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We analyze the thermodynamic, magnetic and transport properties of the narrow band gap semi-
conductor FeSb2 using density functional theory calculations corroborated by nuclear inelastic spec-
troscopy and ultrasound experiments. The vibrational properties (phonon spectrum, density of
states, heat capacity) and elastic constants are computed through response function calculations
and are in good agreements with the measurements. The electron-phonon coupling effects are also
studied. The estimations of linewidth broadening due to electron-phonon coupling, along the high
symmetry directions in the first Brillouin zone are given. The linewidth broadening reaches the
largest value for Fe optical modes in the vicinity of the X[0.5, 0, 0] point. The broadening, when
compared to those obtained at the other symmetry points, differ by up to two orders of magnitude.
From the Boltzmann theory applied to our electronic band structure we investigate the electrical
transport properties. It is found that a purely electronic structure description is incompatible with
the record value of the Seebeck coefficient experimentally observed at T ≈ 12 K. The diamagnetic
to paramagnetic crossover at a temperature around 100 K is also described from the calculation of
the magnetic susceptibility and results compare well with experiment.

PACS numbers: 63.20.-e,63.20.dk,71.38.-k,63.20.dd,63.20.kd,72.10.Di

I. INTRODUCTION

The study of the thermodynamic, thermoelectric, and
magnetic properties of iron diantimonide FeSb2 has been
the subject of intense research investigations1–4. The par-
ticular interest in this materials is due to its interesting
low temperature physical properties and the considerable
potential applications, the most promising of which is in
the development of cryo-refrigeration, because of its large
thermoelectric power at low temperature4.

FeSb2 crystallizes in the loellingite (orthorhombic mar-
casite type) structure with Fe ions surrounded by de-
formed Sb octahedra5 and contains two formula units per
unit cell. The low temperature state is semiconductor
with an extremely narrow indirect band gap which pro-
motes strong correlation effects between d and conduction
band states6–9. The minimum direct gap value extracted
from reflectivity measurements10,11 range between 30 and
40 meV. Recent band structure calculations12 have shown
that it is possible to properly describe the indirect semi-
conducting gap of FeSb2 by going beyond standard DFT
methods for instance using GW calculations.
The physical properties of FeSb2 are similar in many
respects to those of iron silicide FeSi13,14. The most

remarkable observed similarities are the temperature-
dependent magnetic susceptibility15,16 χ(T ) and the
strong anisotropic electrical transport properties17–19.
For a magnetic field applied along the c-axis, the sys-
tem evolves from a diamagnetic state towards a param-
agnetic state through a crossover temperature at about
100 K. The electrical resistivity exhibits a semiconduct-
ing behavior along the a and c axis whereas, for the b
axis, a semiconducting-metallic crossover temperature of
40K is observed. Among the open questions regarding
the temperature dependence of the physical properties of
FeSb2, most attention has recently been focused on the
origin of the huge low temperature thermopower. Of par-
ticular interest is the issue of whether the thermopower
is purely electronic, as is usually assumed, or if there are
some other important effects due to phonon drag20 for
instance. The physical origin of this phenomenon is in
fact not yet clarified. Adding to properties observed ear-
lier, Bentien et al.21 recently found that FeSb2 exhibits
a record Seebeck coefficient S ≈ -45000µV K−1 at T ≈

12 K, and the thermoelectric power factor PF = S2.ρ−1,
where ρ represents the electrical resistivity, can reach a
value of ≈2300 µWK−2cm−1. This value is 65 times
larger than the reference value measured for Bi2Te3-based
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thermoelectric materials. However the figure of merit
ZT = S2.ρ−1κ−1T is rather low, due to the large value of
the thermal conductivity12 κ = 250 WK−1m−1 at T ≈

