CARTE HYDROGEOLOGIQUE DE WALLONIE

NOTICE EXPLICATIVE

MEIX-DEVANT-VIRTON – VIRTON
71/1-2
CARTE HYDROGEOLOGIQUE DE MEIX-DVANT-VIRTON – VIRTON
71/1-2
1/25.000

Edition 2009
Table des matières

AVANT-PROPOS .. 7

I. INTRODUCTION .. 10

II. CADRE GEOGRAPHIQUE, GEOMORPHOLOGIQUE ET HYDROGRAPHIQUE 12

III. CADRE GEOLOGIQUE ET STRUCTURAL ... 16

 III.1. CADRE GEOLOGIQUE REGIONAL .. 16
 III.2. GEOLOGIE SUR LA PLANCHE DE MEIX-DEVANT-VIRTON – VIRTON 18
 III.2.1. Mésozoïque .. 18
 III.2.1.1. Formation de Mortinsart (MOR) .. 18
 III.2.1.2. Formation de Jamoigné (JAM) .. 19
 III.2.1.3. Formation de Luxembourg (LUX) ... 21
 III.2.1.4. Formation d’Arlon (ARL) .. 21
 III.2.1.5. Formation d’Eth (ETH) ... 22
 III.2.1.6. Formation d’Aubange (AUB) ... 22
 III.2.2. Cénozoïque .. 23
 III.2.2.1. Alluvions anciennes (ALA) .. 23
 III.2.2.2. Alluvions modernes (AMO) .. 23
 III.3. CADRE STRUCTURAL ... 23

IV. CADRE HYDROGEOLOGIQUE .. 24

 IV.1. HYDROGEOLOGIE REGIONALE .. 24
 IV.1.1. Aquiclude à niveaux aquifères d’Habay .. 24
 IV.1.2. Aquifère de Mortinsart .. 25
 IV.1.3. Aquifères de la Formation de Luxembourg : la Chevratte, Florenville, Orval et Virton 25
 IV.1.4. Aquifère d’Aubange – Messancy ... 26
 IV.1.5. Aquifère de Longwy – Mont-Saint-Martin ... 26
 IV.1.5.1. Remarques générales ... 26
 IV.2. HYDROGEOLOGIE LOCALE ... 27
 IV.2.1. Description des aquifères ... 27
 IV.2.1.1. L’aquifère de Mortinsart .. 27
 IV.2.1.2. L’aquifère de La Chevratte ... 30
 IV.2.1.3. L’aquifère de Florenville ... 30
 IV.2.1.4. Les aquifères d’Orval, de Virton et de Hondelange ... 31
 IV.2.1.5. L’aquifère d’Aubange – Messancy ... 32
 IV.2.2. Ressources en eau souterraine de la Formation de Luxembourg 33
 IV.2.2.1. Bassin de Laclaireau .. 33
 IV.2.2.2. Bassin du ruissel de Lanframpa .. 33
 IV.2.2.3. Bassin du ruisseau de Lanframpa .. 34
 IV.2.2.4. Bassin du Ton .. 34
 IV.2.3. La piézométrie .. 34
 IV.2.4. La karstification des calcaires gréseux de Luxembourg .. 37

V. HYDROCHIMIE .. 38

 V.1. CARACTERISTIQUES PHYSICOCHIMIQUES .. 38
 V.1.1. Remarque générale ... 39
 V.2. CARACTERISTIQUES MINERALES .. 40
 V.3. NITRATES .. 40
 V.4. CARACTERISTIQUES BACTERIOLOGIQUES ... 40

VI. EXPLOITATION DES AQUIFERES ... 42
Avant-propos

La carte hydrogéologique de Meix-devant-Virton – Virton a été réalisée en 2003 dans le cadre du projet de la carte hydrogéologique de Wallonie, commandé et financé par le Ministère de la Région wallonne : Direction générale opérationnelle Agriculture, Ressources naturelles et Environnement (DGO3) du Service Public de Wallonie (S.P.W). Quatre équipes universitaires collaborent à ce projet : la Faculté Polytechnique de Mons, les Départements ArGEnCO et Sciences et Gestion de l'Environnement (ex Fondation Universitaire Luxembourgoise) de l'Université de Liège et les Facultés Universitaires de Namur.

