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What is pose recovery ?

Example with a Kinect:

input data input segmented result

[image source: J-F Hansen & D Leroy, ”Réalisation d’une plateforme d’immersion pour jeux 3D interactifs”, 2011]
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Motion capture for character animation

[image source: http://franciszgx.wordpress.com]
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Motion capture for character animation

Several types:

I passive markers / active markers

I anonymous markers / markers with IDs.

Drawbacks and advantages:

/ Intrusive (→ field of applications very limited).

/ Often more than n = 20 cameras are needed (→ costly).

/ Manually controlling the matching of markers is done to
improve the reliability. This is laborious.

, Very accurate : the 3D location of a marker is computed by
intersecting n lines in the least squares sense.

Too many drawbacks ! It is possible to do something simpler ?
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How can be define the pose ?

I Is it 2D or 3D ?

I Is it related to the position of the person in the 3D scene ?

I Is it related to the orientation of the person in the 3D scene ?

neck :

(u, v) = (100, 200)

left shoulder :

(u, v) = (50, 175)

left elbow :

(u, v) = (50, 125)

. . .

neck :

(x , y , z) = (0.0, 1.6, 0.0)

left shoulder :

(x , y , z) = (0.3, 1.5, 0.0)

left elbow :

(x , y , z) = (0.3, 1.2, 0.0)

. . .

neck :

(θ, φ, ψ) = (0.0, 0.0, 0.0)

left shoulder :

(θ, φ, ψ) = (0.0, 0.2, 0.1)

left elbow :

(θ) = (0.35)

. . .
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How can be define the pose ?

At least, 22 kinematic parameters are needed.

[image source: M. Hofmann, ”Multi-view 3D Human Pose Recovery in Complex Environment”, 2011]
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Is the pose recovery from an image possible ?

Can you estimate their poses ?

[image source: http://images.allmoviephoto.com]

If a human expert is able to estimate the pose from an image, why
a computer wouldn’t be able to do it too ?
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Pose recovery is difficult

The pose recovery is the ability to learn the “function”

range or color image(s) → kinematic parameters

Pose recovery from images is a difficult problem:

I the human visual appearance is highly variable
(morphology, clothing, lighting, . . . )

I occlusions (self-occlusions, occlusions by scene elements)

I high dimension of the input (images 640× 480⇒ R921600)

I high dimension of the output (typically R20 → R100)

I the function that has to be learned is multivalued

I the kinematic parameters are highly dependent
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Preliminary remarks

In engineering (or computer science), it is very easy to solve
problems that are linear or that can be approximated as linear.

Examples: camera calibration with a pinhole model, linear filtering.

The relationship between the visual perception of a complex 3D
scene and its state variables is not linear.

Example: deformations, self-occlusions.

Solving a problem begins by understanding it and choosing an
appropriate model for it. Machine learning methods do not
eliminate the need for a good understanding.

This is the menu of this introductory course.
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Is “silhouette → pose” possible ?

Let us consider:

1 That we observe a person from the side view
(i.e. the camera looks horizontally)

2 That the perspective effects are negligible.1

To answer the question, we need to consider two mirror poses p1

and p2 like these ones:

pose p1 pose p2

1With an orthographic camera, there is no perspective effect. With a
pinhole camera that is not too close to the observed person, perspective effects
are small.
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Silhouettes ambiguities : (p1, θ) ≡ (p2, 180°− θ)

(p1, 0°) (p1, 30°) (p1, 90°)
m m m

(p2, 180°) (p2, 150°) (p2, 90°)

There are always two poses corresponding to a side-view silhouette.
↪→ Learning correctly “silhouette → pose” is impossible.
↪→ Which supplementary information can be taken into account ?
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{2D blobs} (x,y,color gaussians)

[image source: C Wren et al., ”Real-time tracking of the human body”, 1997]
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2D “cardboard”

[image source: S Ju et al., ”Cardboard people: a parametrized model of articulated image motion”, 1996]
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3D cones with elliptical cross-sections

[image source: J. Deutscher & I. Reid, ”Articulated body motion capture by stochastic search”, 2005]
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3D tapered super-quadrics

[image source: D. Gavrila & L. Davis, ”3-D model-based tracking of humans in action”, 1996]
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{3D spheres}
3D volume estimation based on a depth map without explicitly
recovering pose parameters:

[image source: softkinetic]
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Skeleton + {3D gaussians} + polygonal mesh

[image source: R. Plankers & P. Fua, ”Articulated soft objects for video-based body modeling”, 2001]
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Scape

[image source: D. Anguelov et al., ”SCAPE: shape completion and animation of people”, 2005]

27 / 50



MakeHuman [1, 5]

version 0.9 (2007) version 1.0 (201?)

