspond to phase-locked con-
figurations characterized by two or more synchronized oscillators, that is, characterized by
θ̃k = 0, θ̃k = 2π, or θ̃k = θ̃k+1 for at least one subscript k. They are 2N − 2 −N saddle points.

Figure 7.6: The dynamics (7.22) has several fixed points on the cone C (here in two dimensions,
i.e. N − 1 = 2). The splay state (2π/3, 4π/3) is the only fixed point in the interior of C. The
synchronized state corresponds to the three fixed points (0, 0), (0, 2π), and (2π, 2π). There
are other unstable fixed points in the boundary of C.

Next, we claim that the dynamics (7.22) is a contraction on the cone C with respect to
the 1-norm (4.10) previously used with monotone pulse-coupled oscillators.

Theorem 7.3.1. Consider a coupling function that satisfies either Γ′′(θ) ≥ 0 ∀θ ∈ (0, 2π) or
Γ′′(θ) ≤ 0 ∀θ ∈ (0, 2π). If Γ′(θ) < 0 ∀θ ∈ (0, 2π), then the dynamics (7.22) is contracting on
C for the 1-norm (4.10), that is

d

dt

∥
∥
∥Θ̃(t) − Ψ̃(t)

∥
∥
∥

(1)
< 0 ,

where Θ̃(·) and Ψ̃(·) are two distinct solutions of (7.22) in C. If Γ′(θ) > 0 ∀θ ∈ (0, 2π), the
dynamics is expanding, that is

d

dt

∥
∥
∥Θ̃(t) − Ψ̃(t)

∥
∥
∥

(1)
> 0 .

Proof. The proof has some similarity to the proof of Theorem 5.3.1. Owing to its length, it
is deferred to Appendix A.5.

Contraction properties of dynamical systems are usually considered with respect to quadratic
metrics [6, 7, 67]. For instance, networks of diffusively coupled oscillators have been stud-
ied through a (quadratic) contraction argument [121]. In contrast, numerical experiments
show that the contraction property of (7.22) cannot be captured through a quadratic norm.
Theorem 7.3.1 underlines the importance of considering a 1-norm instead of a quadratic norm.

The result of Theorem 7.3.1 is also in contrast to the quadratic norm that characterizes
the dynamics of Kuramoto oscillators (Example 7.3.1). However, the dichotomic behavior
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of monotone oscillators is identical to the dichotomic behavior of Kuramoto oscillators. The
result is a corollary of Theorem 7.3.1.

Corollary 7.3.1. Consider a network of N phase oscillators with the dynamics (7.20). Pro-
vided that the coupling function has a curvature of constant sign on (0, 2π), for almost every
initial condition,

• the oscillators asymptotically converge to the splay state configuration

θ∗
k(t) = θ0 + Ω t+ (k − 1)

2π

N
with Ω and θ0 constant ∀k (7.25)

if the coupling function is strictly decreasing on (0, 2π);

• the oscillators achieve perfect synchrony in finite time if the coupling function is strictly
increasing on (0, 2π).

Proof. We first consider the case of a decreasing coupling function. Let Φ denote the flow of
(7.22), that is, Φ(Θ̃, t) is a solution of (7.22), with Φ(Θ̃, 0) = Θ̃. Theorem 7.3.1 implies that

∥
∥
∥Φ(Θ̃, t) − Φ(Ψ̃, t)

∥
∥
∥

(1)
<
∥
∥
∥Θ̃ − Ψ̃

∥
∥
∥

(1)
∀t small enough .

Then, for any small fixed ∆t, the discrete-time mapping Θ̃ 7→ Φ(Θ̃,∆t) is a contraction in
C. From the contraction mapping theorem (see e.g. [55]), the solutions of (7.22) asymptot-
ically converge to (7.23), for every initial condition in C (see also the developments in [7]).
As a consequence, for all initial conditions (except a zero-measure set corresponding to the
boundary of C), the trajectories of the original dynamics (7.20) asymptotically converge to

θ∗
k+1(t) = θ∗

1(t) + θ̃∗
k = θ∗

1(t) + k
2π

N
, k 6= 1 . (7.26)

It follows from (7.20) that the velocity of θ∗
1 is constant: θ̇∗

1 = ω +
∑N−1

j=1 Γ(j2π/N) , Ω.
Then, θ∗

1 = θ0 + Ωt and (7.26) corresponds to the splay state (7.25), which concludes the first
part of the proof.

