

Introduction to Machine Learning

Lesson given by **Sébastien Piérard** in the course
“Vision 3D” (ULg, Pr. M. Van Droogenbroeck)

INTELSIG, Montefiore Institute, University of Liège, Belgium

November 30, 2011

An introductory example

- ▶ Can you decide which silhouettes are those of humans ?
- ▶ Try to write an algorithm to solve this problem !

An introductory example

- ▶ Can you decide which silhouettes are those of humans ?
- ▶ Try to write an algorithm to solve this problem !

An introductory example

Observation

Most of the tasks related to video scene interpretation are complex. A human expert can easily take the right decision, but usually without being able to explain how he does it.

Solution

Machine learning techniques are indispensable in computer science.

Outline

- 1 Introduction to machine learning (ML)
- 2 Classification
- 3 Conclusion

Outline

1 Introduction to machine learning (ML)

2 Classification

3 Conclusion

Their¹ aim is to

- ▶ to build a decision rule automatically
- ▶ to be able to generalize to unseen objects
- ▶ and to speedup the decisions.

Computational cost:

- ▶ The model is learned only once.
- ▶ The model is used many times.
- ▶ Which operation should be the fastest ?

¹In this document, we consider only "supervised" machine learning techniques.

Examples of techniques are:

- ▶ the nearest neighbors;
- ▶ the neuronal networks;
- ▶ the *ExtRaTrees* [5];
- ▶ and the *Support Vector Machines* (SVM) [2].

A good reference book on this topic is [6].

Families of machine learning methods

machine learning

supervised learning

classification

regression

unsupervised learning

Applications

Such techniques have proven to be successful for many purposes:

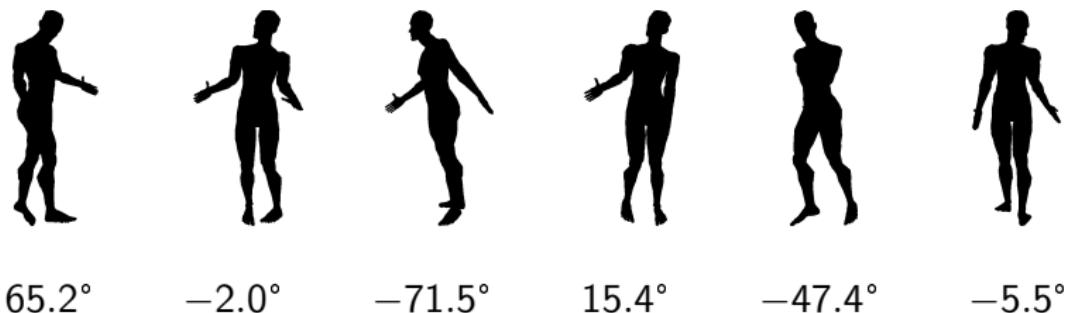
- ▶ detecting people in images [3];
- ▶ recognizing them [1];
- ▶ analyzing their behavior [7];
- ▶ detector faces with software embedded on cameras [8];
- ▶ etc.

[image source: Shotton2011RealTime]

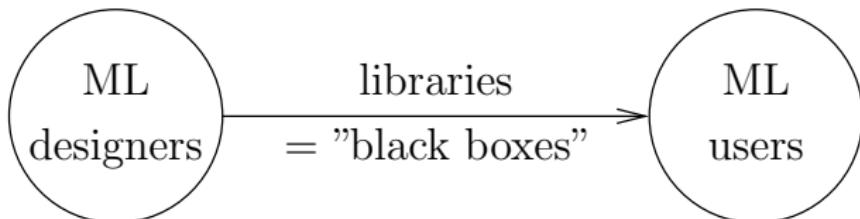
Classification vs regression

Example of classification

Example of regression



In practice ...



There exists a lot of machine learning libraries. For example,

- ▶ libSVM (Matlab, Java, Python, etc)
- ▶ Regression trees (C/Matlab, on Pierre Geurts's webpage)
- ▶ Neural Network Toolbox (Matlab)
- ▶ Java-ML (Java)
- ▶ Shark (C++)
- ▶ Shogun (C++)
- ▶ ...

