The ILMT:

Testing method for the mercury surface quality
Summary

• Basics and defects of LMT's

• Type of wavelets

• Detection and characterization method

• Wavelets modeling

• Impact on the telescope PSF
Basics on Liquid Mirror Telescopes

- Rotating fluid → parabola
- Reflective fluid (Mercury) → Parabolic Mirror

Liquid Mirror Telescope:
- Liquid Mirror
- Camera at focal point
LMT's: Main Characteristics

- Particularities:
 - Zenithal pointing
 - Real-time imaging
 - 20 times cheaper than conventional technology

- Interest:
 - Strip of sky Photometric & Astrometric monitoring
 - Variability study of strip of sky
Defects on LMT's surface

- Time independent defects:
 - Coriolis
 - Non uniformity of gravitational acceleration
 - Axes tilt

- Time dependent defects: wavelets
 - Transient wavelets: gusp of wind, flies, …
 - Stationary wavelets: spiral and concentric
Concentric wavelets

- Vibration induced
- Transmitted by:
 - air bearing,
 - Rotation speed instability
 - Ground vibration, ...

- Characteristics:
 - Wavelength: ~ 1-3 cm
 - Amplitude: ~ 1-3 μm
 - Frequency: ~ 15 Hz
Spiral wavelets

- Wind induced pattern
- Due to:
 - relative velocity air – Mercury
 - instability in the air boundary layer at air-Mercury interface
- Characteristics:
 - Wavelength: ~ 2-5 cm
 - Amplitude: ~ 1-3 μm
 - Frequency: ~ 5 Hz
Detection Method

• Laser reflected on the mercury

• If wavelets :
 ➔ slope modification at impact point
 ➔ deflection of reflected ray

• “Laser line” (instead of a spot)
Impact of Concentric wavelets

- Beam section: horizontal line

- On the detector: Oscillation of the line

- Oscillation on detector:
 - Amplitude ~ mm
 - Related to Local slope modification induced by wavelet
 - Related to A, k
 - Frequency = wavelet frequency

$A = 1.5 \, \mu m, \lambda = 3 \, cm, d = 1.5 \, m$
Impact of spiral wavelets

- Beam section: horizontal line
- On the detector: Sinusoid propagating through the line
- Sinusoid on detector:
 - Amplitude \sim mm
 - Amplitude and wavelength related to A, k
 - Frequency $=$ wavelet frequency

$A = 1.5 \mu m$, $\lambda = 3 \text{cm}$, $d = 1.5 \text{m}$
What can we measured?

- Locally: wavelets = plane wave
- Beam section : horizontal line
- If Laser line // wave front:
 - Detector = oscillating line
 - Oscillation Amplitude \rightarrow retrieve “Ak” product
What can we measure?

- If β angle between line and wavefront:
 - Detector: sinusoid
 - Amplitude: $\alpha A k \sin(\beta)$
 - Wavelength:
 $$\alpha (k \sin(\beta))^{-1}$$
- Rotation of incident beam \rightarrow retrieve all parameters!
Raise the degeneracies: inclined measures

- Measure 1:
 - Spiral: $A, k \sin(\beta)$
 - Concentric: $A*k$

- Measure 2,3:
 - Spiral: $k \sin(\beta \pm \alpha)$
 - Concentric: $A*k\sin(\pm \alpha)$

- Spiral: A, k, β known
- Concentric: A, k known
Modeling Concentric wavelets

- Local detection method → no constraint on wavelets modeling!

- Wavelets model:
 \[z = A(r) \cos(kr - \omega t) \]

- Parameters:
 \[A(r), k, \omega \]
Modeling Spiral wavelets

- Model:
 \[z = A(r) \cos(\phi + (1 - r/R)) \cos(\omega t) \]

- Measurable quantities:
 \[A(r), \beta(r), k(r), \omega \]

- Known introduced phase aberration!
Impact of spiral wavelets on PSF

- Known introduced phase aberration

- *Nijboer Zernike* approach: impact on PSF

- Impact of the wavelets:
 - Increasing number of wavelets \rightarrow bigger diffraction ring
 - Increasing amplitude \rightarrow decreasing Strehl ratio
Conclusion

• New method for testing liquid mirrors: reflected laser

• Possible to fully characterize spiral and concentric wavelets

• Wavelets modeling → Impact on PSF and quality of the telescope