In the case of an increasing coupling function, Theorem 7.3.1 implies that the distance
between a trajectory (in C) and, say the fixed point (7.23), must monotonically increase. Then,
the trajectory converges toward the boundary of C, which corresponds to the synchronization
of two oscillators. A straightforward computation shows that the trajectory approaches the

boundary with the finite velocity Γ(2π−) − Γ(0+) (e.g. ˙̃θk − ˙̃θk+1 = Γ(2π−) − Γ(0+) in the
vicinity of the boundary θ̃k = θ̃k+1). Then, the trajectory reaches the boundary in finite time
[see Figure 7.7 (a)]. In addition, for almost every initial condition, it cannot converge to a
(unstable) saddle node Pk.

Since two synchronized oscillators remain synchronized forever, the boundary of C is an
invariant set: the trajectory subsequently evolves within a (N − 2)-dimensional cone C′, lying
in the boundary of C and delimited by (N − 3)-dimensional subsets corresponding to an-
other synchronization of two oscillators. The reduced dynamics governing the evolution of
the trajectory in C′ satisfies the contraction property of Theorem 7.3.1 (see Remark A.5.1
in Appendix A.5). Then, a same argument as above proves that, for almost every initial
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condition, the trajectory converges in finite time to the (N − 3)-dimensional boundary of C′,
leading to a second synchronization of two oscillators.

The argument can be repeated and after N − 1 successive synchronization of pairs of
oscillators, the network achieves synchrony in finite time. [See Figure 7.7 (b)].

(a) N = 3

0 5 10 15 20 25
0

Time

2π

θ̃k

(b) N = 10

Figure 7.7: (a) The trajectories (in red) reach the boundary of C in finite time. Then, they
evolve in C′ and converge to the synchronization state. (b) Several pairwise synchronizations
occur, until the network achieves perfect synchrony.

Whether on a semicircle or not, the oscillators always exhibit the same behavior. For
instance, with a monotone increasing coupling function, the oscillators always achieve syn-
chrony (consensus). The simple results of consensus on the real line (or equivalently on the
semicircle) are extended to more general results that hold for any configurations in the whole
N -torus.

As Theorem 7.3.1 and its corollary extend the results of Chapter 4 for finite populations,
similar results could also generalize the results of Chapter 5 for infinite populations. This
issue is not addressed in this manuscript.

QIF oscillators

Now that the contraction property of monotone oscillators (Chapter 4) has been extended to
the general phase dynamics (7.20), we investigate whether interesting links can also be drawn
in the case of “QIF-like” oscillators (Chapter 6).

In Section 7.2.1, the local QIF conjecture (Conjecture 2) is solved in the weak coupling
limit. However, the global QIF conjecture (Conjecture 1) is still unsolved, even in the weak
coupling limit. In this context, we suggest that an “averaged version” of the global QIF
conjecture could be more tractable.

An averaged phase dynamics of the form (7.20) is interpreted as a continuous-time equiv-
alent of the discrete-time return map R = HN . Hence, it fully exploits the average properties
of the dynamics, that are of paramount importance in the case of QIF oscillators.
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According to Table 2.1, the iPRC of QIF oscillators is given by

Z(θ) =
ω

S
cos2

(√
S

ω
(θ − θ)

)

=
ω

2S

(

1 + cos

(

2
√
S

ω
(θ − θ)

))

.

Denoting a , 2
√
S/ω, (7.21) implies that the coupling function related to the pulse-coupled

QIF oscillators is given by

Γ(θ) =
ǫ ω2

4π S

(

1 + cos
(

a
(
(θ mod 2π) − θ

)))

.

Removing the constant term as well as the multiplicative constant, that correspond to a rigid
motion of the oscillators, we obtain the averaged dynamics

θ̇k = ω +
N∑

j=1
j 6=k

cos
(

a
(

(θk − θj) mod 2π
)

− aθ
)

. (7.27)

The averaged dynamics (7.27) of weakly pulse-coupled QIF oscillators has an elegant form.
From (7.14), it follows that a < 1 and the coupling function thereby results from the shift
and the dilatation of a 2π-periodic cosine function, whose values are taken within (0, 2π).

In the limit case a = 1, (7.27) becomes the dynamics

θ̇k = ω +
N∑

j=1
j 6=k

cos
(

θk − θj − θ
)

(7.28)

and corresponds (up to a sign) to a dynamics of Josephson-junction arrays that has been
extensively studied in [122]. The authors showed that the dynamics is characterized by N − 3
constants of motion, so that it can be reduced to a 3-dimensional dynamics, whatever the
number of oscillators. When θ = π, the 3-dimensional system is an integrable Hamiltonian
system. When θ 6= π, the Hamiltonian function induces a Lyapunov function that forces global
convergence to the phase-locked splay state (θ < π) or to the synchronized state (θ > π).