[right image source: http://www.makehuman.org]
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Model-based methods

Goal: find the pose(s) that maximize the likelihood.

s = 0.8 s = 1.1 s = 1.3 s = 3.1 s = 3.9 s = 5.5

I Can we use a 2D model ? Can we use a 3D model ?

I Does this procedure always converge ?

I How can we define the score s (likelihood).
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Alternative based on body parts

I Instead of using a model of the full body, one can use a model
for each body part (head, hands, feet, legs, arms, torso, etc).

I The goal is then to find all body parts in the image.

I A part is defined by (location, orientation, appearance).

I We can define a score spart for each body part.

s =
∑

part∈parts
spart + scoverage + skinematic + ssymmetry

+ sautointersect + stemporal + · · ·

I skinematic can be efficiently handled when the human body is
considered as a tree, but we are then limited to consider only
pairs of connected parts.
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The human body can be represented as a tree

The nodes represent the “rigid” body parts, and the
links (edges) represent articulations (1, 2, or 3 dofs).
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Constraints and cues

I The angles of the joints have limits

I There should not be any self-intersection

I The body is symmetrical

I Clothes are often symmetrical

I Hand and head : skin color

I Gravity center

I Temporal continuity

I Is the activity known ?

Are these constraints are our friends or our enemies?
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2D → 3D with Taylor’s algorithm [4] I

What can we do if a 2D model has been used instead of a 3D one ?

[image source: C. Taylor, ”Reconstruction of Articulated Objects from Point Correspondences ...”, 2000]
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2D → 3D with Taylor’s algorithm [4] II

Let (x1, y1, z1)←→ (x2, y2, z2) be a 3D rigid segment of length l ,
and (u1, v1)←→ (u2, v2) its 2D projection. We assume an
orthographic camera for which 1m corresponds to k pixels.

l2 = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

u1 − u2 = k (x1 − x2)

v1 − v2 = k (y1 − y2)

⇒ z1 − z2 = ±

√
l2 −

(
u1 − u2

k

)2

−
(
v1 − v2

k

)2

There are 2n possible 3D skeletons corresponding to a 2D
stick-figure with n links (not all are physically possible).
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Example-based methods

With a database { ( pose parameters , visual data ) } :

∆ = 2.1∆ = 5.2 ∆ = 8.6 ∆ = 5.2∆ = 4.9 ∆ = 6.3 ∆ = 4.9 ∆ = 4.8

I Distance ∆ between visual data is needed: global or by parts ?
I How many samples should we place in the database ?
I How can we obtain a database of samples ?
I Is this method fast enough ?
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Learning-based methods

generalization + fast thanks to the pre-computing of the model:

learning

MODEL

I We need to describe the visual data to obtain attributes.

I What happens if there are ambiguities ?
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If the movement is known ... manifold learning I

A movement ≡ a state machine with continuous evolution. The
observation depends on the state and the orientation (2 d.o.f.).

state evolution

for periodic motion

orientation

around vertical

axis

1 Learning the visual manifold : (state, orientation)→ visual

2 Learning the kinematic manifold state → pose
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If the movement is known ... manifold learning II

[image source: A. Elgammal, ”Tracking People on a Torus”, 2009]
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What is behind your friendly Xbox-Kinect application ?

ICVPR Jun. 2011 [3] ICCV Nov. 2011 [2]

FPS on the Xbox GPU ∼ 200 ?

FPS on a 8 core desktop CPU ∼ 50 ∼ 200

body parts 31

images in LS 900.000 15.000→ 300.000

% of joints < 10 cm error 73.1 73.6→ 79.9

Homework : Read and understand [3] ! You can download it at
http://research.microsoft.com/apps/pubs/default.aspx?

id=145347.
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What is behind your friendly Xbox-Kinect application ?

(click here to play video)

[video source: webpage of Microsoft Research]
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Conclusions

I Human pose recovery with a single camera has a lot of
applications.

I A separation between intrinsic parameters (kinematic
parameters) and extrinsic parameters (view-point, color,
texture, etc) is often preferred: cf. the manifolds and the
likelihood scores.

I There is not enough informations in binary silhouettes.

I There are three kinds of methods : learning, example, and
model-based.

I Human pose recovery based on color images is a challenge.

I Human pose recovery with a range camera works very well.
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