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An introductory example

I Can you decide which silhouettes are those of humans ?

I Try to write an algorithm to solve this problem !
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An introductory example

Observation

Most of the tasks related to video scene interpretation are
complex. A human expert can easily take the right decision, but
usually without being able to explain how he does it.

Solution

Machine learning techniques are indispensable in computer science.
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Machine learning techniques

Their1 aim is to

I to build a decision rule automatically

I to be able to generalize to unseen objects

I and to speedup the decisions.

Computational cost:

I The model is learned only once.

I The model is used many times.

I Which operation should be the fastest ?

1In this document, we consider only ”supervised” machine learning
techniques.
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Machine learning techniques

Examples of techniques are:

I the nearest neighbors;

I the neuronal networks;

I the ExtRaTrees [5];

I and the Support Vector Machines (SVM) [2].

A good reference book on this topic is [6].
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Families of machine learning methods

classification

supervised learning

machine learning

regression

unsupervised learning
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Applications

Such techniques have proven to be successful for many purposes:

I detecting people in images [3];

I recognizing them [1];

I analyzing their behavior [7];

I detector faces with software embedded on cameras [8];

I etc.

[image source: Shotton2011RealTime]
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Classification vs regression

Example of classification

yes yes no yes no no

Example of regression

65.2° −2.0° −71.5° 15.4° −47.4° −5.5°
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In practice . . .

ML

users

ML

designers

libraries

= ”black boxes”

There exists a lot of machine learning libraries. For example,

I libSVM (Matlab, Java, Python, etc)

I Regression trees (C/Matlab, on Pierre Geurts’s webpage)

I Neural Network Toolbox (Matlab)

I Java-ML (Java)

I Shark (C++)

I Shogun (C++)

I . . .
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What is learned

Example of learning database:

x1 x2 x3 x4 x5 y

sample 1 7.99 6.77 9.75 1.58 1.00 0

sample 2 2.24 9.51 1.14 8.00 7.66 0

sample 3 2.18 2.83 2.96 5.14 9.73 0

sample 4 8.44 7.39 4.57 4.94 2.70 1

sample 5 9.55 5.92 2.52 0.46 1.53 1

sample 6 3.32 9.13 0.50 5.07 8.22 2

MODEL ≡ y (x1, x2, x3, x4, x5) =?

I y is the output variable (the class)

I The samples have to be described by attributes x1, x2, . . .

I The same number of attributes should be used for all samples.

I The meaning of an attribute should not depend on the sample.
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Example of classification task

handwritten character recognition

I size = 100 samples

I choice : attributes = raw pixels

I the size of the images is 32× 32

I dimension = 1024 attributes

[image source: P. Geurts, ”An introduction to Machine Learning”]
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The intrinsic difficulty of machine learning

The theoretical rule to minimize the error rate is

y
(−→x )

= arg max
yi∈{0,1,...}

(
P

[
y = yi |−→x

])
(1)

Let ρ be the probability density function of all objects in the
attributes space, and ρi be the probability density function of the
objects belonging to class yi . Using Bayes’ rule,

P
[
y = yi |−→x

]
=
ρi

[−→x ]
P [y = yi ]

ρ
[−→x ] (2)

Therefore,

y
(−→x )

= arg max
yi∈{0,1,...}

(
ρi

[−→x ]
P [y = yi ]

)
(3)

The intrinsic difficulty is that it is very difficult to estimate ρi from
the learning database because the space is not densely sampled.
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An example of decision rule in 1D

Imagine we have to recognize men and women based on a single
attribute: the height. In Australia, there are 100 women for 100
men. But in Russia, there are 114 women for 100 men.

0

0.02

0.04

0.06

0.08

0.1

160 165 170 175 180

height [ cm ]

ρman
ρwoman

australian threshold
ρman * 100 / 214

ρwoman * 114 / 214
russian threshold

y = ( height < 169.34 ) ? ”woman” : ”man” ;
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Example of classifier : the nearest neighbor(s)

Lets us consider a problem in 2 dimensions:

x1

x2

x1

x2

k-NN1-NN

x1

x2

?
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Example of classifier : the nearest neighbor(s)

I The size of the neighborhood is automatically chosen
depending on k.

I The model is the learning set (or a pruned version of it).

I First drawback: the time needed to take a decision is O(n),
where n is the learning set size.

I Second drawback: which distance measure should we select ?
There exists an infinity of possible choices ! [4]
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Example of classifier : the decision trees

[image source: P. Geurts, ”An introduction to Machine Learning”]
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Choosing the complexity of the model

Which model is the best ?

[image source: P. Geurts, ”An introduction to Machine Learning”]

error(LS) = 3.4 % error(LS) = 1.0 % error(LS) = 0.0 %
error(TS) = 3.5 % error(TS) = 1.5 % error(TS) = 3.5 %

I Does the model explain the learning set?
→ resubstitution error = error estimated on the learning set

I Is the model able to predict the classes for unknown samples?
→ generalization error = error estimated on the test set
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Choosing the complexity of the model

[image source: P. Geurts, ”An introduction to Machine Learning”]
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Evaluation of binary classifiers

I The two classes are { positive , negative }
I Example: P = human, N = non-human

classified as

positive negative

real class positive true positives (TP) false negatives (FN)

(ground truth) negative false positives (FP) true negatives (TN)

#P = #TP + #FN #N = #TN + #FP

TPR = #TP
#P FNR = #FN

#P TNR = #TN
#N FPR = #FP

#N
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Evaluation of binary classifiers

Remark 1 :

To evaluate a classifier, two quantities are required:

1 TPR or FNR (TPR + FNR = 1)
2 TNR or FPR (TNR + FPR = 1)

Remark 2 :

There is always a trade-off :

I It is easy to obtain a high TPR.

I It is easy to obtain a high TNR.

I But it is difficult to obtain both simultaneously !

Remark 3 :

A binary classification = a threshold thr . Both TPR and TNR
depend on the value of thr . Therefore we need to carefully choose
the value of thr to optimize (TPR, TNR) !
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Evaluation: receiver operating characteristic (ROC)

{(TPR (thr) ,TNR (thr))∀thr ∈ R} = a ROC curve
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Evaluation: detection error tradeoff (DET)

{(TPR (thr) ,TNR (thr))∀thr ∈ R} = a DET curve
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Conclusion

ML = automatic + generalization + preprocessing

Machine learning techniques are :

I powerful methods;

I a complement to traditional algorithmics;

I indispensable in computer science;

I adequate for real-time computations;

I “easy” to use2.

2However, optimal results are difficult to obtain. This is why researchers are
still working on machine learning methods.
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