The results of [122] are in agreement with Conjecture 1 on the dichotomic behavior of
the QIF oscillators. The integrable Hamiltonian system is obtained with θ = π, a situation
that corresponds to the conservative limit case x + x = 0. In addition, phase-locking (resp.
synchronization) is obtained for θ < π (resp. θ > π), a situation that corresponds to x+x > 0
(resp. x+ x < 0) (see Table 6.1).

However, the above results do not directly apply to the study of QIF oscillators. Indeed,
the dynamics (7.28) has a continuous coupling function Γ(θ) = cos(θ − θ), a limit situation
(a = 1) that corresponds to the extreme case x = −∞, x = ∞. In full generality, the mod-
ulo function in the averaged QIF dynamics (7.27) introduces a discontinuity that makes the
analysis more difficult.

Owing to the simple expression of (7.27) and to its close link to the results of [122], a global
analysis of (7.27) is an equivalent and elegant reformulation of the global QIF conjecture
(Conjecture 1) for weakly coupled QIF oscillators.
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Conjecture 3 ((Weak coupling) QIF conjecture). The behavior of weakly coupled QIF oscil-
lators is always dichotomic. That is, the averaged dynamics

θ̇k = ω +
N∑

j=1
j 6=k

cos
(

a
(

(θk − θj) mod 2π
)

− aθ
)

, a < 1 .

leads to synchronization for θ > π and to splay state for θ < π.

7.4 Conclusion

A weak coupling assumption simplifies the dynamics of the pulse-coupled integrate-and-fire
oscillators. In particular, efficient criteria are derived for local stability of both finite and
infinite populations, a result that solves the local QIF conjecture.

To the weak coupling assumption are associated efficient techniques to average the dy-
namics of the oscillators. In the case of monotone oscillators, the averaged dynamics has a
strong contraction property, a result that complements known results related to consensus
problems. For QIF oscillators, the averaged dynamics yields a simple reformulation of the
global QIF conjecture.

The averaged dynamics of the pulse-coupled oscillators is a classical model of coupled
oscillators, a particular case of which is the well-known Kuramoto model. The stability
problem of weakly pulse-coupled oscillators is therefore equivalent to the stability problem
of a “Kuramoto-like” model. This clearly suggests that the general analysis of pulse-coupled
oscillators (without the weak coupling assumption), such as presented in Chapters 4-6, is
more involved than the analysis of classical models of coupled oscillators like the Kuramoto
model.
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Conclusions and perspectives

The present dissertation is a study of the collective behaviors in networks of pulse-coupled
oscillators. While an extensive literature considers only leaky integrate-and-fire oscillators,
the present study investigates other integrate-and-fire dynamics, including the well-known
quadratic integrate-and-fire dynamics. The study highlights that a dichotomic behavior is
frequently observed: the oscillators either achieve perfect synchrony (periodic behavior with
low firing frequency) or converge toward a phase-locked clustering configuration (periodic be-
havior with high firing frequency).

We conclude the dissertation with some remarks and perspectives.

8.1 Concluding remarks

1-norm for monotone oscillators. One of the main contribution of the dissertation is the
global contraction result obtained for monotone oscillators. In Chapter 4, the study of mono-
tone pulse-coupled oscillators stresses the importance of a 1-norm to prove the contraction.
In addition, the result is successfully exploited in Chapter 5 for the study of a continuum of
monotone oscillators (L1-Lyapunov function) and in Chapter 7 for the study of “monotone
Kuramoto-like” oscillators (1-norm contraction). In a general context, the dissertation could
potentially open new avenues in stability theory, connecting the monotonicity property of a
system to its contraction with respect to a suitable 1-norm.

Standing conjectures for QIF oscillators. When the oscillators dynamics has no mono-
tonicity property (e.g. QIF oscillators), studying the network appears to be a complex issue.
Even though numerical experiments clearly suggest the (global) dichotomic behavior of the
QIF oscillators, the corresponding stability problem is an open problem. However, it is a key
point that a local stability analysis, still elusive in full generality, is relevant to (partially)
solve the QIF conjectures (Chapter 6).

Three conjectures have been formulated throughout the dissertation.

• Conjecture 1 (Section 6.2): the global QIF conjecture on the global stability of pulse-
coupled QIF oscillators.



146 Chapter 8. Conclusions and perspectives

• Conjecture 2 (Section 6.4.1): the local QIF conjecture on the local stability of pulse-
coupled QIF oscillators.

• Conjecture 3 (Section 7.3.2): the weak coupling QIF conjecture on the global stability
of weakly pulse-coupled QIF oscillators.

From two oscillators to large populations. Two “QIF-like” oscillators always exhibit
a dichotomic behavior. Interestingly, the property is not necessary satisfied in larger popula-
tions. As an illustration, it was shown that a Hopf bifurcation can occur in large populations
of piecewise linear oscillators, which leads to a non-dichotomic behavior. The study of the
dichotomic behavior therefore illustrates that the (stability) property of a low-dimensional
system (i.e. the scalar firing map) does not necessarily extend to its higher dimensional ana-
log (i.e. the multidimensional firing map). Hence, the network size, which determines the
dimensionality of the system, plays a role in the collective behavior of the oscillators.