Outline

1 Introduction to machine learning (ML)

2 Classification

3 Conclusion

What is learned

Example of learning database:

	x_1	x_2	x_3	x_4	x_5	y
sample 1	7.99	6.77	9.75	1.58	1.00	0
sample 2	2.24	9.51	1.14	8.00	7.66	0
sample 3	2.18	2.83	2.96	5.14	9.73	0
sample 4	8.44	7.39	4.57	4.94	2.70	1
sample 5	9.55	5.92	2.52	0.46	1.53	1
sample 6	3.32	9.13	0.50	5.07	8.22	2

$$MODEL \equiv y(x_1, x_2, x_3, x_4, x_5) = ?$$

- ▶ y is the output variable (the class)
- ▶ The samples have to be described by *attributes* x_1, x_2, \dots
- ▶ The same number of attributes should be used for all samples.
- ▶ The meaning of an attribute should not depend on the sample.

Example of classification task

handwritten character recognition

7 2 1 0 4 1 4 9 5 9
0 6 9 0 1 5 9 7 8 4
9 6 4 5 4 0 7 4 0 1
3 1 3 4 7 2 7 1 2 1
1 7 4 2 3 5 1 2 4 4
6 3 5 5 6 0 4 1 9 5
7 8 9 3 7 4 6 4 3 0
7 0 2 9 1 7 3 2 9 7
7 6 2 7 8 4 7 3 6 1
3 6 9 3 1 4 1 7 6 9

- ▶ size = 100 samples
- ▶ choice : attributes = raw pixels
- ▶ the size of the images is 32×32
- ▶ dimension = 1024 attributes

[image source: P. Geurts, "An introduction to Machine Learning"]

The intrinsic difficulty of machine learning

The theoretical rule to minimize the error rate is

$$y(\vec{x}) = \arg \max_{y_i \in \{0,1,\dots\}} (P[y = y_i | \vec{x}]) \quad (1)$$

Let ρ be the probability density function of all objects in the attributes space, and ρ_i be the probability density function of the objects belonging to class y_i . Using Bayes' rule,

$$P[y = y_i | \vec{x}] = \frac{\rho_i[\vec{x}] P[y = y_i]}{\rho[\vec{x}]} \quad (2)$$

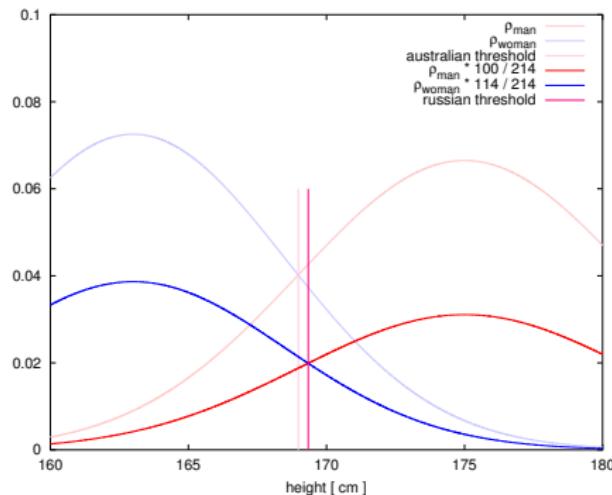
Therefore,

$$y(\vec{x}) = \arg \max_{y_i \in \{0,1,\dots\}} (\rho_i[\vec{x}] P[y = y_i]) \quad (3)$$

The intrinsic difficulty is that it is very difficult to estimate ρ_i from the learning database because the space is not densely sampled.

An example of decision rule in 1D

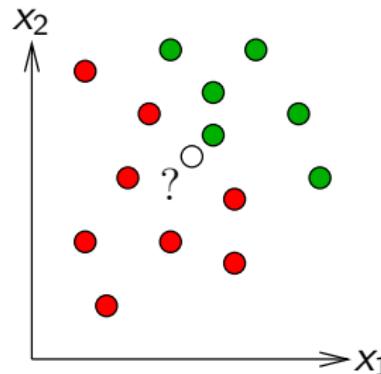
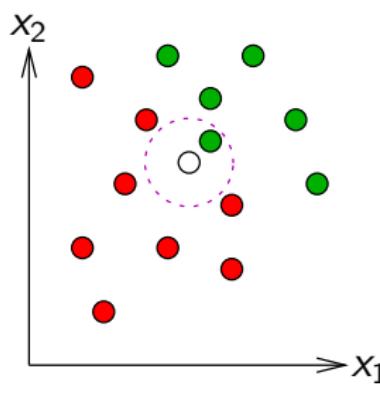
Imagine we have to recognize men and women based on a single attribute: the height. In Australia, there are 100 women for 100 men. But in Russia, there are 114 women for 100 men.



