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Abstract

Different methods have been developed to model tearing prediction, as e.g., the combination
between the cohesive principle and the finite element method. Unfortunately, this method has some
well known issues that can be fixed by recourse to discontinuous Galerkin formulation. Such a
formulation allows to insert very easily an extrinsic cohesive element at onset of fracture without
any mesh modification. This promising technique has been recently developed by the authors for
linear shell. Although promising numerical results were obtained, it is difficult to compare the
method with experiments due to the large plastic deformation present in material before the fracture
apparition. Thus, the method is extent herein to elasto-plastic finite deformations. The simulations
of some benchmarks prove the ability of this new framework to model accurately the continuum part
of the deformation and the crack propagation.

1 Introduction

For economic and environmental reasons, the industrial use of raw material is streamlined. It leads to
the thickness reduction of some components that can exhibit fracture and therefore increase the interest
for tearing prediction modeling. Some numerical techniques were developed to take into account such a
phenomenon and among of them, the cohesive approach was combined with finite element method. As
cohesive element models the separation work between the crack lips it can suitably be inserted between
two finite elements to model crack initiation or propagation between them. Unfortunately, this insertion
presents some issues. Indeed, if this one is performed at the beginning of the simulation, the cohesive
law is called intrinsic, and has to model the continuous part of the deformation. This cannot be realized
in a consistent way and leads therefore to inaccurate results. On the contrary, the insertion during the
simulation allows to use extrinsic cohesive law but requires mesh modifications. In fact, to insert the
cohesive element the nodes have to be duplicated leading to a very complex implementation, especially
in the case of a parallel one.

One method (among others) that can be used to solve these issues is the combination between dis-
continuous Galerkin formulation and an extrinsic cohesive law as it has been pioneered by Mergheim
et al. [1] and by Radovitzky et al. [2]. The discontinuous Galerkin method allows to model (weakly)
the continuum part of deformation in a consistent way with discontinuous elements. When a fracture
appears, this discontinuity can be exploited to insert a cohesive element without mesh modification. The
authors have recently extended this combination to thin structures (discretized with beam, plate or shell
elements) under the assumption of linear elasticity [3, 4].

This assumption limits the applicability of the method, which seems nevertheless very promising, as
very few materials present small elastic strains before the apparition of fracture. Thus, the authors extend
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their formulation to elasto-plastic finite deformations to model in a more accurate way the behavior of
material before the crack initiation or propagation [5]. This extension is developed from [6] and [4].

The presented method is validated with some numerical benchmarks. On the one hand, the method
is used to model continuum mechanic problems and it is proved by comparison with the literature that
the method is able to simulate quasi-static or dynamic problems as accurately as other traditional shell
formulations. On the other hand, the benchmark considering the blast of a pressurized cylinder presented
by Larsson et al. [7] is simulated with the new model to show that the extension allows to obtain results
close from experiment.

2 Continuum mechanic of thin bodies

The continuum mechanic of thin bodies is summarized in this section. Mechanic of thin bodies can be
found in several references [4, 6, 8, 9, 10, 11, 12, 13] among others. In particular the two first cited, use
exactly the same notations than this paper.

2.1 Notation

Hereinafter, a subscript will be used to refer to values expressed in the considered basis, while a super-
script will be used to refer to values expressed in the conjugate basis. Roman letters as a subscript or
superscript substitute for integers between one and three, while Greek letters substitute for integers one
or two.

2.2 Kinematic of thin bodies

The kinematic of thin bodies, represented on figure 1, can be described by considering its mid-surface
section as a Cosserat plane .4 and a third coordinate, representing the thickness, belonging to the in-
terval [Amin; hmax]- In the reference frame Ej, this representation is written & = E?=1 fI E;

A X [Pmin; hmax] — R3 . Using ¢ (517 52) : A — R3 the mapping of the mid-surface and ¢
A — 8* = {t € R%||4=1 } the director of the mid-surface, with S* the unit sphere manifold, a config-
uration S of the shell is represented by the manifold of position «, which is obtained by the mapping
P Ax [hmin§ hmax] — S,

z = ®(¢)=pE)+ENLEY). (1

where A, is the thickness stretch of the shell. By convention, S refers to the current configuration of the
shell, while the reference configuration Sy is obtained by the mapping ®.