From large populations to infinite populations. The properties of two coupled os-
cillators do not necessarily extend to large populations. In contrast, one observes a perfect
coherence between large populations and infinite populations regarding the dichotomic behav-
ior. Given this coherence, either a large population or an infinite population, whatever the
most tractable for the context, is equivalently relevant to investigate the collective behavior
of the network. At a more general level, a concurrent study of the two equivalent populations
reveals an elegant parallel between a discrete-time map and a continuous-time PDE, a parallel
that motivates, in particular, the use of quantile density functions (Chapter 5).

Weak coupling. Studying non-monotone pulse-coupled oscillators is an involved problem.
Interestingly, the (local) stability problem is tractable under the assumption of weak cou-
pling: a simple condition on the iPRC determines the network stability, however complex the
oscillator dynamics may be. Hence, a weak coupling assumption, though restrictive, leads
to significant advances in the study of pulse-coupled oscillators characterized by a general
dynamics. In addition, weakly coupled oscillators are amenable to averaging techniques that
establish a parallel between pulse-coupled oscillators and “Kuramoto-like” oscillators. Then,
the stability results obtained for pulse-coupled models are naturally extended to “Kuramoto-
like” models.

8.2 Perspectives for future research

So far a global stability analysis of non-monotone oscillators is an open problem that raises
interesting research questions. For instance, it is unclear how the strong global results obtained
with monotone oscillators could be extended to non-monotone oscillators, and whether a 1-
norm based approach is still relevant in this case.

As highlighted in the present dissertation, a promising lead is to consider the average
behavior of the network over a given time period, an attempt to exploit the possible “mono-
tonicity in the mean” of the dynamics. In this context, averaging techniques have been
considered in the dissertation, yielding an elegant reformulation of the problem that might
be worth further investigation. In addition, investigating statistical averages of the network
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dynamics through operator-theoretic methods (e.g. Perron-Frobenius operator) also seems to
be a promising perspective.

In addition to the interesting QIF conjecture, several extensions of the model investigated
in the thesis could be considered for future research.

The dissertation paves the way for the study of general dynamics of pulse-coupled oscilla-
tors. As a natural continuation, further research could focus on particular oscillator dynamics
motivated by real applications that involve impulsive coupling (neuroscience, animal behav-
iors, earthquake dynamics, etc.). For these application-oriented dynamics, the study of the
collective behaviors should imply appropriate methods that are not developed yet.

A second interesting extension is the study of excitable dynamics instead of oscillator
dynamics. For instance, a QIF dynamics ẋ = S + x2, where S is negative, does not exhibit
an oscillatory regime but an excitatory regime. The issue is motivated not only by various
applications (see e.g. neuroscience) but also by several mathematical aspects. Indeed, prelim-
inary results have shown that the collective behaviors of excitable QIF units are slightly more
complex than those of QIF oscillators: non-uniqueness of the phase-locked behavior, resting
state when the coupling is weak, etc. In addition, a further step could possibly highlight novel
collective behaviors in mixed populations of both oscillators and excitable units.

Finally, the study of non-identical oscillators leads to intricate problems in many coupled
oscillator models and is still in its infancy in the particular case of pulse-coupled oscillators.
The robustness of synchronization against the network heterogeneity has been investigated
only in few studies on LIF oscillators. Very conservative conditions for synchronization have
been established in simple cases, but the complex partial synchronization behavior is still not
well-understood. In case of clustering, the numerical experiments presented in the disser-
tation underline the robustness of the clusters against the oscillators heterogeneity, a result
that could be validated through a mathematical analysis. The analysis could rely either on
an infinite population model, where the heterogeneity is randomly distributed according to a
density of oscillators, or on a stochastic model, where heterogeneity is induced by the noise.

To conclude. In applied mathematics, it is surprising that some problems look trivial at
first sight and finally turn out to be more involved and more captivating than expected. Net-
works of pulse-coupled oscillators are such an example. Their study unveils rich and complex
behaviors, leads to exciting open problems, requires the development of new mathematical
tools along with fundamental results, and raises promising perspectives for future research.
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Proofs

A.1 Proof of Lemma 4.2.1

It is obvious that ‖D
(0,1)
Ng−1‖

(2)
= 0. For n < Ng −1, the value ‖D

(0,1)
n ‖2

(2) is obtained by solving

the optimization problem

min −xTD(0,1)
n QD(0,1)

n xT such that xTQx ≤ 1 .

