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An introductory example

» Can you decide which silhouettes are those of humans ?

» Try to write an algorithm to solve this problem !
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An introductory example

Observation

Most of the tasks related to video scene interpretation are
complex. A human expert can easily take the right decision, but
usually without being able to explain how he does it.

Machine learning techniques are indispensable in computer science.
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Machine learning techniques

Their! aim is to
> to build a decision rule automatically
> to be able to generalize to unseen objects

» and to speedup the decisions.

Computational cost:
» The model is learned only once.
» The model is used many times.
» Which operation should be the fastest ?

Y1n this document, we consider only "supervised”’ machine learning

techniques.
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Machine learning techniques

Examples of techniques are:
> the nearest neighbors;
» the neuronal networks;
» the ExtRaTrees [5];
» and the Support Vector Machines (SVM) [2].

A good reference book on this topic is [6].



Families of machine learning methods

machine learning

supervised learning
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Applications

Such techniques have proven to be successful for many purposes:
» detecting people in images [3];
> recognizing them [1];
» analyzing their behavior [7];
» detector faces with software embedded on cameras [8];

> etc.
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Classification vs regression

Example of classification |
yes yes no yes no no
Example of regression J
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In practice . ..

ML libraries ML

designers = "black boxes” users

There exists a lot of machine learning libraries. For example,

v

libSVM (Matlab, Java, Python, etc)

Regression trees (C/Matlab, on Pierre Geurts's webpage)
Neural Network Toolbox (Matlab)

Java-ML (Java)

Shark (C++)

Shogun (C++)

v

v
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© Classification
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What is learned

Example of learning database:

X1 X2 X3 X4 X5

sample 1 | 7.99 | 6.77 | 9.75 | 1.58 | 1.00
sample 2 | 2.24 | 9.51 | 1.14 | 8.00 | 7.66
sample 3 | 2.18 | 2.83 | 2.96 | 5.14 | 9.73
sample 4 | 8.44 | 7.39 | 457 | 4.94 | 2.70
sample 5 | 9.55 | 5.92 | 2.52 | 0.46 | 1.53
sample 6 | 3.32 | 9.13 | 0.50 | 5.07 | 8.22

N = oo ok

MODEL = y (x1,x2, X3, X4, X5) =7

v

y is the output variable (the class)

v

The samples have to be described by attributes x;, xo, ...

v

The same number of attributes should be used for all samples.

v

The meaning of an attribute should not depend on the sample.
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Example of classification task

handwritten character recognition

v

size = 100 samples

v

choice : attributes = raw pixels
the size of the images is 32 x 32

» dimension = 1024 attributes
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The intrinsic difficulty of machine learning

The theoretical rule to minimize the error rate is

y (7) = argmax (P[y = y,\?}) (1)

yi€{0717"'}

Let p be the probability density function of all objects in the
attributes space, and p; be the probability density function of the
objects belonging to class y;. Using Bayes' rule,

s pi[X] Ply =yi]
P [y —YIIY} = p[7} (2)
Therefore,
y (X) = argmax (p; [X] Ply = yil) (3)
.yle{ov]-a}

The intrinsic difficulty is that it is very difficult to estimate p; from
the learning database because the space is not densely sampled.

16 /31



An example of decision rule in 1D

Imagine we have to recognize men and women based on a single
attribute: the height. In Australia, there are 100 women for 100
men. But in Russia, there are 114 women for 100 men.

0.1
o Prman
australiap threshoid
Prman * 100/ 214
*114/214 ——

woman

0.08 - russian threshold

0 . . !
160 165 170 175 180
height [ cm ]

y = ( height < 169.34 ) ? "woman” : "man”;

17/31



Example of classifier : the nearest neighbor(s)

Lets us consider a problem in 2 dimensions:
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Example of classifier : the nearest neighbor(s)

> The size of the neighborhood is automatically chosen
depending on k.

» The model is the learning set (or a pruned version of it).

» First drawback: the time needed to take a decision is O(n),
where n is the learning set size.

» Second drawback: which distance measure should we select ?
There exists an infinity of possible choices ! [4]
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Example of classifier : the decision trees

X2<0.337

no

X1<0.917

yes

()

X2

20 /31



Choosing the complexity of the model

Which model is the best ?

error(LS) =3.4% error(LS) =1.0% error(LS) = 0.0%
error(TS) =3.5%  error(TS)=15%  error(TS) =35%

» Does the model explain the learning set?
— resubstitution error = error estimated on the learning set

> Is the model able to predict the classes for unknown samples?
— generalization error = error estimated on the test set

21/31



Choosing the complexity of the model

Error

Under-fitting i Over-fitting

error(TS)

error(LS)

Optimal cdmplexity Complexity



Evaluation of binary classifiers

» The two classes are { positive , negative }

» Example: P = human, N = non-human

classified as
positive negative
real class positive | true positives (TP) | false negatives (FN)
(ground truth) | negative | false positives (FP) | true negatives (TN)

4P = #TP + #FN AN = #TN + #FP

TP FN TN FP
TPR=2%7  FNR=ZHL  TNR=ZRF  FPR=Z[7
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Evaluation of binary classifiers

Remark 1 : J

To evaluate a classifier, two quantities are required:
@ TPRor FNR (TPR+ FNR =1)
@ TNRor FPR (TNR+ FPR =1)

Remark 2 : J

There is always a trade-off :
> It is easy to obtain a high TPR.
> It is easy to obtain a high TNR.
» But it is difficult to obtain both simultaneously !

Remark 3 : )

A binary classification = a threshold thr. Both TPR and TNR
depend on the value of thr. Therefore we need to carefully choose
the value of thr to optimize (TPR, TNR) !
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Evaluation: receiver operating characteristic (ROC)

{(TPR (thr), TNR (thr))Vthr € R} = a ROC curve

ROC curve

TPR
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Evaluation: detection error tradeoff (DET)

{(TPR (thr), TNR (thr)) Vthr € R} = a DET curve

DET curve
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© Conclusion
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Conclusion

ML = automatic + generalization + preprocessing J

Machine learning techniques are :
» powerful methods;
» a complement to traditional algorithmics;

» indispensable in computer science;

v

adequate for real-time computations;

> “easy” to use.

2However, optimal results are difficult to obtain. This is why researchers are

still working on machine learning methods.
28/31



Bibliography |

[§ N. Boulgouris, D. Hatzinakos, and K. Plataniotis.
Gait recognition: a challenging signal processing technology for
biometric identification.
IEEE Signal Processing Magazine, 22(6):78-90, November
2005.

[§ C. Cortes and V. Vapnik.

Support-vector networks.
Machine Learning, 20(3):273-297, 1995.

[@ N. Dalal and B. Triggs.
Histograms of oriented gradients for human detection.
In IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), volume 1, pages 886-893, San
Diego, USA, June 2005.

29 /31



Bibliography Il

[ M. Deza and E. Deza.
Encyclopedia of Distances.
Springer, 2009.

[@ P. Geurts, D. Ernst, and L. Wehenkel.
Extremely randomized trees.
Machine Learning, 63(1):3—-42, April 2006.

[ T. Hastie, R. Tibshirani, and J. Friedman.
The elements of statistical learning: data mining, inference,
and prediction.
Springer Series in Statistics. Springer, second edition,
September 2009.

30/31



Bibliography Il

[§ J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake.

Real-time human pose recognition in parts from single depth
images.

In IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), Colorado Springs, June 2011.

[3 P. Viola and M. Jones.
Robust real-time face detection.

International Journal of Computer Vision, 57(2):137-154,
2004.

31/31



	Introduction to machine learning (ML)
	Classification
	Conclusion