12 K.
Herein, we combine experimental and theoretical in-

vestigation of transport, magnetic and vibrational prop-
erties of FeSb2. We analyze the transport coefficients
within an electronic structure picture where the contri-
bution of the lattice thermal conductivity κL to ZT is
neglected (low temperature approximation). Because the
electrical transport properties of narrow band gap semi-
conductors are very sensitive to chemical substitution22,
we have investigated the effect of donor impurity doping
on the Seebeck coefficient. The exponentially-activated
paramagnetic susceptibility23 with increasing tempera-
ture is highlighted. Regarding the vibrational proper-
ties, few studies have been performed so far24,25, and the
results were presented from the point of view of its ab-
sorption spectrum in comparison with those obtained in
FeSi, which has similar physical properties10,18. This re-
striction does not allow a more detailed description of
some physical properties, such as the lattice vibrations
and their interaction with electrons, which are necessary
to understand the mechanism governing the low temper-
ature thermoelectric power of FeSb2. The experimental
phonon density of states, sound velocities and shear mod-
ulus were obtained by nuclear inelastic scattering, and
resonant ultrasound spectroscopy measurements. Results
are presented in comparison with those calculated using
methods based on response function calculations26.

II. METHODS

A. Computational methods

The calculations were carried out using the density
functional theory27,28 and norm-conserving pseudopoten-
tials (including spin-orbit corrections29 for Sb) in the gen-
eralized gradient approximation as implemented in the
ABINIT package30. Details of our calculation are as fol-
lows. The exchange-correlation potential is in the form of
Perdew-Burke-Ernzerhof (PBE)31. We use a plane wave
basis set with a kinetic energy cutoff of 45 Ha. For the
atomic positions relaxation, we sample the entire Bril-
louin zone (BZ) with 16×16×16 k points corresponding
to 2097 k points in the irreducible Brillouin zone (IBZ).
The BZ integrations were performed using a Gaussian
smearing method with a width of 2.7 meV. The total
energy is converged to within 3×10−4 meV and the ob-
tained equilibrium structure is of loellingite type, with
an orthorhombic cell. The calculated lattice parameters
are a=5.83 Å, b=6.50 Å and c=3.16 Å. These results are
consistent with experimental values3. In order to com-
pute the transport properties and electron-phonon in-
teraction properties we need a finer k-point grid. The
electronic eigenvalues and phonon eigenfrequencies were
determined on a grid consisting of 24×24×24 k vectors

and 4 × 4 × 4 phonon wave vectors. The phonon density
of states and dispersion along high symmetry lines have
been obtained by standard methods based on response
function calculations26. We considered perturbations in
the high-symmetry directions of the crystallographic cell.
The resulting thermodynamic properties (the vibrational
entropy and heat capacity ) were calculated using quasi-
harmonic approximation32,33. The calculation of trans-
port properties was performed using a denser mesh of
450000 k points of the BZ. The semi-classical Boltzmann
theory as implemented in the transport code BoltzTrap34

has been used to compute the electrical transport coeffi-
cients and the magnetic susceptibility. We point out that
there is no alternative magnetic solution for the ground
state of FeSb2, in agreement with experiment17.

B. Experimental methods

The sample enriched with 57Fe was made from finely
ground powder of pure elements. The powders where
mixed thoroughly before they were placed in a corundum
crucible and sealed in vacuum in a quartz tube. The el-
ements were allowed to react for 1 week at 730oC. The
sample was pure with the measured resolution obtained
by a Bruker D8 Advanced equipped with CuKᾱ1 and an
energy dispersive Sol-X detector. The sample for the res-
onance ultrasound spectroscopy was a non-enriched sam-
ple prepared in a similar way followed by spark plasma
sintering pressing. A pellet was pressed by heating to
600oC in 5 min at 60 MPa and held at 600oC for 10 min.
Before pressing a small impurity of Sb was observed by
x-ray diffraction, after pressing a tiny amount of Fe was
observed, however the content was too small for quanti-
tative refinements.
The partial density of phonon states (DPS) of Sb and Fe
were obtained by nuclear inelastic scattering (NIS) mea-
surements. The technique and the extraction of the DPS
from the NIS spectra is explained in Ref.35–37. The mea-
surements with the 57Fe and the 121Sb resonance took
place on the 95% 57Fe enriched powder sample at the
ESRF ID18 and ID22N beamlines, respectively, in 16
bunch mode, and at 50 and 67 K, respectively, in order
to reduce the multiphonon contributions. The resolution
was 0.7 and 1.3 meV FWHM for measurements with the
57Fe and 121Sb resonance, respectively.
The resonant ultrasound spectroscopy, RUS, response
was measured with a homemade inset for a QD-PPMS.
The measurements were done on a polished 2.205(2) ×