The global minimizer x⋆ satisfies

(−D(0,1)
n QD(0,1)

n + λQ)x⋆ = 0 ,

with λ ≥ 0 and λ(‖x⋆‖(2) − 1) = 0 ([37, 103]). Straightforward but lengthy computations lead
to the values

λ =
Ng + n(Ng − 1 − n)

Ng

and

x⋆
k =

ak
[

n(n+ 1)a2
1 − 2n(Ng − 1 − n)a1aNg−1 + (Ng − 1 − n)(Ng − n)a2

Ng−1

]1/2
,

with 





a1 = 1/[λ(n+ 1)] ,

aNg−1 = 1/[λ(Ng − 1 − n)] ,

ak = k a1 for k = 2, . . . , n ,

aNg−k = k aNg−1 for k = 2, . . . , Ng − 1 − n .

Next, the norm is given by

‖D(0,1)
n ‖(2) =

√

x⋆T D
(0,1)
n QD

(0,1)
n x⋆ =

√

1 +
n(Ng − 1 − n)

Ng
. (A.1)

A derivation of (A.1) with respect to n shows that the norm has a maximum value for
n = (Ng − 1)/2. (If Ng is even, the maximum value is not reached, since n is an integer.)
Hence, one has finally

max
n∈{0,...,Ng−1}

‖D(0,1)
n ‖(2) ≤ Ng + 1

2
√
Ng

.



150 Chapter A. Proofs

A.2 Proof of Lemma 4.2.2

It is obvious that ‖D
(0,1)
Ng−1‖(1) = 0. For n < Ng − 1, the norm is obtained by solving

‖D(0,1)
n ‖(1) = max

x

|xn+1| +
∑Ng−2

k=n+1 |xk+1 − xk| + |xNg−1|
|x1| +

∑Ng−2
k=1 |xk+1 − xk| + |xNg−1|

.

Observing that

|xn+1| =

∣
∣
∣
∣
∣
x1 +

n∑

k=1

(xk+1 − xk)

∣
∣
∣
∣
∣

≤ |x1| +
n∑

k=1

|xk+1 − xk| ,

it follows that ‖D
(0,1)
n ‖(1) ≤ 1. Choosing a vector x such that 0 < x1 ≤ · · · ≤ xNg−1 yields

‖D
(0,1)
n x‖(1)

‖x‖(1)
=

2xNg−1

2xNg−1
= 1

and, consequently, ‖D
(0,1)
n ‖(1) = 1.

A.3 Proof of Lemma 5.4.1

Given (5.23), the Lyapunov function is written as

V =
Nc+1∑

k=1

(−1)k
∫ ϕ

(k)
c

ϕ
(k−1)
c

(q − q∗) dϕ .

The highest value is obtained when q∗(ϕ) = qmin for ϕ ∈ [ϕ
(k−1)
c , ϕ

(k)
c ], with k even, and

q(ϕ) = qmin for ϕ ∈ [ϕ
(k−1)
c , ϕ

(k)
c ], with k odd. This leads to the inequality

V ≤
Nc+1∑

k=1
k even

∫ ϕ
(k)
c

ϕ
(k−1)
c

q dϕ−qmin

Nc+1∑

k=1
k even

(ϕ(k)
c −ϕ(k−1)

c )+
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k=1
k odd

∫ ϕ
(k)
c

ϕ
(k−1)
c

q∗ dϕ−qmin

Nc+1∑

k=1
k odd

(ϕ(k)
c −ϕ(k−1)

c ) .

(A.2)
Moreover, one has

Nc+1∑

k=1
k even

∫ ϕ
(k)
c

ϕ
(k−1)
c

q dϕ+ qmin

Nc+1∑

k=1
k odd

(ϕ(k)
c − ϕ(k−1)

c ) ≤
∫ 1

0
q dϕ = Q(1) −Q(0) = 2π , (A.3)

and
Nc+1∑

k=1
k odd

∫ ϕ
(k)
c

ϕ
(k−1)
c

q∗ dϕ+ qmin

Nc+1∑

k=1
k even

(ϕ(k)
c − ϕ(k−1)

c ) ≤
∫ 1

0
q∗ dϕ = Q∗(1) −Q∗(0) = 2π . (A.4)

Next, injecting (A.3) and (A.4) in inequality (A.2) yields

V ≤ 2π − 2 qmin

Nc+1∑

k=1
k odd

(ϕ(k)
c − ϕ(k−1)

c ) + 2π − 2 qmin

Nc+1∑

k=1
k even

(ϕ(k)
c − ϕ(k−1)

c )

or
V ≤ 4π − 2 qmin(ϕ(Nc+1)

c − ϕ(0)
c ) = 4π − 2 qmin .
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A.4 Proof of Lemma 7.2.1

One first verifies that (7.12) is well-defined, since a ∈ (0, 1) and N ≥ 2 imply that sin aπ
N 6= 0

and sin
(

1
N (nπ ± aπ)

)

6= 0. Next, note that

sin
(

N−1
N aπ

)

sin aπ
N

=
sin aπ cos aπ

N − sin aπ
N cos aπ

sin aπ
N

=
sin aπ

tan aπ
N

− cos aπ .