Le projet a été supervisé au sein du Département des Sciences et Gestion de l'Environnement par V. Debbaut et la carte a été réalisée par M. Bouezmarni. La conception de la BDHYDRO (base de données hydrogéologiques de Wallonie) connaît une perpétuelle amélioration pour aboutir à une seule base de données centralisée régulièrement mise à jour (Gogu, 2000 ; Gogu et al. 2001 ; Wojda et al., inédit).

La carte hydrogéologique est basée sur un maximum de données géologiques, hydrogéologiques et hydrochimiques disponibles auprès de divers organismes. Elle a pour objectif d'informer sur l'extension, de la géométrie et des caractéristiques hydrogéologiques, hydrodynamiques et hydrochimiques des nappes aquifères, toutes personnes, sociétés ou institutions concernées par la gestion tant quantitative que qualitative des ressources en eaux.

Une mise à jour partielle de la carte a été effectuée en Mars 2009 avant la publication du document. Excepté les zones de prévention et les unités hydrogéologiques, les informations concernées sont toutes des données ponctuelles se trouvant dans la BDHYDRO : ouvrages, cote ponctuelles de la piézométrie, volumes, chimie et tests. L'actualisation des unités hydrogéologiques suite à la publication de la nouvelle carte géologique a entraîné une mise à jour en cascade de la plupart des autres couches d'informations composant le projet cartographique.

L'ensemble des données utilisées pour la réalisation de la carte a été remis à la Région wallonne. Pour de plus amples informations, il faut s'adresser à la Direction générale
opérationnelle Agriculture, Ressources naturelles et Environnement (DGO3) du Service Public de Wallonie (S.P.W)\(^1\), ou sur le site Internet de la carte hydrogéologique de Wallonie.

\(^1\) Direction générale opérationnelle Agriculture, Ressources naturelles et Environnement (DGO3) du Service Public de Wallonie. Ministère de la Région wallonne. Avenue Prince de Liège, 15. 5100 NAMUR.
Remerciements

Madame Belanger du Service géologique de Belgique, Monsieur Colbach du Service géologique de Luxembourg et le professeur Boulvain de l'Université de Liège pour leurs remarques pertinentes et leurs suggestions judicieuses.

Monsieur Naa pour les nombreuses données concernant les captages de la société Nestlé Waters Benelux,

Monsieur George Arnould de l'entreprise de forage Arnould pour les notes de forage. Ces notes comprennent des descriptions lithologiques détaillées des terrains rencontrés, des données d'équipements de puits, des niveaux statiques des nappes et d'autres remarques intéressantes.

Que tous ceux qui, de près ou de loin, ont participé à la réalisation de cette carte soient remerciés.
I. INTRODUCTION

La carte hydrogéologique de Meix-devant-Virton – Virton couvre une partie de la Gaume située en Lorraine belge dans le sud de la province de Luxembourg (Figure I.1). Le coin sud-ouest de la planche se trouve en territoire français.

La carte hydrogéologique est basée sur la carte géologique de Meix-devant-Virton – Virton (Belanger, 2006) et sur sa notice explicative. Le présent livret expliquera comment la géologie des terrains mésozoïques de la Lorraine belge joue un rôle particulier notamment au niveau géomorphologique et hydrogéologique. L’alternance de couches dures (grès et calcaires) et de couches tendres (marnes et argiles) et leur structure monoclinale à faible pendage sud, a déterminé un relief en cuestas d’une part et une superposition de nappes d’autre part.

Ce livret commence par un bref aperçu géographique, géomorphologique et hydrographique qui sera suivi d’une partie géologique. Celle-ci sera traitée d’abord dans le contexte régional de la Lorraine belge. Ensuite, la description lithologique, la zone d’affleurement et l’épaisseur de chaque unité stratigraphique seront systématiquement présentées à l’échelle de la planche. Enfin, un cadre structural régional et local sera dressé.

Comme pour la géologie, l’hydrogéologie sera d’abord traitée à l’échelle régionale pour montrer le contexte hydrogéologique en Lorraine. Les unités hydrogéologiques seront définies principalement sur base des descriptions lithologiques de la carte géologique.
D'autres aspects comme l'hydrochimie, l'exploitation des nappes et les paramètres d'écoulement seront également présentés.

