Sensitivity of particle size & shape parameters with respect to digitization

Eric PIRARD
Godefroid DISLAIRE
Liège University (ULg)
A prominent research partner in Belgium

18,000 students - 2,000 PhD students
Largest network of spin-off companies in Belgium (>70)

GeMMe – Minerals Engineering,
Materials & Environment
Synopsis

• Introduction
 - Importance of size & shape indices
 - Emerging ISO Standards for IA
 - Exner « quality criteria »

• Material & Methods
 - Sub-pixel digitization
 - Simulated particles
 - Real particles
 - Area-Perimeter-Elongation-Bluntness

• Results
 - Accuracy of size/shape estimators
 - Practical implications

• Perspectives

ICS13
BEIJING
Introduction

- Importance of size & shape indices
- Emerging ISO Standards for IA
- Exner « quality criteria »
• Importance of Particle Size and Shape

- Non imaging methods (indirect)
 • Sieving
 » Weight of particles passing through a square mesh
 • Laser Diffraction
 » Inversion of a cumulated diffraction pattern as a distribution of spheres
 • ...

- Imaging methods (direct)
 • Image Analysis
 » Individual pictures of particles
 » No hypothesis on particle shape
 » Distributions in « volume » or number
Introduction

- **Maturity of Image Analysis based technologies**
 - Dedicated instruments
 - Coarse (50 µm - 5 mm) / Fine (500 nm - 200 µm) powders
 - Wet / Dry powders
ISO Standards
- ISO 13322-1 *Particle size analysis - Image analysis methods*
- ISO 9276-6 *Descriptive and quantitative representation of particle shape and morphology*

ISO parameters are
- A trade-off between manufacturers
- Ease of computation
- Simple definition

No recommendations on
- Image acquisition (magnification, resolution)
- Image segmentation (thresholding).
• **Quality of shape parameters**

 Exner (1987)

 - Relevance
 - Robustness
 - Independence
 - Sensitivity
 - Additivity
 - Accessibility

 \[
 D_A = 2 \sqrt{\frac{A}{\pi}}
 \]

 Not a physical dimension of the particle

 A lot of decimals… but no precision!
• **Quality of shape parameters**

 - Relevance
 - **Robustness**
 - Independence
 - Sensitivity
 - Additivity
 - Accessibility

 Exner (1987)

 Robustness with respect to touching particles

 D_A is twice as large as D_{IN}!
• Quality of shape parameters

 Exner (1987)

 - Relevance
 - Robustness
 - **Independence**
 - Sensitivity
 - Additivity
 - Accessibility

\[F = \frac{4\pi A}{P^2} \]

Circularity (= shape factor F) is a function of elongation AND roughness
• **Quality of shape parameters**

 - Relevance
 - Robustness
 - Independence
 - Sensitivity
 - Additivity
 - Accessibility

Exner (1987)

\[F = \frac{4\pi A}{P^2} \]
Material & Methods

- Sub-pixel digitization
- Simulated particles
- Real particles
- Area-Perimeter-Elongation-Bluntness
Material & Methods

• Simulation of particles
 - Geometric shapes
 • Grid density \textit{(resolution)}
 • Translation
 • Rotation
 » 16 x 16 subsampling grid
 » Grey level = Area coverage

• Threshold
Material & Methods

- Simulation of particles
 - Real shapes
 - Imaging at high resolution
 » 10 000 pixels/particle
 - Subsampling
 » 16 x 16 subsampling grid
 » Grey level = area coverage
 » down to 100 pixels/particle
Results

- Evolution of parameter with
 - pixel density
 - Rotation/translation
 - thresholding
Results

- Perimeter vs Resolution

Crofton’s perimeter equivalent diameter vs. theoretical diameter as a function of pixel density (from 1 to 20 pixels)
• Bluntness vs Resolution
• Practical Conclusions

- Pertinence of Exner’s criteria
 » Independence, Sensitivity,...

- Recommendations of min. resolution for ISO standards
 » 10 pixels for size
 » 200 pixels for aspect ratios
 » 2000 pixels for « roughness »

- Comparison of shape within narrow size ranges
 » Be aware of pseudo-correlations
 the « fine is smooth » effect

- More systematic work on analytical errors in Image Analysis