Then, the left hand side (LHS) of (7.12) can be rewritten as

LHS =
sin aπ

tan aπ
N

− cos aπ−1

2
(−1)n




sin (nπ + aπ)

tan
(

1
N (nπ + aπ)

) − cos(nπ + aπ)

+
sin (nπ − aπ)

tan
(

1
N (nπ − aπ)

) − cos(nπ − aπ)



 ,

where we assume that (nπ± aπ)/N 6= π/2 + kπ, k ∈ Z (the opposite case is considered at the
end of the proof).

Since cos(nπ ± aπ) = (−1)n cos(aπ) and sin(nπ ± aπ) = ±(−1)n sin(aπ), one obtains

LHS = sin aπ




1
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2




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1
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1
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)







 ,

= sin aπ

(

1
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2

(

1 − tan nπ
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N

tan nπ
N + tan aπ

N

− 1 + tan nπ
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N

tan nπ
N − tan aπ

N

))

,

= sin aπ

(

1

tan aπ
N

+
tan aπ

N + tan2 nπ
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N

tan2 nπ
N − tan2 aπ

N

)

.

It follows from a ∈ (0, 1) and N ≥ 2 that

sin aπ > 0 .

tan
aπ

N
> 0 .

tan2 nπ

N
tan

aπ

N
> 0 .

Then, it remains to show that tan2 nπ
N − tan2 aπ

N > 0, or equivalently
∣
∣tan nπ

N

∣
∣ >

∣
∣tan aπ

N

∣
∣, an

inequality that follows from

∣
∣
∣
∣tan

nπ

N

∣
∣
∣
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∣
∣
∣
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N − 1

N
π

∣
∣
∣
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∣
∣
∣
∣tan

π
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∣
∣
∣
∣ >

∣
∣
∣
∣tan
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N

∣
∣
∣
∣ .

Then, equality (7.12) is verified.

We above assumed that (nπ±aπ)/N 6= π/2 +kπ, k ∈ Z. Next, we consider the situations
where this inequality is not verified and show that (7.12) is still satisfied.
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1. The equality (nπ + aπ)/N = π/2 + kπ implies

n+ a =
N

2
+Nk =

1

2
+
N − 1

2
+ kN ,

so that one must have a = 1/2 and n = (N − 1)/2 + kN (with N odd). In this case,
(7.12) is rewritten as

LHS = sin aπ




1

tan aπ
N

+
1

2

1

tan
(

N−2
2N π

)



 .

It follows from N−2
2N π < π/2 that LHS > 0.

2. Similarly, the equality (nπ−aπ)/N = π/2+kπ implies a = 1/2 and n = (N+1)/2+kN
(with N odd). In this case, (7.12) is rewritten as

LHS = sin aπ




1

tan aπ
N

− 1

2

1

tan
(

N+2
2N π

)



 .

It follows from π/2 < N+2
2N π ≤ π that LHS > 0.

A.5 Proof of Theorem 7.3.1

For the sake of clarity, we omit the time variable t and the tilde “˜” for the phases. We prove
the contraction property in the case Γ′ < 0. In addition, without loss of generality, we suppose
that Γ′′ ≤ 0 and, considering the two trajectories Θ = (θ1, . . . , θN−1) and Ψ = (ψ1, . . . , ψN−1),
we assume that θ1 − ψ1 ≤ 0. The proof of the other cases follows on similar lines.

The distance induced by the 1-norm (4.10) between the two trajectories is written as

‖Θ − Ψ‖(1) = |θ1 − ψ1| +
N−2∑

j=1

|θj+1 − ψj+1 − (θj − ψj)| + |θN−1 − ψN−1| .