La notice explicative finit par exposer la méthodologie suivie pour l'élaboration du projet ainsi qu'une présentation sommaire du poster de la carte hydrogéologique.

Une liste des abréviations citées dans la notice sont présentées en annexe.
II. CADRE GÉOGRAPHIQUE, GÉOMORPHOLOGIQUE ET HYDROGRAPHIQUE

A l'exception de la ville de Virton, les agglomérations sont des villages à caractère rural faisant partie de l’arrondissement de Virton. Les différentes localités se concentrent dans la partie méridionale caractérisée par des terrains agricoles, la partie nord étant forestière. Elles sont reliées par un réseau routier relativement peu dense : N82, N87, N88 …etc.

La nature lithologique du sous-sol jurassique, combinée à l’érosion des terrains a fortement influencé la topographie. Au début du Cénozoïque, les couches émergées ont été tronquées par une surface d’érosion ; la surface Néogène (Souchez, 1963). L’érosion postérieure de cette surface a sculpté un paysage topographique particulier en Lorraine belge. En effet, la légère inclinaison des couches vers le sud (3° en moyenne) et l’alternance de couches tendres (marnes) et dures (grès) ont permis le développement d’une morphologie de cuestas. Trois cuestas majeures, parallèles, de direction est-ouest se distinguent ainsi successivement du nord au sud (Figure II.1) :

1. la cuesta sinémurienne dont la couche résistante est un grès à ciment calcaire,
2. la cuesta domérienne dont la couche résistante est un gré tendre,
3. la cuesta bajocienne dont la couche résistante est un calcaire.

La région au nord de la vallée du Ton est située sur le revers sud de la cuesta sinémurienne dont la crête pointe à 340 - 360 m d’altitude. C’est un large versant, en grande partie boisé,
faiblement incliné vers le sud et fortement entaillé par de profondes vallées : le Gros Ruisseau, la Chevratte, la Soye …etc.

Au sud de la vallée du Ton se dresse une deuxième cuesta (cuesta domérienne), caractérisée par une pente abrupte orientée vers le nord. La vallée est creusée dans les sables de la Formation de Luxembourg. Le sommet de la cuesta est couvert par les calcaires gréseux de la Formation d’Aubange.

De point de vu hydrographique, l’ensemble de la superficie de la planche s’inscrit dans le bassin Meuse – Rhin. Plus en détail, hormis le coin nord-est, représenté par le bassin de la Semois, toute la surface de la planche est occupé par le bassin de la Chiers (Figure II.2). Ce dernier est subdivisé en une série de sous-bassins dont les principaux sont les bassins de la Soye, de la Chevratte, du Ton et de la Vire. Les unités hydrogéologiques qui seront évoquées dans ce paragraphe sont représentées plus en détail dans le cadre hydrogéologique de la notice.

Figure II.2 : Réseau hydrographique sur la planche de Meix-devant-Virton – Virton
Bassin hydrographique de la Semois : Le bassin n’est représenté sur la carte que par une percée en tête de vallée du bassin de la Semois. Il couvre moins d’un kilomètre carré sur la carte.

Bassin hydrographique de la Chiers : Le réseau hydrographique du bassin de la Chiers est alimenté sur la quasi entièreté de la superficie de la planche. Outre le ruissellement superficial, l’alimentation des différents courts d’eau est assurée en grande partie par les aquifères contenus dans la Formation de Luxembourg.

- **Le bassin versant de la Soye (belge) :** couvre une surface d’environ 23 km² dans la partie est de la planchette. Il représente une partie du bassin de la Chiers en amont de la partie belge du confluent avec la Marche situé en dehors de la carte (ruisseaux de Messancy et Ton exclus). Il est drainé principalement par le ruisseau de Blanche Fontaine et par le ruisseau de la Fontaine au Bouillon dont la confluence forme la Soy. Les deux ruisseaux ont profondément entaillé le revers de la cuesta sinémurienne découvrant le Membre de la Chevratte. Ils sont d’ailleurs alimentés par plusieurs niveaux de sources longeant les cours d’eau au contact des formations d’Arlon et de Luxembourg. Ils doivent leurs débits principalement au drainage des nappes logées dans les Membres de Florenville et de la Chevratte.