2.118(2) × 1.784(2) mm3 polycrystalline sintered pow-
der sample upon cooling between 300 and 10 K. It was
verified by Laue diffraction that the sample is polycrys-
talline. The density of the sample was ∼98% of the x-ray
density. Only 20 resonance frequencies could be reliably
determined and modeled using a finite element algorithm
for a rectangular parallelepiped with a 10th order poly-
nomial fit for the displacements38. The root mean square
deviation of the fits was of ∼0.8%, i.e. somewhat large.
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A too small number of resonance lines had a significant
c11 contribution, thus it can not be reliably determined.
The temperature dependence of the c44 component was
obtained through fits and then verified by the tempera-
ture variation of particular resonance frequencies which
depend by more than 95% on c44. The weakness in the
modeling likely comes from texture in the sample caused
by the sintering process.

III. RESULTS AND DISCUSSIONS

A. Electronic band structure

The GGA electronic band structure is displayed in
Fig. 1. The maximum of the valence band is at the
R[0.5, 0.5, 0.5] point and the minimum of the conduction
band is found in the line between the points Γ and Z[0
0 0.5]. The semiconducting optical gap was estimated at
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FIG. 1: Calculated electronic band structure and density of
states of FeSb2 using GGA. The red dotted line indicates the
Fermi level.The inset right figure shows the small direct band
gap at the R [0.5,0.5,0.5] point (corner of the first Brillouin
zone), and the overlap between the maximum of the valence
band which is located at R point and the minimum of the
conduction band lying between the Γ and Z [0 0 0.5] points.

35 meV from reflectivity measurements10, this is consis-
tent with the calculated direct gap of 33 meV, despite
the well known underestimation of the band gap within
DFT, see right inset to Fig. 1. The density of states in
the vicinity of the Fermi level is largely dominated by the
Fe−d states, however a substantial contribution from the
Sb−p states is observed. The projected DOS show that
the two major peaks at the top of the valence band and
the bottom of the conduction band have mainly dz2 and
dx2

−y2 characters4. These two enhanced narrow bands
and the small band gap suggest strong electronic correla-
tion effects that may be responsible for the magnetic and
transport anomalies in FeSb2 at low temperature.

B. Magnetic susceptibility

The study of the magnetic susceptibility reveals an in-
teresting diamagnetic to paramagnetic transition at tem-
perature around 100 K, as experimentally observed23.
Fig. 2 displays the magnetic susceptibility χ as a func-
tion of temperature. The magnetic susceptibility is cal-
culated from the electronic density of states g(ǫ) (Fig. 1
right panel) and the derivative of the Fermi distribution
function f(ǫ, µ, Te) with respect to energy,

χ = −2µoµ
2
B

∫
g(ǫ)(∂f(ǫ, µ, Te)/∂ǫ)dǫ + χ0 (1)

where µo and µB are the magnetic permitivity of vac-
uum and the Bohr magneton, respectively. The calcula-
tion of the derivative ∂f(ǫ, µ, Te)/∂ǫ requires the knowl-
edge of the chemical potential µ as a function of elec-
tronic temperature, which is evaluated from the conser-
vation of total electrons number Ne =

∫
g(ǫ)f(ǫ, µ, Te).

χ0 = −4.510−5 emu/mol is an additional constant term
due to the core diamagnetism3. Below 40 K χ is tem-
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FIG. 2: The temperature evolution of the magnetic suscep-
tibility compared with experimental extracted from Ref.3. χ
evolves from a constant value = −4.510−5 emu/mol at low
temperatures (diamagnetic region) towards positive values
(paramagnetic region) above T=80K.

perature independent. The diamagnetism (χ < 0) is pro-
gressively reduced with rising temperature leading to the
paramagnetic behavior above 80 K (χ > 0). The small
crossover temperature, T ≈ 80 K is attributed to the
narrow band gap. FeSb2 can be presented as a Kondo
insulator system where the electronic structure is char-
acterized by two dominant bands at the vicinity of the
Fermi level (see Fig. 1), with a given width of W , sep-
arated by a gap. Raising the temperature leads to delo-
calization of electrons from lower bands to upper bands
and activates the Pauli magnetic susceptibility3 as shown
in Fig. 2. The same scenario has been found to be the
underlying mechanism of phase changes observed in the
related system FeSi10.
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C. Transport properties