One can remove the absolute values to obtain

‖Θ − Ψ‖(1) =
Nc∑

k=1

(−1)k
(

θK(k) − ψK(k)

)

. (A.5)

The subscripts K(k) correspond to Nc critical oscillators (1 ≤ Nc ≤ N − 1) whose phases
are characterized by a change of the sign of θj+1 − ψj+1 − (θj − ψj). Formally, the map
K : {1, . . . , Nc} 7→ {1, . . . , N − 1} is defined such that K(k − 1) < K(k) and such that

[

θK(k)+1 − ψK(k)+1 −
(

θK(k) − ψK(k)

)] [

θK(k) − ψK(k) −
(

θK(k)−1 − ψK(k)−1

)]

< 0 ,

with θ0 = ψ0 = θN = θN = 0. The index K(k) corresponds to a maximum of θj − ψj when k
is even and to a minimum when k is odd (Figure A.1). In particular, one has

(−1)k
(

θK(k) − ψK(k)

)

> (−1)k
(

θK(k±1) − ψK(k±1)

)

, (A.6)
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(a) k even (b) k odd

Figure A.1: The critical oscillators correspond to extremal values of θj − ψj .

assuming that θK(0) = ψK(0) = θK(Nc+1) = ψK(Nc+1) = 0.
The time derivative of (A.5) yields

d

dt
‖Θ − Ψ‖(1) =

Nc∑

k=1

(−1)k
(

θ̇K(k) − ψ̇K(k)

)

,
Nc∑

k=1

T (k) . (A.7)

Next, we consider separately each term T (k). It follows from (7.22) that

T (k) = (−1)k

[

Γ(θK(k)) − Γ(ψK(k)) +
N−1∑

j=1
j 6=K(k)

Γ(θK(k) − θj) − Γ(ψK(k) − ψj)

−
N−1∑

j=1

Γ(−θj) − Γ(−ψj)

]

.

Using the mean value theorem, we obtain

T (k) = Γ′(ξK(k))(−1)k
(

θK(k) − ψK(k)

)

︸ ︷︷ ︸

, T
(k)
K(k)

+
N−1∑

j=1
j 6=K(k)

Γ′(ξK(k),j)(−1)k
(

θK(k) − ψK(k) − (θj − ψj)
)

︸ ︷︷ ︸

, T
(k)
j

+ (−1)k



−
N−1∑

j=1

Γ(−θj) − Γ(−ψj)





︸ ︷︷ ︸

, TΣ

,

(A.8)

with ξK(k) ∈ [θK(k), ψK(k)] or ξK(k) ∈ [ψK(k), θK(k)] and ξK(k),j ∈ [(θK(k) − θj) mod 2π, (ψK(k) −
ψj) mod 2π] or ξK(k),j ∈ [(ψK(k) − ψj) mod 2π, (θK(k) − θj) mod 2π]. Since Γ′′ ≤ 0, the values
satisfy

ξK(k) ≤ ξK(k+1) k < Nc (A.9)

ξK(k),j ≤ ξK(k+1),j k < Nc j 6= {K(k),K(k + 1)} , (A.10)

ξK(Nc),j ≤ ξK(1),j j 6= {K(1),K(Nc)} . (A.11)
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Because of the discontinuity of Γ, it is noticeable that these relationships are not valid if a
trajectory is in the boundary of C.

Disregarding the terms TΣ, we show that each positive term T
(k)
j of T (k) (in (A.8)) can

be associated with a term T
(k+1)
j of T (k+1) so that the addition of both terms T

(k)
j + T

(k+1)
j

is negative.

• If the term T
(k)
K(k) ≥ 0, it is associated with the term T

(k+1)
K(k+1). It follows from (A.9) and

from Γ′′ ≤ 0 that Γ′(ξK(k+1)) ≤ Γ′(ξK(k)) < 0. In addition, (A.6) implies

−(−1)k+1
(

θK(k+1) − ψK(k+1)

)

< (−1)k
(

θK(k) − ψK(k)

)

≤ 0 .

Then, we obtain T
(k)
K(k) + T

(k+1)
K(k+1) < 0.

• If the term T
(k)
j ≥ 0 for any j 6= K(k), it is associated with the term T

(k+1)
j , j 6= K(k+1).

According to (A.6), one has never T
(k)
j ≥ 0 for j = K(k+ 1). It follows from (A.10) and

from Γ′′ ≤ 0 that Γ′(ξK(k+1),j) ≤ Γ′(ξK(k),j) < 0. In addition, (A.6) implies

−(−1)k+1
(

θK(k+1) − ψK(k+1) − (θj − ψj)
)

< (−1)k
(

θK(k) − ψK(k) − (θj − ψj)
)

≤ 0 .

Then, we obtain T
(k)
j + T

(k+1)
j < 0.

For k = Nc, the terms of T (k) cannot be associated with the terms of T (k+1). Then, it

remains to consider the terms T
(Nc)
j and the terms (−1)kTΣ. We distinguish two cases: the

case Nc even and the case Nc odd.
Case Nc even. The addition of the Nc terms (−1)kTΣ yields

Nc∑

k=1

(−1)kTΣ = 0 .

In addition, the relationship (A.6) implies

θK(1) − ψK(1) < 0 θK(Nc) − ψK(Nc) > 0 (A.12)

so that the term T
(Nc)
K(Nc) < 0.