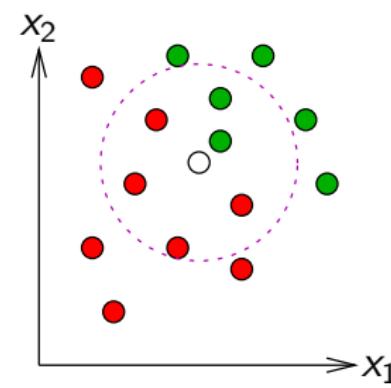
$$y = (\text{height} < 169.34) ? \text{"woman"} : \text{"man"} ;$$

Example of classifier : the nearest neighbor(s)

Lets us consider a problem in 2 dimensions:



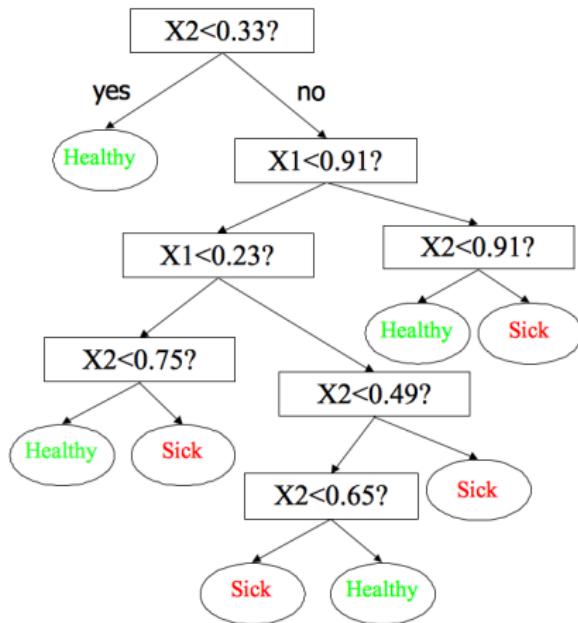
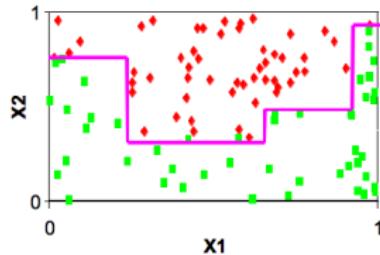
1-NN



k -NN

- ▶ The size of the neighborhood is automatically chosen depending on k .
- ▶ The model is the learning set (or a pruned version of it).
- ▶ First drawback: the time needed to take a decision is $\mathcal{O}(n)$, where n is the learning set size.
- ▶ Second drawback: which distance measure should we select ?
There exists an infinity of possible choices ! [4]

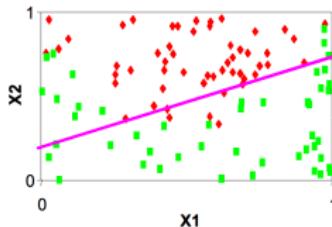
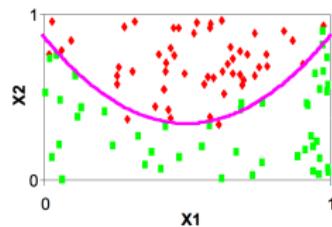
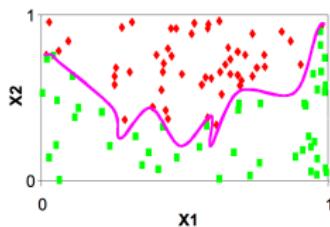
Example of classifier : the decision trees



[image source: P. Geurts, "An introduction to Machine Learning"]

Choosing the complexity of the model

Which model is the best ?



