The International Liquid Mirror Telescope :

First mercury test report

Summary

Basics on Liquid Mirror Telescopes

•The ILMT

Possible LMT's defects

Interest of the Mercury tests

Wave detection Method

•Report of the Mercury tests

Conclusions

Basics on Liquid Mirror Telescopes

Liquid Mirror Telescope :
Liquid Mirror
Camera at focal point

- Rotating fluid → parabola
- Reflective fluid (Mercury)
 → Parabolic Mirror

The ILMT

- 4m diameter, built in Liège
- collaboration of astronomers from Canada,India, ROB and Ulg
- Will be Installed in India (Devasthal Observatory)
- Present Status:
 - Building : Designed
 - Camera : ordered
 - Corrector : lenses are being coated
 - Software in development
 - Dish : to be tested

Possible LMT's defects

- Optical quality may be affected by wavelets
 - Transient wavelets: gust of wind, flies, ...
 - Stationary wavelets: spiral and concentric
- The spiral wavelets
 - Wind induced pattern
 - Instabilities in the air-Mercury interface
 - Solution : Mylar film
- Mylar diffracts \rightarrow Is it worth it ?
- Reducing the mercury thickness
 - Reduces the waves amplitude
 - Increases the damping

Why doing Mercury tests?

Is it possible to close the mercury layer?

How thin can we make the mercury layer?

• Are there waves?

Spiral: sufficiently suppressed? Mylar?

Wave detection method

• Laser reflected on the mercury

- If wavelets :
 - slope modification at impact point
 - deflection of reflected ray

Detection method: the emitter

• Emitter :

- Laser pen
- Beam expender
- 2 blades

- Vertical translation + rotation mount
 - \rightarrow select the impact radius!

Detection method: the detector

- Detector : CMOS camera
- Vertical translation + rotation mount
 - \rightarrow intercept the reflected beam
- In each frame : detection of the line...
- Fit the line evolution as a function of:
 - Amplitude
 - Wavelength
 - Frequency

•

Before spinning the mirror...

... getting the astronomer ready!

Before spinning the mirror

• Pumping the mercury into the dish

Launching the mirror

And finally....

Conclusions

- We were able to close the mercury layer with a 3mm layer
- Thickness of 2mm was reachable
- Spiral waves were present at 3mm and 2mm
- Still treating the videos...

New tests need to be done to achieve 1mm!