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Abstract   In the field of structural health monitoring or machine condition moni-
toring, most vibration based methods reported in the literature require to measure 
responses at several locations on the structure. In machine condition monitoring, 
the number of available vibration sensors is often small and it is not unusual that 
only one single sensor is used to monitor a machine. This paper presents industrial 
applications of two possible extensions of output-only Blind Source Separation 
(BSS) techniques, namely Principal Component Analysis (PCA) and Second Or-
der Blind Identification (SOBI). Through the use of block Hankel matrices, these 
methods may be used when a reduced set of sensors or even one single sensor is 
available. The objective is to address the problem of fault detection in mechanical 
systems using subspace-based methods. The detection is achieved by comparing 
the subspace features between the reference and a current state using the concept 
of angular coherence between subspaces. 

Key words:   Health monitoring, Fault detection, Subspace, PCA, SOBI, Hankel 
matrices. 

1 Introduction 

Blind source separation (BSS) techniques allow to recover a set of underlying 
sources from observations without any knowledge of the mixing process or the 
sources. BSS techniques were shown useful for modal identification [1], damage 
detection and condition monitoring [2] from output-only data. In the BSS family, 
on can cite for example the Principal Component Analysis (PCA) and the Second 
Order Blind Identification (SOBI) [3]. 

A drawback of many BSS techniques is the need for several sensors. However, 
through the use of Hankel matrices these methods can be extended to damage de-
tection problem where only one sensor signal is available [4]. 
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2 Principal Component Analysis 

Let us assume that a dynamical system is characterized by a set of vibration 

features collected in the matrix )( Nm×ℜ∈X , where m  is the number of sensors 
and N  is the number of samples.  

PCA provides a linear mapping of data from the original dimension m  to a 
lower dimension p . In practice, PCA is often computed by a Singular Value De-

composition (SVD) of matrix X , i.e.  

 TVUX Σ=  (1) 

where U and V are orthonormal matrices, the columns of U define the principal 
components (PCs). The order p  of the system is determined by selecting the first 

p  non-zero singular values in Σ  which have a significant magnitude (“energy”) 

as depicted in [2]. 

3 Second Order Blind Identification 

As described in [3], SOBI considers the observed signals as a noisy instantane-
ous linear mixture of source signals. In many situations, multidimensional obser-
vations are represented: 

 )()()()()( ttttt σASσYX +=+=  (2) 

Where: 

• [ ]T1 )(,),()( txtxt mK=X  is an instantaneous mixture of source signals and 

noise. 

• [ ]T1 )(,),()( tstst pK=S  contains the signal from p  narrow band sources 

( mp < ). 

• [ ]T1 )(,),()( tytyt mK=Y  contains the sources assembly at a time t . 

A is the transfer matrix between the sources and the sensor, called the mixing 
matrix. Under certain conditions, the mixing matrix identifies to the modal matrix 
of the structure and the sources correspond to normal coordinates [1]. )(tσ is the 

noise vector, modeled as a stationary white, zero-mean random process. Further-
more it is assumed to be independent of the sources. 
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The SOBI method aims at recovering the mixing matrix and the sources from 
their mixture. More details about this technique can be found in [3]. 

3 Hankel Matrices 

Block Hankel matrices play an important role in subspace system identification 
[5]. Those matrices characterize the dynamics of the analyzed signals and have 
been used for modal identification and damage detection [4, 7, 8]. 

The covariance-driven block Hankel matrix is defined as follows: 
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where cr,  are user-defined parameters (cr = , in this paper) and i∆ represents 

the output covariance matrix. 
The data-driven Hankel matrix is defined as: 
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where i2  is a user-defined number of row blocks, each block contains m  rows 
(number of measurement sensors), j  is the number of columns (practically 

12 +−= iNj , N  is the number of sampling points). 

Enhanced-PCA (EPCA) and Enhanced-SOBI (ESOBI) techniques, as proposed 
in [4], consider the Hankel matrices, instead of the observation matrix X , as input 
matrix. It can be shown that this procedure not only allows to enhance identifica-
tion and detection but also permits the application of both methods to problems 
where only one sensor is available. 
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6 Damage detection problem 

Damage detection is based on the concept of subspace angle introduced by Go-
lub and Van Loan [6]. Subspace angles can be used as an indicator to quantify the 
spatial coherence between two data sets resulting from observation of a vibration 
system [2,4]. 

The change in the system dynamics may then be detected by monitoring the 
angular coherence between subspaces estimated from a reference observation set 
and from the observation set of a current state of the system. A state is considered 
as reference if the system operates in normal conditions (i.e. damage does not ex-
ist). 

In the case of EPCA, the considered subspaces are the active subspaces built by 
the first p  columns of U while for ESOBI, the subspaces are built by the first 

columns of the mixing matrixA . 

7 Industrial applications 

7.1 Quality control of electro-mechanical devices 

This industrial application concerns the case of electro-mechanical devices for 
which the overall quality at the end of the assembly line has to be assessed. A set 
of nine rotating devices was instrumented with two accelerometers: one triaxial 
accelerometer was located on the flank of the component, and one monoaxial on 
the top. Among this set of nine devices, five of them are known to be healthy (re-
ferenced OK-0 � OK-4) and the other four are faulty (NOK-1 � NOK-4). As it 
was shown in [8] that the detection is the best in the Y direction, the data in this 
same direction are used here to test the methods. 
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Fig. 1 Diagnosis of rotating devices with EPCA method on the right and ESOBI on the left. 

Detection results are presented in figure 1. The first healthy device (OK-0) is 
considered as the reference state. Both methods were able to make a clear distinc-
tion between the faulty devices and the healthy ones. 
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7.2 Quality control of weldings 

The second example involves an industrial welding machine from a steel 
processing plan. The machine was instrumented with a monoaxial accelerometer 
on the upper forging wheel. The purpose of this wheel is to flatten the welded joint 
during the welding process. 

The quality of the welded joints depends on several parameters. In this exam-
ple, four distinct parameters were altered and multiple alteration levels were con-
sidered, leading to a batch of 27 welded joints with out-of-range parameters. Six 
welded joints were also realized using nominal parameters for false-positive test-
ing (Table 1). A microscopic quality control of each welded joint was realized at 
the end of the campaign to assess their actual quality. 

Table 1. Welding parameters during the measurement campaign 

 
The detection results of EPCA and ESOBI are presented in figure 2. 
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Fig. 2. Faulty welded joint detection results by EPCA (top) and ESOBI (bottom) 

Welding Name Parameter Nbr. of samples Weld quality 

OK Nominal level 6 Good 

A -33% covering 3 Acceptable 

B -66% covering 3 Bad 

C -33% compensation 3 Good 

D -66% compensation 3 Acceptable 

E -10% current 3 Acceptable 

F -20% current 3 Bad 

G -10% forging pressure 3 Good 

H +5% forging pressure 3 Acceptable 

I -66% covering and compensation 3 Bad 
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The detection results are good. The subspace angles by ESOBI seem to be 
more consistent than EPCA. 

8 Conclusion 

The presented methods where successfully applied to damage detection prob-
lems in industrial environment. By making use of the Hankel matrices, only one 
sensor is needed for the diagnosis which is an appreciable advantage. 
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