

Verifying Programs on Relaxed Memory Models
with focus on x86-TSO

Alexander Linden
Institut Montefiore, Université de Liège, Belgium

Lock

Single Port Memory

Relaxe
d memory m

odel

P1 Pn

Stores
Loads

Commits

initial
state

no errors

relaxation
to avoid

error
state

part of the state space

State space exploration

- allows the verification of cyclic
 programs by modelling the
 store buffers by automata.

Example : Unbounded buffer content
(x,1)(y,1)(x,1)(y,1) ... (x,1)(y,1)
is represented by the finite
automaton

- limits the size of the state space by using partial-
 order reduction techniques (POR) :
 - persistent sets,
 - sleep sets.

(x,1) (y,1)

(x,1)

Memory fence

insertion

The approach : state space exploration
and memory fence insertion

Start with a program that is correct (with respect to a
safety property) under SC (the standard memory model).

Verify that the safety property still holds when the
program is moved to a relaxed memory model and correct
it as needed.

The results

A verification tool that
- can handle cyclic programs,
- is compatible with POR,
- produces a correct program.

Future work :
- extend to other memory models,
- optimize use of POR.

Mutual Exclusion
Algorithms

without err.
correction

with error
correction

Program entry #P #St t(s) #St #iter #f t(s)
Dekker single 2 118 0.84 92 3 2 0.80
Dekker repeated 2 5468 12,7 213 5 4 0.41
Peterson single 2 108 0.09 52 3 2 0.03
Peterson repeated 2 400 0.58 54 3 2 0.05
Gen. Pet. single 3 15476 44,4 1164 7 6 1.55
Bakery single 2 775 0.58 340 5 4 0.15

http://www.montefiore.ulg.ac.be linden@montefiore.ulg.ac.be

Experiments :

Evaluation tool

Switch

FIFO
Store
Buffer

The problem

Ensuring that concurrent programs remain
correct when moved to multi-core processors
implementing relaxed memory models
(x86-TSO).

Fig : x86-TSO model

The features of the
approach

Procedure :
1. Explore the state space of the
program, modelling the store buffers.

2. When violations of safety
properties are found :
 - detect a problematic relaxation ;
 - avoid it by inserting a
 memory fence into the program ;
 - repeat this procedure until
 the safety property is satisfied.

	Slide 1