[image source: P. Geurts, "An introduction to Machine Learning"]

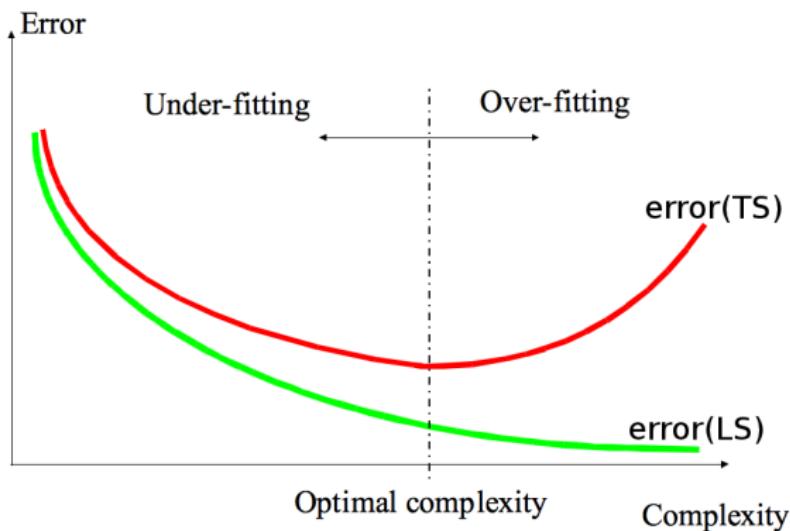
$$\begin{aligned} \text{error}(LS) &= 3.4 \% \\ \text{error}(TS) &= 3.5 \% \end{aligned}$$

$$\begin{aligned} \text{error}(LS) &= 1.0 \% \\ \text{error}(TS) &= 1.5 \% \end{aligned}$$

$$\begin{aligned} \text{error}(LS) &= 0.0 \% \\ \text{error}(TS) &= 3.5 \% \end{aligned}$$

- ▶ Does the model explain the learning set?
→ *resubstitution error* = error estimated on the learning set
- ▶ Is the model able to predict the classes for unknown samples?
→ *generalization error* = error estimated on the test set

Choosing the complexity of the model



[image source: P. Geurts, "An introduction to Machine Learning"]

Evaluation of binary classifiers

- ▶ The two classes are { positive , negative }
- ▶ Example: P = human, N = non-human

		classified as	
		positive	negative
real class (ground truth)	positive	true positives (TP)	false negatives (FN)
	negative	false positives (FP)	true negatives (TN)

$$\#P = \#TP + \#FN \quad \#N = \#TN + \#FP$$

$$TPR = \frac{\#TP}{\#P} \quad FNR = \frac{\#FN}{\#P} \quad TNR = \frac{\#TN}{\#N} \quad FPR = \frac{\#FP}{\#N}$$

Evaluation of binary classifiers

Remark 1 :

To evaluate a classifier, two quantities are required:

- ① TPR or FNR ($TPR + FNR = 1$)
- ② TNR or FPR ($TNR + FPR = 1$)

Remark 2 :

There is always a trade-off :

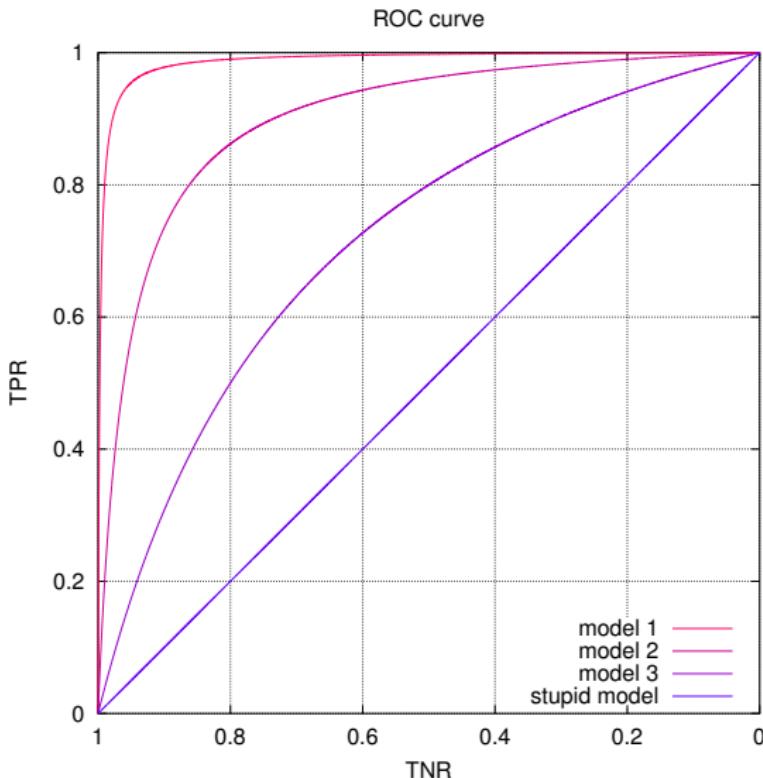
- ▶ It is easy to obtain a high TPR .
- ▶ It is easy to obtain a high TNR .
- ▶ But it is difficult to obtain both simultaneously !