- **Le bassin versant de la Chevratte :** couvre plus de 50 km² de la planche. Le thalweg de la Chevratte entaille profondément le Membre de Florenville au nord, traverse les le Membre du Trite ensuite pour atteindre le Membre de la Chevratte. Vu le plongement des couches vers le sud, les Membres du Trite et de Florenville font leur réapparition dans le fond de la vallée pour laisser la place enfin au Membre d’Orval. Les aquifères qui y sont présents alimentent de façon diffuse la rivière en complément du débit des sources. Les émergences jalonnt à flanc de coteaux les contacts entre les marnes de la Formation d’Arlon et les sables et calcaires gréseux de la Formation de Luxembourg. Par ailleurs, les plateaux situés de part et d’autre de la partie méridionale du bassin sont constitués principalement de sables marneux du Membre de Hondelange (Formation d’Arlon). Ce mélange de sable et de marnes est limité à la base par la couche imperméable de Robelmont (RBM) qui est responsable d’une série de sources drainant l’aquitard d’Arlon – Hondelange pour alimenter la Chevratte.

- **Le bassin versant du Ton :** occupe environ 70 km² de superficie au droit de la carte. Le bassin du Ton renferme le bassin versant de Laclaireau au nord et le bassin de la rivière du Ton au sud. Le premier s’étire d’ouest en est de part et d’autre du village de Buzenol. Il est limité au nord par le bassin de la Semois, au sud-est par le bassin du Ton et à l’ouest par le bassin de la Chevratte. La rivière de Laclaireau,
d'orientation nord-sud, rassemble les eaux recueillies à l’ouest du bassin par le Gros Ruisseau et à l’est par la Rouge Eau. A leur confluence, le cours d’eau se nomme « ruisseau de la Neuve Forge ». Ces différents cours d’eau sont jalonnés de nombreuses sources dont certaines sont exploitées par la société d’embouteillage d’eau : Nestlé Waters Benelux. Les principales sources sont alimentées par les aquifères de Florenville et d’Orval.

Les sources du Ton se situent à l’est de Chatillon (hors de la carte). Sur cette planche, la rivière court dans les calcaires gréseux du Membre d’Orval et dans les marnes de Robelmont plus au sud. A l’exception des fluctuations relativement importantes pendant l’hiver, le débit de la rivière du Ton reste soutenu pendant toute l’année grâce aux apports importants des nappes (Figure II.3).

- **Le bassin versant de la Vire** : occupe environ 11 km² dans la partie sud-est de la planche. Il donne naissance à de petits ruisseaux dont ceux de Gomery et de Corbe qui coulent dans des vallées peu développées, évasées et peu profondes. Les cours d’eau se développent préférentiellement sur les argilites et argilites silteuses de la Formation d’Ethe dont le contact avec la Formation de Messancy donne naissance à une série de sources alimentant les cours d’eau.

![Figure II.3 : Evolution mensuelle des débits du Ton observés pendant l’année 2007 au niveau de la station limnimétrique L6440 – Virton - Ton de la DGRNE–Direction des cours d’eau non navigables. (Source : http://aqualim.environnement.wallonie.be/).](image-url)
III. CADRE GÉOLOGIQUE ET STRUCTURAL

Le cadre géologique sera illustré dans un premier temps à l’échelle régionale de la Lorraine belge avant de présenter, plus en détail, la géologie de la zone couverte par la planche Meix-devant-Virton – Virton.

III.1. CADRE GÉOLOGIQUE RÉGIONAL

Le socle paléozoïque sur lequel reposent les formations sédimentaires de la Lorraine belge s’est principalement sédimenté au Dévonien et plissé au Carbonifère lors de l’orogenèse varisque. Son émersion est suivie de l’érosion d’une bonne partie du socle dévonocarbonifère et d’une pénéplanation.

Les formations mésozoïques de la Lorraine belge, qui occupent approximativement une superficie de 800 km², représentent une petite extension du Bassin de Paris en Belgique appelée Golf de Luxembourg (Figure III.1). Elles sont déposées en discordance sur le versant sud du massif paléozoïque de l’Ardenne, sous forme de couches monoclinales de direction est-ouest légèrement inclinées vers le sud (pendage d’environ 3 °). La nature et la géométrie complexe des corps sédimentaires témoignent d’un environnement littoral caractérisé par des sédiments variables avec, toutefois, une prédominance silicoclastique. L’évolution séquentielle des dépôts est intégrée dans un prisme sédimentaire globalement rétrogradant (Boulvain et al. 2001).