As previously mentioned, the calculation of transport
coefficients was performed by using the semiclassical
Boltzmann theory applied to the GGA electronic band
structure described in Sec. IIIA.
1. Seebeck coefficient. Fig. 3 shows the Seebeck coeffi-
cient S as function of temperature. A spectacular drop is
observed at low temperatures, yielding a minimum value
of Smax ≈ -800 µ V K−1 at T ≈ 15 K. The enhanced
peak is followed by a rapid increase of S with T towards
positive values above T ≈ 25 K. Whereas a fairly good
agreement is obtained with experimental results39, Smax

is rather different from the record value Smax ≈ -45000
µV K−1 measured by Bentien et al21, along the c− di-
rection. Our calculations also show that S is relatively
larger in the c than in the a or b direction. The direc-
tional dependence of S is not given here. However, the
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FIG. 3: Seebeck coefficient S vs. temperature T . The inset
shows the low temperature curve between 0 and 40K for S.

observed record value of S(T ) can not be quantitavely re-
produced by a purely electronic structure picture, or by a
classical description of electron diffusion in non degener-
ate system40. This implies that other contributions must
be present. Although many aspects may suggest that the
phonon drag effect20 plays a dominant role in the large
enhancement of S at T ≈ 12 K, it was also shown in a
comparative study40 on related systems such as RuSb2

that the role of phonon drag is minor.
2. Donor doping. The quality of the sample used for
experimental measurements is known to have a large in-
fluence on the value of Smax. The measured values of
Smax depend on the purity of the polycrystal, similar
measurements4 with a less pure polycrystal; have led to
much smaller values.
Our observations indicate that S is very sensitive to the
value of the chemical potential µ as is shown in Fig.4.
The value of µ depends on the concentration of charge
carriers and hence on the purity of the material. In the
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FIG. 4: Seebeck coefficient S vs. chemical potential µ at
different temperatures. S is very sensitive to small changes in
µ.

intrinsic case where the number of electrons excited to
the conduction band, n, is equal to the number of holes p,
left behind, the chemical potential is µ ≈ ∆/2+(3/4)kB

T ln(mh/me), where mh and me are respectively the ef-
fective masses of holes and electrons. In this regime µ
is displaced from the middle of the band gap by a term
that depends on temperature and the ratio of the effec-
tive masses. The point of charge neutrality at T=0 K
is very close to the midgap point. For non-zero tem-
peratures, the donor and acceptor sites can be thermally
ionized. In the extrinsic case for finite dopings the charge
neutrality condition n + N−

a = p + N+
d governs the car-

rier concentration, where N−

a = Na(1 − f(∆ − Ea)) and
N+

d = Nd(1−f(∆−Ed)) are the concentration of ionized
acceptors and donors. Na and Nd are the number of ac-
ceptors and donors, Ea and Ed the corresponding energy
levels and f the Fermi function.
In the presence of donor impurities n = p + N+

d corre-
sponding to µ > 0 and S < 0 in Fig.4, the chemical po-
tential is µ = (∆/2 − Eimp/2)−kB T ln(n/N+

d ), where
Eimp = ∆/2 − Ed is the impurity activation energy.
The enhancement of the Seebeck coefficient at a given
temperature depends on whether the additional carriers
bring µ towards its optimal value µopt or not. We found
µopt = 0.21 meV for T=16K corresponding to a carrier
density of n = 3.2 × 1015/cm3. This optimum chemical
potential which maximizes S is located above the midgap
point. The optimum carrier density found in Ref.12 cor-
responds to n = 1.3 × 1016/cm3 at T=220 K. It appears
therefore that the combination of an optimal doping and
small resistivity allows to maximize the thermopower S.

