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What is pose recovery ?

Example with a Kinect:

input data input segmented result
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Motion capture for character animation




Motion capture for character animation

Several types:
» passive markers / active markers

» anonymous markers / markers with IDs.

Drawbacks and advantages:
@ Intrusive (— field of applications very limited).
® Often more than n = 20 cameras are needed (— costly).

® Manually controlling the matching of markers is done to
improve the reliability. This is laborious.

© Very accurate : the 3D location of a marker is computed by
intersecting n lines in the least squares sense.

Too many drawbacks ! It is possible to do something simpler ? J
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@ Introduction

@ Definition of the human pose



How can be define the pose 7

» Isit 2D or 3D 7
> Is it related to the position of the person in the 3D scene ?
> Is it related to the orientation of the person in the 3D scene ?

neck : neck : neck :
(u, v) = (100, 200) | | (x, ¥, z) = (0.0, 1.6, 0.0) (9, ¢, ¢¥) = (0.0, 0.0, 0.0)
left shoulder : left shoulder : left shoulder :
(u, v) = (50, 175) | | (x, ¥, z) = (0.3, 1.5, 0.0) 8, ¢, ¥) = (0.0, 0.2, 0.1)
left elbow : left elbow : left elbow :
(u, v) = (50, 125) | | (x, ¥, z) = (0.3, 1.2, 0.0) (0) = (0.35)
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How can be define the pose 7

At least, 22 kinematic parameters are needed.




@ Introduction

@ Image-based pose recovery
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Is the pose recovery from an image possible 7

Can you estimate their poses ?

If a human expert is able to estimate the pose from an image, why
a computer wouldn't be able to do it too ?
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Pose recovery is difficult

The pose recovery is the ability to learn the “function”

range or color image(s) — kinematic parameters

Pose recovery from images is a difficult problem:

» the human visual appearance is highly variable
(morphology, clothing, lighting, ...)

» occlusions (self-occlusions, occlusions by scene elements)
» high dimension of the input (images 640 x 480 = R921600)
» high dimension of the output (typically R?® — R190)

> the function that has to be learned is multivalued

> the kinematic parameters are highly dependent
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Preliminary remarks

In engineering (or computer science), it is very easy to solve
problems that are linear or that can be approximated as linear.

Examples: camera calibration with a pinhole model, linear filtering.

The relationship between the visual perception of a complex 3D
scene and its state variables is not linear.

Example: deformations, self-occlusions.

Solving a problem begins by understanding it and choosing an
appropriate model for it. Machine learning methods do not
eliminate the need for a good understanding.

This is the menu of this introductory course.



@ Introduction

@ Which input data can be used ?
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Is “silhouette — pose” possible 7

Let us consider:

© That we observe a person from the side view
(i.e. the camera looks horizontally)

@ That the perspective effects are negligible.!

To answer the question, we need to consider two mirror poses p;
and p; like these ones:

pose p1 pose p2

1With an orthographic camera, there is no perspective effect. With a
pinhole camera that is not too close to the observed person, perspective effects
are small.
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Silhouettes ambiguities : (py1,0) = (p2, 180° — 0)

P17

p1730 p]_,90

There are always two poses corresponding to a side-view silhouette.
— Learning correctly “silhouette — pose” is impossible.
— Which supplementary information can be taken into account 7



© Human models
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© Human models
@ 2D human models
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{2D blobs} (x,y,color gaussians)

e







© Human models

@ 3D human models
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3D cones with elliptical cross-sections




3D tapered super-quadrics
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{3D spheres}

3D volume estimation based on a depth map without explicitly
recovering pose parameters:
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Skeleton + {3D gaussians} + polygonal mesh
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MakeHuman [1, 5]

version 0.9 (2007) version 1.0 (2017)
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© Pose recovery methods
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© Pose recovery methods
@ Model-based methods (generative methods)
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Model-based methods

b ) )
I ! ! !

=39
» Can we use a 2D model ? Can we use a 3D model ?

_\l/l.l —\l/?).l
! !

!

> Does this procedure always converge ?

