

Sensitivity of particle size & shape parameters with respect to digitization

Eric PIRARD
Godefroid DISLAIRE

Liège University (ULg)

A prominent research partner in Belgium

18 000 students - 2000 PhD students Largest network of spin-off companies in Belgium (>70)

GeMMe – Minerals Engineering, Materials & Environment

- Importance of size & shape indices
- Emerging ISO Standards for IA
- Exner « quality criteria »

Material & Methods

- Sub-pixel digitization
- Simulated particles
- Real particles
- Area-Perimeter-Elongation-Bluntness

Results

- Accuracy of size/shape estimators
- Practical implications

Perspectives

Introduction

- Importance of size & shape indices
- Emerging ISO Standards for IA
- Exner « quality criteria »

Importance of Particle Size and Shape

- Non imaging methods (indirect)
 - Sieving
 - » Weight of particles passing through a square mesh
 - Laser Diffraction
 - » Inversion of a cumulated diffraction pattern as a distribution of spheres
 - ...
- Imaging methods (direct)
 - Image Analysis
 - » Individual pictures of particles
 - » No hypothesis on particle shape
 - » Distributions in « volume » or number

BEIJING

Maturity of Image Analysis based technologies

- **Dedicated instruments**
 - Coarse (50 μm 5 mm) / Fine (500 nm 200 μm) powders
 - Wet / Dry powders

de Liège

ISO Standards

- ISO 13322-1 Particle size analysis Image analysis methods
- ISO 9276-6 Descriptive and quantitative representation of particle shape and morphology
 - ISO parameters are
 - » A trade-off between manufacturers
 - » Ease of computation
 - » Simple definition
 - No recommendations on
 - » Image acquisition (magnification, resolution)
 - » Image segmentation (thresholding).

BEIJING

Quality of shape parameters
 _{Exner (1987)}

- Relevance
- Robustness
- Independence
- Sensitivity
- Additivity
- Accessibility

ISO Equiv. Area Disk Diameter:

$$D_A = 2.\sqrt{\frac{A}{\pi}}$$

Not a physical dimension of the particle

A lot of decimals... but no precision!

BEIJING

Quality of shape parameters

Exner (1987)

- Relevance
- Robustness
- Independence
- Sensitivity
- Additivity
- Accessibility

Robustness with respect to touching particles

 D_A is twice as large as D_{IN} !

BEIJING

Quality of shape parameters

Exner (1987)

- Relevance
- Robustness
- Independence
- Sensitivity
- Additivity
- Accessibility

$$F = \frac{4.\pi.A}{P^2}$$

Circularity (= shape factor F) is a function of elongation AND roughness

ICS13 BEIJING

Quality of shape parameters

- Relevance
- Robustness
- Independence
- Sensitivity
- Additivity
- Accessibility

Exner (1987)

Material & Methods

- Sub-pixel digitization
- Simulated particles
- Real particles
- Area-Perimeter-Elongation-Bluntness

Material & Methods

BEIJING

• Simulation of particles

- Geometric shapes
 - Grid density (resolution)
 - Translation
 - Rotation
 - » 16 x 16 subsampling grid
 - » Grey level = Area coverage
 - Threshold

Material & Methods

- Simulation of particles
 - Real shapes
 - Imaging at high resolution
 - » 10 000 pixels/particle
 - Subsampling
 - » 16 x 16 subsampling grid
 - » Grey level = area coverage
 - » down to 100 pixels/particle

Results

- Evolution of parameter with
 - pixel density
 - Rotation/translation
 - thresholding

• Perimeter vs Resolution

Crofton's perimeter equivalent diameter vs. theoretical diameter as a function of pixel density (from 1 to 20 pixels)

Bluntness vs Resolution

Perspectives

BEIJING

Practical Conclusions

- Pertinence of Exner's criteria
 - » Independence, Sensitivity,...
- Recommendations of min. resolution for ISO standards
 - » 10 pixels for size
 - » 200 pixels for aspect ratios
 - » 2000 pixels for « roughness »
- Comparison of shape within narrow size ranges
 - » Be aware of pseudo-correlations the « fine is smooth » effect
- More systematic work on analytical errors in Image Analysis