The ILMT:

Testing method for the mercury surface quality

Summary

- Basics and defects of LMT's
- Type of wavelets
- Detection and characterization method
- Wavelets modeling

Impact on the telescope PSF

Basics on Liquid Mirror Telescopes

- Liquid Mirror Telescope :
 - Liquid Mirror
 - Camera at focal point

- Rotating fluid → parabola
- Reflective fluid (Mercury)
 → Parabolic Mirror

LMT's: Main Characteristics

- Particularities:
 - Zenithal pointing
 - Real-time imaging
 - 20 times cheaper than conventional technology
- Interest :
 - strip of sky Photometric & Astrometric monitoring
 - Variability study of strip of sky

Defects on LMT's surface

- Time independent defects:
 - Coriolis
 - Non uniformity of gravitational acceleration
 - Axes tilt
- Time dependent defects: wavelets
 - Transient wavelets: gusp of wind, flies, ...
 - Stationary wavelets: spiral and concentric

Concentric wavelets

- Vibration induced
- Transmitted by :
 - air bearing,
 - Rotation speed instability
 - Ground vibration, ...
- Characteristics:
 - Wavelength : ~ 1-3 cm
 - Amplitude : ~ 1-3 µm
 - Frequency : ~ 15 Hz

Spiral wavelets

- Wind induced pattern
- Due to:
 - relative velocity air Mercury
 - instability in the air boundary layer at air-Mercury interface
- Characteristics:
 - Wavelength : ~ 2-5 cm
 - Amplitude : ~ 1-3µm
 - Frequency : ~ 5 Hz

Detection Method

- Laser reflected on the mercury
- If wavelets :
 - slope modification at impact point
 - deflection of reflected ray
- "Laser line" (instead of a spot)

Impact of Concentric wavelets

 $A = 1.5(\mu m), \lambda = 3(cm), d = 1.5(m)$

- Beam section : horizontal line
- On the detector : Oscillation of the line
- Oscillation on detector:
 - Amplitude ~ mm
 - Related to Local slope modification induced by wavelet
 - Related to A , k
 - Frequency = wavelet frequency

Impact of spiral wavelets

 $A = 1.\circ(\mu m), \lambda = \mathcal{V}(cm), d = 1.\circ(m)$

- Beam section : horizontal line
- On the detector : Sinusoid propagating through the line
- Sinusoid on detector:
 - Amplitude ~ mm
 - Amplitude and wavelength related to A, k
 - Frequency = wavelet frequency

What can we measured?

 $\alpha A k$

 Locally: wavelets = plane wave

Beam section : horizontal line

- If Laser line // wave front:
 - Detector = oscillating line
 - Oscillation Amplitude → retrieve "Ak" product

What can we measure?

 If β angle between line and wavefront:

- Detector : sinusoid
- Amplitude: $\alpha A k \sin(\beta)$
- Wavelength :

 $\alpha(k\sin(\beta))^{-1}$

 Rotation of incident beam → retrieve all parameters!

Raise the degeneracies: inclined measures

known

- Measure 1 :
 - Spiral: A, k*sin(β)
 - Concentric: A*k
- Measure 2,3:
 - Spiral : $k^*sin(\beta \pm \alpha)$
 - Concentric: A*k*sin(±α)

- Spiral : A, k, β known
- Concentric : A, k

Modeling Concentric wavelets

- Local detection method → no constraint on wavelets modeling!
- Wavelets model:

$$z = A(r)\cos(kr - \omega t)$$

• Parameters: $A(r), k, \omega$

Modeling Spiral wavelets

• Model :

 $z = A(r) \cos \left(N \left(\phi + (1 - r/R) \right) \right) \cos \left(\omega t \right)$

• Measurable quantities:

A(r), $\beta(r)$, k(r), ω

• Known introduced phase aberration!

Impact of spiral wavelets on PSF

- Known introduced phase aberration
- Nijboer Zernike approach : impact on PSF
- Impact of the wavelets:
 - Increasing number of wavelets
 → bigger diffraction ring
 - Increasing amplitude → decreasing Strehl ratio

Conclusion

 New method for testing liquid mirrors : reflected laser

 Possible to fully characterize spiral and concentric wavelets

 Wavelets modeling → Impact on PSF and quality of the telescope