» How can we define the score s (likelihood).
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Alternative based on body parts

> Instead of using a model of the full body, one can use a model
for each body part (head, hands, feet, legs, arms, torso, etc).

» The goal is then to find all body parts in the image.
» A part is defined by (location, orientation, appearance).

» We can define a score sp,+ for each body part.

S = E Spart 1+ Scoverage + Skinematic 1+ Ssymmetry
part€parts

+ Sautointersect + Stemporal + -
> Skinematic can be efficiently handled when the human body is

considered as a tree, but we are then limited to consider only
pairs of connected parts.
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The human body can be represented as a tree

The nodes represent the “rigid” body parts, and the
links (edges) represent articulations (1, 2, or 3 dofs).
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Constraints and cues

g1l » The angles of the joints have limits
7 » There should not be any self-intersection
= » The body is symmetrical

» Clothes are often symmetrical

Y » Hand and head : skin color
\: .H’ / » Gravity center
V » Temporal continuity
N > Is the activity known ?
Are these constraints are our friends or our enemies? J
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2D — 3D with Taylor's algorithm [4] |

What can we do if a 2D model has been used instead of a 3D one ?
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2D — 3D with Taylor's algorithm [4] Il

Let (x1, y1, z1) <— (X2, Y2, z2) be a 3D rigid segment of length /,
and (u1, vi) <— (u2, v2) its 2D projection. We assume an
orthographic camera for which 1 m corresponds to k pixels.

I? =(x1— %)+ (1 — )+ (21— 2)
m—u =k (x1—x)
vi—va =k (y1—y)

_ 2 B 2
S ameneo () (1)

There are 2" possible 3D skeletons corresponding to a 2D
stick-figure with n links (not all are physically possible).
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© Pose recovery methods

@ Example-based methods
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Example-based methods

With a database { ( pose parameters , visual data ) } :

NN
LAELT AN

[
[

Distance A between visual data is needed: global or by parts ?
How many samples should we place in the database 7

How can we obtain a database of samples ?

Is this method fast enough 7

vVVvyYyYyywy
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© Pose recovery methods

@ Learning-based methods (discriminative methods)
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Learning-based methods

generalization + fast thanks to the pre-computing of the model:

RELTALY

0 00

learning

» We need to describe the visual data to obtain attributes.

» What happens if there are ambiguities ?
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If the movement is known ... manifold learning |

A movement = a state machine with continuous evolution. The
observation depends on the state and the orientation (2 d.o.f.).

state evolution
for periodic motion

orientation
around vertical
axis

@ Learning the visual manifold : (state, orientation) — visual

@ Learning the kinematic manifold state — pose
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If the movement is known ... manifold learning Il
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@ State-of-the-art and conclusions
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@ State-of-the-art and conclusions
@ An example of state-of-the-art method
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What is behind your friendly Xbox-Kinect application ?

XBOX 360

| ICVPR Jun. 2011 [3] | 1CCV Nov. 2011 [2] |

FPS on the Xbox GPU ~ 200 ?
FPS on a 8 core desktop CPU ~ 50 ~ 200
body parts 31
images in LS 900.000 15.000 — 300.000
% of joints < 10 cm error 73.1 73.6 — 79.9

Homework : Read and understand [3] ! You can download it at
http://research.microsoft.com/apps/pubs/default.aspx?
1id=145347.
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http://research.microsoft.com/apps/pubs/default.aspx?id=145347
http://research.microsoft.com/apps/pubs/default.aspx?id=145347

What is behind your friendly Xbox-Kinect application ?

(click here to play video)
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Girshick2011Efficient.mp4
Media File (video/mp4)


@ State-of-the-art and conclusions

@ Conclusions
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Conclusions

» Human pose recovery with a single camera has a lot of
applications.

» A separation between intrinsic parameters (kinematic
parameters) and extrinsic parameters (view-point, color,
texture, etc) is often preferred: cf. the manifolds and the
likelihood scores.

» There is not enough informations in binary silhouettes.

> There are three kinds of methods : learning, example, and
model-based.

» Human pose recovery based on color images is a challenge.

» Human pose recovery with a range camera works very well.
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