Remark 3 :

A binary classification = a threshold thr . Both TPR and TNR depend on the value of thr . Therefore we need to carefully choose the value of thr to optimize (TPR , TNR) !

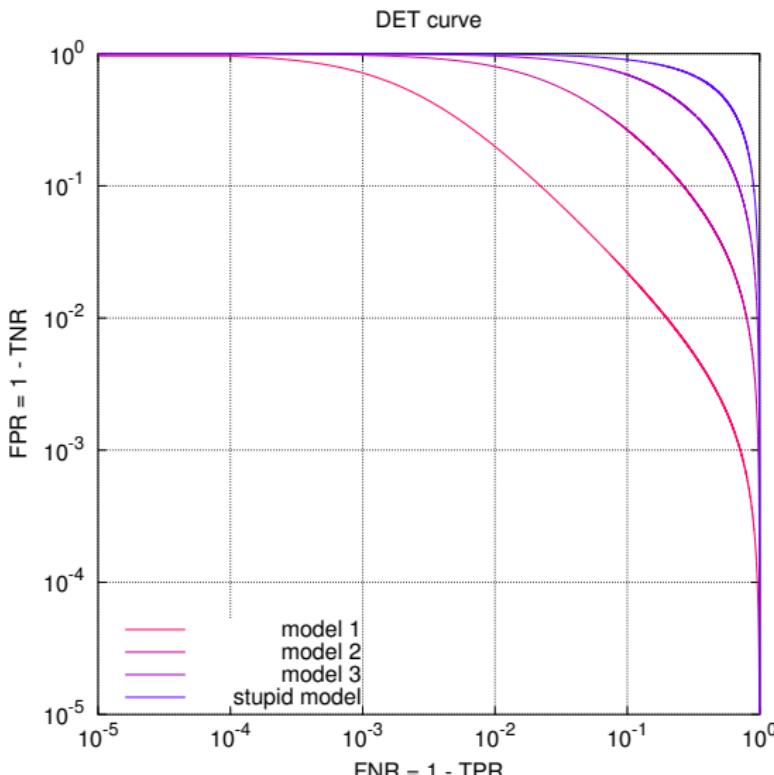
Evaluation: receiver operating characteristic (ROC)

$\{(TPR(thr), TNR(thr)) \forall thr \in \mathbb{R}\} = \text{a ROC curve}$



Evaluation: detection error tradeoff (DET)

$\{(TPR(thr), TNR(thr)) \forall thr \in \mathbb{R}\}$ = a DET curve



Outline

1 Introduction to machine learning (ML)

2 Classification

3 Conclusion

ML = automatic + generalization + preprocessing

Machine learning techniques are :

- ▶ powerful methods;
- ▶ a complement to traditional algorithmics;
- ▶ indispensable in computer science;
- ▶ adequate for real-time computations;
- ▶ “easy” to use².

²However, optimal results are difficult to obtain. This is why researchers are still working on machine learning methods.

Bibliography I

- N. Boulgouris, D. Hatzinakos, and K. Plataniotis.
Gait recognition: a challenging signal processing technology for biometric identification.
IEEE Signal Processing Magazine, 22(6):78–90, November 2005.
- C. Cortes and V. Vapnik.
Support-vector networks.
Machine Learning, 20(3):273–297, 1995.
- N. Dalal and B. Triggs.
Histograms of oriented gradients for human detection.
In *IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)*, volume 1, pages 886–893, San Diego, USA, June 2005.

Bibliography II

- M. Deza and E. Deza.
Encyclopedia of Distances.
Springer, 2009.
- P. Geurts, D. Ernst, and L. Wehenkel.
Extremely randomized trees.
Machine Learning, 63(1):3–42, April 2006.
- T. Hastie, R. Tibshirani, and J. Friedman.
The elements of statistical learning: data mining, inference, and prediction.
Springer Series in Statistics. Springer, second edition, September 2009.

Bibliography III

- J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake.
Real-time human pose recognition in parts from single depth images.
In *IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)*, Colorado Springs, June 2011.
- P. Viola and M. Jones.
Robust real-time face detection.
International Journal of Computer Vision, 57(2):137–154, 2004.