3. Resistivity. Fig. 5 shows the variation of the elec-
trical resistivity ρ with temperature. ρ(T ) is evaluated
assuming a temperature-independent relaxation time τ
of electrons. For the estimation of τ , we fit the experi-
mental data reported in Fig. 2 of Ref.40 by adjusting the
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value of ρ at low temperature. We find τ =0.225 ps. A
step further towards a complete theoretical description of
the transport properties is to go beyond the constant re-
laxation time approximation by taking into account the
anisotropic nature of the electron scattering by phonons
and the temperature dependence of τ .
Below T=400 K, the resistivity exhibits a semiconduct-
ing behavior with two different regions separated by a
plateau at T ≈ 20 K and is similar to what is observed
in Ref.4,21. The activation energy above 50 K obtained
by fitting the Arrhenius equation ρ(T ) = ρ0exp(Ea/2kB

T ) is estimated to EA ∼ 350-450 K in agreement with
experimental measurements40. Furthermore, it appears
from our calculations that the low-temperature resistiv-
ity is highly anisotropic. Along the c axis we observe a
large increase of ρ(T ) values, in agreement with experi-
mental measurements17.
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FIG. 5: Calculated electrical resistivity ρ vs. temperature in
a logarithmic scale. ρ(T ) is computed using a constant relax-
ation time τ=0.225 ps for the whole temperature range.

The efficiency of thermoelectric materials is determined
by the value of the figure of merit ZT defined above. The
reference value measured for Bi2Te3-based thermoelectric
material is ZT=0.9 41. A target value larger than 2 is de-
sirable for a large-scale applications. From the definition
of ZT , it clearly appears that systems with large ther-
moelectric power must be both good electrical conductor
and very limited in terms of heat conduction, to have a
maximum ZT . It is therefore necessary to find a way to
separate the electrical and thermal properties in order to
maximize ZT , i.e to obtain high values of the Seebeck
coefficient S and low value of the electrical resistivity ρ
while minimizing the lattice thermal conductivity κ.

D. Phonons and elastic constants

1. Density of states. The calculated partial DPS, g(E),

Theo. Exp.
Fe Sb Fe Sb

vs (m/s) 3300(50) 3250(50) 3050(50) 3000(100)
F m (N/m) 175(5) 150(5) 163(5) 165(5)
θD (K) 447(5) 276(5) 405(5) 270(10)

TABLE I: The thermodynamic properties obtained from the
partial DPS at T = 50K.

and the DPS obtained from NIS are in good agreement,
see Fig. 6. The phonon modes related to Sb are mainly
below ∼23 meV, whereas the iron modes are in a higher
energy range above ∼23 meV. There is a small contri-
bution of Sb modes in the high energy range and of Fe
modes in the low energy range, which is due to the inter-
action of Sb and Fe modes. The Sb modes have a similar
shape than the Sb modes in the skutterudite FeSb3

37,
but the thermodynamic properties, such as the velocity
of sound and the Debye temperature in these compounds,
are different, as the Fe modes here are in a larger en-
ergy range. The experimental Sb phonons are very well
reproduced by the calculation. In contrast, for the Fe
phonons, although the shape is very well reproduced, the
experimental modes are somewhat softer than calculated
ones, which might be indicative of some significant soft-
ening due do electron phonon interactions already at 50
K. The Debye level can be obtained from the low energy
range in the reduced DPS, limE→0(g(E)/E2), see inset to
Fig. 6. From the Debye level, the velocity of sound, vs,
can be obtained by limE→0(g(E)/E2) = MR/(2π2ρ~

3v3
s),

with the mass of the resonant atom, MR, and the density
of the material ρ. The mean values of vs obtained from
the calculated and experimental Fe DPS are 3300(50) and
3050(50) m/s, respectively, in good agreement with the vs

obtained by the measured Sb DPS, see Table I. The dif-
ference between the calculated and experimental velocity
of sound can be partly explained by differences in temper-
ature, because the experimental DPS was obtained at a
finite temperature of 50 K. The partial velocity of sound,
vλ, along the longitudinal and transversal directions are
obtained from the calculated phonon dispersion curves
using the acoustic approximation, see Table II. The DPS
also gives reliable and direct access to the element-specific
mean force constants both for Fe35 and for Sb42 by the
relation Fm = MR/~

∫
∞

0
g(E)E2dE. The obtained Fm

values for Fe and Sb from calculation and experiment
are in good agreement, see Table I. The element-specific
Debye temperatures can be obtained from the DPS with
the relation θ2

D = 3/(kB
2
∫
∞

0
g(E)dE/E2), obtained in

the high temperature limit, see Ref.35. The obtained cal-
culated and experimental values are in agreement, see
Table I.

