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Abstract In the field of structural health monitoring or rhage condition moni-
toring, most vibration based methods reported @literature require to measure
responses at several locations on the structurmalchine condition monitoring,
the number of available vibration sensors is ofterall and it is not unusual that
only one single sensor is used to monitor a macHihes paper presents industrial
applications of two possible extensions of outmiirdBlind Source Separation
(BSS) techniques, namely Principal Component AnslgBCA) and Second Or-
der Blind Identification (SOBI). Through the useldéck Hankel matrices, these
methods may be used when a reduced set of sensevgio one single sensor is
available. The objective is to address the prolérfault detection in mechanical
systems using subspace-based methods. The detectahieved by comparing
the subspace features between the reference amdestcstate using the concept
of angular coherence between subspaces.

Key words: Health monitoring, Fault detection, Subspace, PS@BI, Hankel
matrices.

1 Introduction

Blind source separation (BSS) techniques allowettover a set of underlying
sources from observations without any knowledgehef mixing process or the
sources. BSS techniques were shown useful for mddatification [1], damage
detection and condition monitoring [2] from outparily data. In the BSS family,
on can cite for example the Principal Componentlysia (PCA) and the Second
Order Blind Identification (SOBI) [3].

A drawback of many BSS techniques is the needdeersl sensors. However,
through the use of Hankel matrices these methoddeaextended to damage de-
tection problem where only one sensor signal islavie [4].



2 Principal Component Analysis

Let us assume that a dynamical system is charaeteby a set of vibration

features collected in the matrix DD(mXN), where m is the number of sensors
and N is the number of samples.

PCA provides a linear mapping of data from the ingfdimensionm to a
lower dimensionp. In practice, PCA is often computed by a SingMalue De-

composition (SVD) of matrixX , i.e.

X =UzvT 1)

where U and V are orthonormal matrices, the columnsléfiefine the principal
components (PCsY.he orderp of the system is determined by selecting the first

p non-zero singular values ik which have a significant magnitude (“energy”)
as depicted in [2].

3 Second Order Blind Identification

As described in [3], SOBI considers the observgdals as a noisy instantane-
ous linear mixture of source signals. In many situes, multidimensional obser-
vations are represented:

X (t) = Y (1) +a(t) = AS(t) + 6(t) @)

Where:

. X(t)=[x1(t),...,xm(t)]T is an instantaneous mixture of source signals and
noise.

o S(t)= [sl(t),...,sp(t)]T contains the signal fromp narrow band sources
(p<m).

e Y(t)= [yl(t),..., ym(t)]T contains the sources assembly at a time
A'is the transfer matrix between the sources andéhnsor, called the mixing

matrix. Under certain conditions, the mixing matidentifies to the modal matrix
of the structure and the sources correspond to alocoordinates [1l(t) is the

noise vector, modeled as a stationary white, zezarmrandom process. Further-
more it is assumed to be independent of the sources



The SOBI method aims at recovering the mixing madrnd the sources from
their mixture. More details about this techniquae ba found in [3].

3 Hanke Matrices

Block Hankel matrices play an important role in spdice system identification
[5]. Those matrices characterize the dynamics efahalyzed signals and have
been used for modal identification and damage tietef4, 7, 8].

The covariance-driven block Hankel matrix is dedirzes follows:
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where r,c are user-defined parametens=(c, in this paper) andj; represents

the output covariance matrix.
The data-driven Hankel matrix is defined as:
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where 2i is a user-defined number of row blocks, each bloahtains m rows
(number of measurement sensorg), is the number of columns (practically
j=N-2i+1, N is the number of sampling points).

Enhanced-PCA (EPCA) and Enhanced-SOBI (ESOBI) igcies, as proposed
in [4], consider the Hankel matrices, instead ef dhservation matrixX , as input
matrix. It can be shown that this procedure noy @tllows to enhance identifica-
tion and detection but also permits the applicatibrboth methods to problems
where only one sensor is available.



6 Damage detection problem

Damage detection is based on the concept of subgpagte introduced by Go-
lub and Van Loan [6]. Subspace angles can be usead andicator to quantify the
spatial coherence between two data sets resultimy 6bservation of a vibration
system [2,4].

The change in the system dynamics may then be tddtdy monitoring the
angular coherence between subspaces estimatedafreference observation set
and from the observation set of a current stath@fystem. A state is considered
as reference if the system operates in normal tondi(i.e. damage does not ex-
ist).

In the case of EPCA, the considered subspacefeai@ctive subspaces built by
the first p columns of Uwhile for ESOBI, the subspaces are built by thet fir

columns of the mixing matris .

7 Industrial applications

7.1 Quality control of electro-mechanical devices

This industrial application concerns the case etteb-mechanical devices for
which the overall quality at the end of the assentibke has to be assessed. A set
of nine rotating devices was instrumented with @ezelerometers: one triaxial
accelerometer was located on the flank of the comapty and one monoaxial on
the top. Among this set of nine devices, five arthare known to be healthy (re-
ferenced OK-0> OK-4) and the other four are faulty (NOK-2 NOK-4). As it
was shown in [8] that the detection is the beghinY direction, the data in this

same direction are used here to test the methods.
Subspaces angle EPCA(HKI. blocks: 6; Order: 2) Subspaces angle ESOBI(HkI. blocks: 10; Order: 5
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Fig. 1 Diagnosis of rotating devices with EPCA method e ight and ESOBI on the left.

Detection results are presented in figure 1. That fiealthy device (OK-0) is
considered as the reference state. Both methods ate to make a clear distinc-
tion between the faulty devices and the healthysone



7.2 Quality control of weldings

The second example involves an industrial weldingcimme from a steel
processing plan. The machine was instrumented avithonoaxial accelerometer
on the upper forging wheel. The purpose of thiselieto flatten the welded joint
during the welding process.

The quality of the welded joints depends on seveashmeters. In this exam-
ple, four distinct parameters were altered and iplal@alteration levels were con-
sidered, leading to a batch of 27 welded jointhwitit-of-range parameters. Six
welded joints were also realized using nominal petars for false-positive test-
ing (Table 1). A microscopic quality control of éawelded joint was realized at
the end of the campaign to assess their actuatygual

Table 1. Welding parameters during the measurement campaign

Welding Name Parameter Nbr. of samples Weld guality
________ OK .. _._._._.__Nominalleve _________________6_____________.Gooc______
e A -33%.coverin__________________: 3 . Acceptabl____
_________ B ......_.66%coverin ________________.3 ______________Bac______
_________ C o ___.__.r33%compensatic______________ 3 ____________.Gooc ____
e D __.____-66%compensati_______________: 3 .. Acceptabl____
e E o7 10%currer L] 3 .. Acceptabl____
e .f20%currer o ll.f 3 ] Bac ______
_________ G ... _-10%forgingprssure ___________ 3 ____________.Gooc_ _____
e Ho +5% forging pressu ... _______: 3 . Acceptabl____

w
vy]
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o

-66% covering and comnsatior

The detection results of EPCA and ESOBI are preseintfigure 2.

Subspaces angle EPCA (HKI. blocks: 45, Order: 4)
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Subspaces angle ESOBI (HKkI. blocks: 50, Order: 2)
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Fig. 2. Faulty welded joint detection results by EPCA (tepyl ESOBI (bottom)



The detection results are good. The subspace abgldsSOBI seem to be
more consistent than EPCA.

8 Conclusion

The presented methods where successfully appliethitieage detection prob-
lems in industrial environment. By making use of tHankel matrices, only one
sensor is needed for the diagnosis which is aneggdrle advantage.
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