Figure 1: Description of the different configurations of the shell.

Finally, the two points deformation gradient between these two configurations can be written

F = 0,095 +&Mta®gi+MtRgp, 2)



where,

0P 0P
Go = Gea =Pt E Mt + Ay and g3 = a8 = Mt )

2.3 Governing equations of shell

The governing equations of a thin body are obtained by integrating on the thickness the equations of
force and moment equilibrium, leading to
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where A is an undefined pressure, p = hp is the density by unit of surface with & the thickness and with
the jacobian j = || 1 A ¢ 2||. Furthermore, the integration on the thickness of the Cauchy stress tensor
o [8, 9] leads to the definition of
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respectively the resultant stress vector, the resultant torque vector and the resultant across-the-thickness
stress vector written in term of the Kirchhoff stress tensor 7 = Jo for more convenience with the
material law. Note that in equations (4) and (5) inertial angular forces are neglected1 and the external
forces are not considered.

In order to define the stress components, the resultant stress vectors are decomposed in the convected
basis, as

n® = nps 4+ N\t = (ﬁaﬁ + Aﬁma“) ©5 + Anl“t, 9)
I = [%p,, and (10)
m® = m%Pes+ \n3ot. (11)

In these expressions, 17 is the membrane stress, m®” is the stress couple resultant, [ is the out-of-plane
stress resultant, 713 is the out-of-plane stress couple and )\g = Mty - ? characterizes the curvature
of the shell. Under Kirchhoff-Love shell assumption, [* can be neglected, but it is kept temporarily in
the equations in order to develop the full-DG formulation.

This set of governing equations is accompanied by conventional boundary conditions applied on the
boundary 0.A of the mid-surface A (see [13] for details).

2.4 Constitutive behavior

The previous set of equations is completed by a constitutive relation linking the deformations to the
stresses. The plastic behavior of material is taken into account thanks to the Jo-flow theory with an
isotropic linear hardening. The model is based on hyperelastic formulation, which implies the assump-
tion of a multiplicative decomposition of deformation gradient F into an elastic part F¢ and a plastic
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part FP. With the assumption of an elastic part of a material law, which is the derivative of a potential
W, the bi-logarithmic potential reads,

K G
W (C®) = Elog J? + Zlog C° : log C° (12)

with K and G respectively the bulk and shear Moduli of material. As W should only depends on the
elastic deformation, it is the elastic right Cauchy strain tensor which is considered in (12), defined by
Ce = (Fe)T F¢. Using these definitions the first Piola-Kirchhoff stress tensor can be written,

AW (C*)

P = 2F.|(F")! FTe0

(F)~" (13)
Then, the incremental theory can be used to determine the stresses at stage n 4 1 from the known values
at stage n as it is described in [14, 15].

Finally, the determination of thickness stretch (\z) has to be specified. The thickness is discretized
with 11 integration points following a Simpson integration rule. Then, the local )\fl is determined at each
point by Newton-Raphson iterations satisfying locally the plane stress requirement 723 = 0. To achieve
this, the Kirchhoff stress tensor 7 = PF7 is expressed in the convected basis thanks to

T =1,,9' ® g’ (14)

The global thickness stretch )y, is then determined by the Simpson integration on the 11 local values )\ﬁ.

3 Discontinuous Galerkin formulation of shell

The equation system defined by (4-5) can be solved using a finite element method. This one considers
a weak form of the system and a discretization of 4 in elements. Furthermore, instead of seeking the
exact solution ¢, a polynomial approximation ¢y, constitutes the solution of the finite element problem.
In continuous Galerkin formulation, this approximation is continuous from one element to its neighbors
ensuring in this way the continuity of the solution. Moreover, for thin bodies, the continuity of first
derivative of ¢ has to be verify to guarantee to curvature of shell. However, the traditional Lagrangian
interpolation does not satisfy this requirement but it can be guaranteed weakly within a discontinuous
Galerkin framework. This weak enforcement allows to obtain a one field (displacement) formulation
and has been previously developed by authors first in the linear case [13] and extended in a second time
to non linear shell [6]. Recently, with the aim to take into account initiation and propagation of fracture,
this formulation was extended to discontinuous polynomial approximation for linear beam [3] and shell
[4]. This paper develops the same approach but is applied now to non linear shell finite deformation.