2. Elastic constants. The polycristalline average of
the c44 shear modulus exhibits first softening with in-
creasing temperature up to 120 K, which is the typical
behavior observed in most materials, see Fig. 7. How-
ever, above 120 K hardening with increasing temperature
is observed, which correlates with the onset of the grad-
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FIG. 6: Comparison of the DPS obtained by calculation,
Theo., and by NIS, Exp., measured with the 57Fe resonance
at 50 K and with the 121Sb resonance at 67 K. In the in-
set the reduced partial DPS, g(E)/(E2), is shown in units of
10−4/meV3 with the low energy fit, between 0 and 4 meV,
for the Debye levels, indicated by the same line style. The
Debye level is proportional to the mass of the element and
hence different for Fe and Sb.

TABLE II: The transverse, longitudinal and average sound
velocities, in m/s.

Direction TA1 TA2 LA average vs

[100] 3181 3649 5123 3703
[010] 2249 3700 5473 2975
[001] 2306 3189 4666 2811
[110] 2754 3108 5285 3243
[011] 2850 3213 4420 3281

ual transition from diamagnetic to paramagnetic behav-
ior and the activation of charge carriers, see experimental
data in Fig. 2. This anomalous hardening is a further in-
dication of strong coupling between lattice and electronic
degrees of freedom. The qualitative temperature depen-
dence reported herein is not be affected by the modelling
problems related to the use of a sintered polycristalline
sample, however, measurements on single crystal will be
highly desirable as soon as large enough samples become
available, in order to quantitatively verify the impact of
the coupling of electronic and lattice degrees of freedom
on specific elastic moduli.

The elastic constants with and without inclusion of
spin orbit interaction were also calculated, directly using
perturbation theory (wrt strain) as described in Ref.43.
The elastic constant tensor components cij reported in
Tab. III are for relaxed ions. Note that the tensor was
symmetrized. Experimental or other theoretical results
are not available for a direct comparison with the calcu-
lated elastic constants cij in Fig. 7. The measurements
of c44 and the value obtained at low T are consistent with
the calculated values, see Tab. III, but a precise compar-

FIG. 7: Temperature dependence of the shear modulus, c44,
in a sintered polycristalline sample of FeSb2.

ison will require measurements on a single crystal. We
can also see that the inclusion of effects due to spin or-
bit interaction has as consequence to increase the values
of all cij , except for c44, c55 and c66 where values are
relatively higher in the absence of spin orbit coupling.

TABLE III: Elastic constants of FeSb2 with and without con-
tribution from spin orbit interaction (SOI) in Voigt notation
and in units of GPa.

without SOI with SOI
α 1 2 3 4 5 6 1 2 3 4 5 6
1 225.8 64.3 72.1 265 68.5 85
2 64.3 258.1 32.0 68.5 307 49.5
3 72.1 32.0 186.5 85 49.5 252
4 45 36
5 89 70
6 116 79

The speeds of sound extracted from the elastic con-
stants are in good agreement with the values reported in
Tab.II, and agree reasonably well with experiments.
3. Specific heat. Using the calculated phonon frequen-
cies and density of states, the temperature dependence
of specific heat Cv was computed and compared with
measurements. The theoretical and experimental results
are illustrated in Fig. 8 and are in excellent agreement.
The curves evolves smoothly at low temperatures follow-
ing the Debye model Cv ∼ ( T

ΘD

)3 and approaches the

Dulong-Petit limit Cv ∼ 75 J mol−1 K−1 at high temper-
atures.