If the term T
(Nc)
j ≥ 0 for any j 6= K(Nc), it is associated with the term T

(1)
j , j 6= K(1).

According to (A.6), one has never T
(Nc)
j ≥ 0 for j = K(1). It follows from (A.11) and from

Γ′′ ≤ 0 that Γ′(ξK(1),j) ≤ Γ′(ξK(Nc),j) < 0. In addition, the inequalities (A.12) imply

−(−1)1
(

θK(1) − ψK(1) − (θj − ψj)
)

< (−1)Nc

(

θK(Nc) − ψK(Nc) − (θj − ψj)
)

≤ 0 .

Then, we obtain T
(Nc)
j + T

(1)
j < 0.

Case Nc odd. The addition of the Nc terms (−1)kTΣ yields

Nc∑

k=1

(−1)kTΣ = −TΣ = −
N−1∑

j=1

Γ′(ξ−j) (θj − ψj)
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with ξ−j ∈ [2π − θj , 2π − ψj ] or ξ−j ∈ [2π − ψj , 2π − θj ]. Since Γ′′ ≤ 0, the values satisfy

ξK(Nc),j ≤ ξ−j ≤ ξK(1),j . (A.13)

If the term −Γ′(ξ−j)(θj − ψj) ≥ 0, it is associated with the term T
(1)
j . It follows from

(A.13) and from Γ′′ ≤ 0 that Γ′(ξK(1),j) ≤ Γ′(ξ−j) < 0. In addition, the relationship (A.6)
implies

θK(1) − ψK(1) < 0 θK(Nc) − ψK(Nc) < 0 (A.14)

so that

−(−1)1
(

θK(1) − ψK(1) − (θj − ψj)
)

< −(θj − ψj) ≤ 0 .

Then, we obtain −Γ′(ξ−j)(θj − ψj) + T
(1)
j < 0.

Next, (A.14) implies that the term T
(Nc)
K(Nc) < 0.

If the term T
(Nc)
j ≥ 0 for any j 6= K(Nc), it is associated with the term −Γ′(ξ−j)(θj −ψj).

It follows from (A.13) and from Γ′′ ≤ 0 that Γ′(ξ−j) ≤ Γ′(ξK(Nc),j) < 0. In addition, (A.14)
implies

θj − ψj < (−1)Nc

(

θK(Nc) − ψK(Nc) − (θj − ψj)
)

≤ 0 .

Then, we obtain T
(Nc)
j − Γ′(ξ−j)(θj − ψj) < 0.

Finally, every term of (A.7)-(A.8) is either negative or can be associated to a unique term
such that the addition of both is negative. Thus, one has

d

dt
‖Θ − Ψ‖(1) =

Nc∑

k=1

T (k) < 0 .

For the other situations (Γ′′ ≥ 0, Γ′ < 0), the proof follows on similar lines (except that
the terms of T (k) might be associated with the terms of T (k−1) instead).

Remark A.5.1. The contraction property is not verified if one trajectory is in the boundary
of C. However, it is noticeable that a reduced dynamics governing the evolution of trajectories
in the boundary of C still satisfies the contraction property of Theorem 7.3.1. In other words,
the (N − 2)-dimensional dynamics obtained

• when θ̃1 = 0, i.e.

˙̃θk = 2Γ(θ̃k) +
N−1∑

j=2
j 6=k

Γ(θ̃k − θ̃j) −
N−1∑

j=2

Γ(−θ̃j) − Γ(0) k = 2, . . . , N − 1 ;

• or when θ̃N−1 = 2π, i.e.

˙̃θk = 2Γ(θ̃k) +
N−2∑

j=1
j 6=k

Γ(θ̃k − θ̃j) −
N−2∑

j=1

Γ(−θ̃j) − Γ(0) k = 1, . . . , N − 2 ;
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• or when θ̃n = θ̃n+1, n = 1, . . . , N − 2, i.e.







˙̃θk = Γ(θ̃k) +
N−1∑

j=1
j 6={k,n,n+1}

Γ(θ̃k − θ̃j) + 2Γ(θ̃k − θ̃n) −
N−2∑

j=1
j 6={n,n+1}

Γ(−θ̃j) − 2Γ(−θ̃n) k 6= {n, n+ 1}

˙̃θn = Γ(θ̃n) +
N−1∑

j=1
j 6={n,n+1}

Γ(θ̃n − θ̃j) + Γ(0) −
N−2∑

j=1
j 6={n,n+1}

Γ(−θ̃j) − 2Γ(−θ̃n)

is characterized by a contraction property with respect to the 1-norm (A.5). The proof, which
is a straightforward corollary of the proof of Theorem 7.3.1, is left to the reader. ⋄
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