3.1 Weak form of the problem

The discontinuous Galerkin frameworks introduces 3 interfaces terms

1. consistency term: This one results directly of the discontinuous approximation of the solution
considering the jump between two elements. This jump can be replaced by a consistent numerical
flux which is here the traditional average flux.

2. compatibility term: This one is introduced to ensure (weakly) the continuity of solution across
element boundaries.

3. stability term: This one is introduced to ensure stability as it is well known that for elliptic
problems discontinuous Galerkin formulation leads to unstabilities. Exactly as the compatibility
term, the introduction of this term does not modify the consistency of the method. The stability
term depends on a stability parameter which is independent of mesh size and material properties.



These 3 terms can be developed to ensure continuity of derivative for non linear shell as presented in [6]
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which are consistency (15) compatibility (16) and stability (17) terms. In the last equation, 3; is the
dimensionless stability parameter, h® the characteristic size of the element. Finally, H,, is the linearized
bending stiffness,
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with E and v respectively the Young modulus and the Poisson ratio of the material.

The additional terms related to the full discontinuous Galerkin framework can be developed for the
non linear case following exactly the same argumentation developed in [4] and [6] for equations (15-17)
which gives,

Ginlende) = [ (n): e, doA. 0)
anra(pn 0) = [ lenl - (6 (jn®)) vy dOA. (21)
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respectively the consistency membrane (20), the compatibility membrane (21), the stability membrane
(22) and the stability shearing (23) terms. In these equations (85 and (3 are dimensionless stability
parameters and H,, and H, are respectively the linearized membrane and shearing stiffness given by,
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The 3 first terms ensure a consistent and stable continuity in the Cosserat plane of the mid-surface of the
shell. The last one guarantee the continuity of the out-of-plane displacement. As lengthy described in [3,
4] this one is obtained by considering the shearing components in the development of the equations. As
Kirchhoff-Love assumption neglects shearing the consistency and compatibility terms can be neglected
in such a way that only the stability term remains. The linearized expression of & (jn%) necessitates



some development but is similarly as the linearization of & (jm®) performed in [6],
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with m** = m* . p*, )\ﬁ = Mt - . This expression can be used for implementation of
a5 1(2n, 0p) (21).

Finally, the continuity of displacement field is ensured weakly by 7 interface terms given by equation

(15-17) and (20-23). These expressions can be used to write a weak form of the problem (see [4] for
more details),
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with the traditional inertial, membrane and bending bulk components from the shell theory,
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3.2 Benchmarks

To prove the ability of the presented method to simulate continuum mechanic problems, 2 benchmarks
coming from literature are performed. They are illustrated on figure 2 and the different parameters for the
geometries and elasto-plastic materials are given in table 1. For these examples the stability parameters
are 31 = B9 = 10053 = 10.

The first example is a simply supported square plate dynamically loaded with a constant pressure
po = 20.7 [bars]. This benchmark was performed before by Swaddiwudhipong ef al. [16] and Be-
lytschko et al. [17] and they calculated the deflection at the center of the plate. This example is simulated
again with the discontinuous Galerkin implementation with the explicit temporal integration scheme of
Hulbert-Chung [18] without numerical dissipation. The obtained results are in agreement with previous
studies (see figure 2 b)).

The second one focuses on a pinched hemisphere, depicted on figure 2 c), and discretized with
a unstructured third order mesh. It is loaded on two opposite diameters (one in tension, the other in
compression) in a quasi static way. This example was performed before by Simo et al. [12] and closed
results are obtained with the presented method (see figure 2 d)).
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Figure 2: Discontinuous Galerkin framework shows good correlation with literature results

(a) Square plate (b) Hemisphere
Geometry Geometry
Length (L) [mm] 254 Radius (R) [m] 10
thickness (h) [mm] 12.7 thickness (k) [m] 0.5
Material Material
density (p) [kg/ m>] 2768 Young modulus (£) [Pa] 10
Young modulus (E) [MPa] 69000 Poisson ratio (v) [-] 0.2
Poisson ratio (v) [-] 0.3 Yield stress (o) [Pa] 0.2
Yield stress (oy0) [MPa] 207 Hardening modulus (h) [Pa] 9