E. Electron-phonon coupling

Our results for the phonon dispersion along several
symmetry directions together with the corresponding
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tion of temperature. Results are in very good agreement with
measurements (dotted line).
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FIG. 9: Calculated phonon spectrum of FeSb2 along the high
symmetry lines of the Brillouin zone. The points size indicates
the line broadening due to electron phonon coupling.

linewidth broadening due to electron phonon coupling are
displayed in Fig. 9. The energy range of phonon modes
extending from 0 up to 35 meV as well as the trend of the
electron phonon coupling along the different branches are
consistent with a recent direct experimental measurement
using inelastic neutron scattering44. Among the various
areas explored in the first Brillouin zone we note that
the stronger electron phonon couplings are observed in
the vicinity of the Z[0,0,0.5], X[0.5,0,0] and S[0.5,0.5,0]
points, for the optical modes. As shown in Fig. 6, the
optical modes are largely dominated by contribution from
Fe ions. The maximum value of the linewidth broaden-
ing is achieved at X. The Eliashberg spectral function
α2F (ω) is shown in Fig. 10. The value of the dimension-
less electron-phonon coupling strength defined through
λ = 2

∫
α2F (ω)dω/ω is 0.24, this value is fairly low com-

pared to calculated values for simple metals45.
Since no additional broadening due to anharmonic effects
can be expected at such low temperatures, our study re-
veals that the observed electron phonon interaction may

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 0.24

 0  5  10  15  20  25  30  35  40

α2  F
 (

ω
)

ω ( meV )

FIG. 10: Electron-phonon spectral function for FeSb2. The
results are based on the calculated frequencies.

play a major role in the transport properties. This is con-
sistent with recent measurements46 which have shown a
significant increase of linewidths broadening with tem-
perature in the range 0 - 40 K.

IV. CONCLUSIONS

We have analyzed the vibrational, thermoelectric and
magnetic properties of the semiconductor FeSb2 through
nuclear inelastic scattering, ultrasound experiments, and
modeling using DFT. The GGA was sufficient to reliably
treat the full set of physical properties on which we fo-
cused.
The theoretical approaches provide a valuable insight into
the link between the electronic structure and the thermo-
electric properties. We have shown that the contribution
of the electrons to the thermal conductivity is not the
predominant term in the huge negative value of Seebeck
coefficient S experimentally observed at low temperature.
Our analysis shows that a local electronic structure pic-
ture can explain the position, but not the large amplitude
of the T ∼ 12 K peak in S, suggesting the possible pres-
ence of phonon drag effects20 as it was already found in
pure semiconductors silicon47,48 and germanium49,50.
The correlation between the magnetic susceptibility and
the electrical resistivity was highlighted. It can be seen
in the behavior of the resistivity when raising tempera-
ture. In the low spin state diamagnetic phase the value of
the resistivity is four orders of magnitude larger than the
value in the paramagnetic high spin state at room tem-
perature. This significant increase of the electrical con-
ductivity in the paramagnetic region agrees with Good-
enough’s hypothesis51 that thermal excitation favors the
population of the less localized orbitals rather than more
localized orbitals. Therefore the magnetic susceptibility
can be explained either by a low spin to high spin tran-
sition, or as mentioned above by a thermally activated
Pauli susceptibility. Further band structure calculations
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and experiments are however necessary to clarify this is-
sue. For instance, in the band structure calculation the
orientation of localized and non-localized orbitals should
be known.
The combined experimental and theoretical study has
enabled a direct comparison of measurements and cal-
culations. Although differences were observed between
the measured and calculated sound velocities, a very
good agreement was obtained for the partial density of
phonon states and the temperature dependence of heat
capacity. The correlation between the temperature evo-
lution of the shear moduli and the transition from dia-
magnetic to paramagnetic behavior is emphasized. We
have also studied the effects due to electron phonon cou-
pling. The linewidth broadening along high symmetry
directions were analyzed. The stronger electron-phonon
interaction was observed for optical modes of Fe around
the Z, X and S points. This suggests significant mode
asymmetry. Since there are no experimental data avail-
able yet, our ab-initio estimations of the linewidth broad-
ening due to electron-phonon interaction presented here,
may have potential practical implications. They can pro-
vide a basis for addressing a detailed experimental study
of the effects of electron phonon coupling in the thermo-

electric properties of FeSb2. Inelastic scattering exper-
iments could more deeply investigate this domain, and
work is ongoing in this direction. Studies led until now
do not reveal a credible and conclusive explanation of the
fascinating low temperature behavior of FeSb2.
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