Hardening modulus (h) [MPa] 0

Table 1: Geometrical and material law parameters for continuum mechanic benchmarks



4 Application to fracture mechanic

The main advantage of a discontinuous Galerkin formulation is obviously its use for fracture mechanic
applications. Indeed the presented framework can be coupled with an extrinsic cohesive law in a suitable
way as no topological mesh modification is required to propagate a crack. In a recent paper [4] the
authors presented a novel cohesive law dedicated to thin bodies formulation. The problem in the case
of thin bodies is to propagate the crack through the implicitly modeled thickness. Indeed, the different
behavior in traction and compression for crack propagation leads to the necessity to move the neutral
axis during crack propagation. Moving this axis is not straightforward which motivated the development
of a new cohesive law based on reduced stresses (6 - 8) which is energetically consistent (i.e. the model
ensures the correct amount of energy released during crack propagation). This model is used to simulate
the crack propagation in a cylinder after an inside blast. This example suggested by Larsson et al. [7]
was previously used by the authors to validate their model of linear elastic shells [4]. The obtained
results with elastic laws are not in correlation with experiments as mentioned by Larsson et al. who
suggest to introduce elasto-plastic finite deformation model to study the cylinder in a more realistic way.
The formulation developed herein is thus used to study this benchmark.

To avoid unphysical blow up of elements, an idea suggested by Zhou ef al. [19] which uses a
statistical distribution for fracture strength is considered. This one can vary in a range between its
nominal value (here 10%) at each Gauss point of interface elements and is physically justified by the
material imperfections which introduce such a distribution.

The cylinder has a diameter of 1.2 [m], is 1 [m] long and has a thickness of 1 [mm)]. It exhibits an
initial crack of 56 [mm] centered on its height. The material is the A12024-T3 which has the following
properties: Young modulus 73.1 [GPa], Poisson ratio 0.33 [-], density 2780 [kg/ m3], yield stress 350
[MPa], hardening modulus 800. [MPa], fracture strength2 650 [MPa] and fracture energy 19 [k.J/ m?2].
Due to problem symmetry and to save computational time, only the top side of the cylinder is modeled
with 2880 bi-cubic elements. The simulation is performed with the explicit Hulbert-Chung scheme [18]
including a low numerical dissipation (spectral radius of 0.9). The blast is simulated thanks to the curve
depicted on figure 3 a). The speed of crack propagation is studied on figure 3 b) which shows this relation
for the experiment for the model of Larsson et al. [7] and for the presented DG/ECL framework with
linear small strain and elasto-plastic finite deformation. As predict by Larsson et al. the introduction of
plasticity allows to obtain results in agreement with experiment even if the speed at beginning of crack
seems faster in our model. After a propagation of 0.18[m] the model matches quite well the experimental
data.

5 Conclusion

This paper focuses on the extension to elasto-plasticity and finite deformations of a framework com-
bining discontinuous Galerkin formulation of shells and extrinsic cohesive law. The obvious interest of
the framework is its ability to simulate crack propagation. The recourse to discontinuous formulation
allows to insert cohesive elements on the fly during the simulation without any modification of the mesh
which is an issue with the continuous approach. As the elements are discontinuous it is mandatory to
guarantee (weakly) the continuity to model correctly the continuum part of the deformation before the
fracture. With regard to this end, the approach is extended here to elasto-plastic finite deformations and
applied to numerical benchmarks coming from the literature.

The method, combining full discontinuous Galerkin formulation with extrinsic cohesive law, is able
to match experiments as shown in the blasted cylinder example. Furthermore, the presented frame-
work is suitable only for small scale yielding and other improvements are necessary to simulate crack
propagation in ductile materials.

2The fracture strength is chosen following the work of Zavattieri [20] for aluminum 2024-T3
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Figure 3: Improvement of crack speed caption due to consideration of elasto-plastic finite deformations

References

[1]

[7]

[8]

J. Mergheim, E. Kuhl, and P. Steinmann. A hybrid discontinuous galerkin/interface method for
the computational modelling of failure. Communications in Numerical Methods in Engineering,

20(7):511-519, 2004.

R. Radovitzky, A. Seagraves, A. Jerusalem, and L. Noels. A hybrid dg/cohesive method for mod-
eling dynamic fracture of brittle solids. -, —.

G. Becker and L. Noels. A fracture framework for euler-bernoulli beams based on a full discontinu-
ous galerkin formulation/extrinsic cohesive law combination. International Journal for Numerical
Methods in Engineering, 85(10):1227-1251, 2011.

G. Becker, C. Geuzaine, and L. Noels. A one field full discontinuous galerkin method for kirchhoft-
love shells applied to fracture mechanics. Computer Methods in Applied Mechanics and Engineer-
ing, In Press, Accepted Manuscript:—, 2011.

G. Becker and L. Noels. A full discontinuous galerkin formulation of non-linear kirchhoff-love
shells with elasto-plastic finite deformations. In preparation, 2011.

L. Noels. A discontinuous galerkin formulation of non-linear kirchhoff-love shells. International
Journal for Numerical Methods in Engineering, 78(3):296-323, 2009.

Ragnar Larsson, Jesus Mediavilla, and Martin Fagerstrom. Dynamic fracture modeling in shell
structures based on xfem. Int. J. Numer. Meth. Engng., 86(4-5):499-527, 2011.

J. C. Simo and D. D. Fox. On stress resultant geometrically exact shell model. part i: formulation
and optimal parametrization. Comput. Methods Appl. Mech. Eng., 72(3):267-304, 1989.



[9] J. C. Simo, D. D. Fox, and M. S. Rifai. On a stress resultant geometrically exact shell model. part
ii: the linear theory; computational aspects. Comput. Methods Appl. Mech. Eng., 73(1):53-92,
1989.

[10] J.C. Simo, D.D. Fox, and M.S. Rifai. On a stress resultant geometrically exact shell model. part
iii: Computational aspects of the nonlinear theory. Computer Methods in Applied Mechanics and
Engineering, 79(1):21 — 70, 1990.

[11] J. C. Simo, M. S. Rifai, and D. D. Fox. On a stress resultant geometrically exact shell model. part
iv: Variable thickness shells with through-the-thickness stretching. Computer Methods in Applied
Mechanics and Engineering, 81(1):91 — 126, 1990.

[12] J.C. Simo and J.G. Kennedy. On a stress resultant geometrically exact shell model. part v. nonlinear
plasticity: formulation and integration algorithms. Computer Methods in Applied Mechanics and
Engineering, 96(2):133 — 171, 1992.

[13] L. Noels and R. Radovitzky. A new discontinuous galerkin method for kirchhoff-love shells. Com-
puter Methods in Applied Mechanics and Engineering, 197(33-40):2901-2929, 2008.

[14] Ralf Deiterding, Raul Radovitzky, Sean Mauch, Ludovic Noels, Julian Cummings, and Daniel
Meiron. A virtual test facility for the efficient simulation of solid material response under strong
shock and detonation wave loading. Engineering with Computers, 22(3):325-347—, 2006.

[15] A Cuitino and M Ortiz. A material-independent method for extending stress update algorithms
from small-strain plasticity to finite plasticity with multiplicative kinematics. Engineering Com-
putations, 9:437-451, 1992.

[16] S. Swaddiwudhipong and Z. S. Liu. Dynamic response of large strain elasto-plastic plate and shell
structures. Thin-Walled Structures, 26(4):223 — 239, 1996.

[17] Ted Belytschko, Jerry I. Lin, and Tsay Chen-Shyh. Explicit algorithms for the nonlinear dynamics
of shells. Computer Methods in Applied Mechanics and Engineering, 42(2):225 — 251, 1984.

[18] Gregory M. Hulbert and Jintai Chung. Explicit time integration algorithms for structural dynamics
with optimal numerical dissipation. Computer Methods in Applied Mechanics and Engineering,
137(2):175 — 188, 1996.

[19] Fenghua Zhou and Jean-Francois Molinari. Stochastic fracture of ceramics under dynamic tensile
loading. International Journal of Solids and Structures, 41(22-23):6573 — 6596, 2004.

[20] Pablo D. Zavattieri. Modeling of crack propagation in thin-walled structures using a cohesive
model for shell elements. J. Appl. Mech., 73(6):948-958, November 2006.