Figure III.1 : Carte géologique simplifiée de la Lorraine belge (Boulvain et al., 2001)
Par ailleurs, l'évolution stratigraphique (Figure III.2) montre une superposition de séries sédimentaires de plus en plus marines, déposées par transgressions successives entre le Trias supérieur et le Jurassique inférieur (Ghysel et al., 2002). Une brève description de la série lithologique montre qu'il existe une alternance de couches sédimentaires à faciès marneux ou argileux avec des couches à faciès sableux gréseux ou calcaire.

Figure III.2 : Schéma lithostratigraphique général de la Lorraine Belge (Boulvain et al., 2001)
La géologie de ces séries est complexe, en particulier en raison de nombreux changements de faciès et de puissance. Ces changements sont liés aux variations de l’intensité de la subsidence, des distances aux rivages, de la distribution et de la nature du matériel détritique, etc. De plus, les transgressions et les régressions ne sont pas régulières et sont soumises à des pulsations plus ou moins importantes.

La lithostratigraphie de la Lorraine belge est subdivisée en plusieurs formations qui sont de la plus ancienne à la plus récente : Habay (HAB), Attert (ATT), Mortinsart (MOR), Jamoigne (JAM), Luxembourg (LUX), Arlon (ARL), Ethe (ETH), Messancy (MES), Aubange (AUB), Grandcourt (GRT), Mont-Saint-Martin (MSN) et Longwy (LGW).

Les Formations d’Arlon (ARL) et de Luxembourg (LUX) sont découpées en membres là où des interdigitations entre ces formations ont lieu. Les membres de la Formation d’Arlon sont : Trité (TRT), Strassen (STR), Posterie (POS) et Hondelange (HON) comprenant la couche de Robelmont (RBM). Les membres de la Formation de Luxembourg sont : Chevrate (CHT), Florenville (FLO), Orval (ORV) et Virton (VIT). Les membres de Trité et de la Chevrate ne figurent pas sur la Figure III.2, probablement parce qu’ils sont de faibles épaisseurs et relativement localisés.

III.2. GÉOLOGIE SUR LA PLANCHE DE MEIX-DENVANT-VIRTON – VIRTON

Les principales formations reportées dans le tableau stratigraphique de la carte géologique seront brièvement décrites en se basant sur sa notice explicative. La Formation de Mortinsart sera ajoutée parce qu’elle est rencontrée dans certains forages et dont la nappe correspondante fait l’objet d’exploitation dans certains puits. Pour plus de détails, le lecteur est renvoyé à cette notice explicative et à ses références bibliographiques. La notice ainsi que la carte géologique de Meix-devant-Virton – Virton sont publiées sur le site : http://environnement.wallonie.be/cartosig/cartegeologique/

III.2.1. Mésozoïque

III.2.1.1. Formation de Mortinsart (MOR)

La Formation de Mortinsart est située dans le Rhétien (Trias supérieur). Sa puissance, estimée à 15 m, demeure assez constante en forage (Debbaut, 1997) mais elle n’affleure pas sur la planche.
D’après les observations en sondage, cette formation est constituée de deux corps massifs, formés de sable ou de grès tendre avec intercalations d’argiles noires, séparés par une bande d’argilite schistoïde d’un mètre environ.

Le niveau des argiles de Levallois, généralement rencontré au sommet de la formation peut être remplacé par un lit de conglomérat ou de gravier reposant sur une base ravinante et limonitique à débris végétaux.

III.2.1.2. Formation de Jamoigne (JAM)

La Formation de Jamoigne est située essentiellement dans l’Hettangien, mais le sommet atteint le Sinémurien inférieur. Son épaisseur est estimée à titre indicatif à 70 m dans les forages du Cron², de Neulimont³ et de la Volette⁴, qui atteignent la base de la formation sur la carte de Meix-devant-Virton – Virton.

2 X = 238.342 et Y = 33.738
3 X = 232.849 et y = 34.662
4 X = 239.220 et Y = 35.704
L’affleurement de la Formation de Jamoigne est très restreint sur la carte. Il est noté principalement dans le fond de la vallée du Gros ruisseau au sud de Buzenol. La formation est limitée à la base par la Formation de Mortinsart et au sommet par la Formation de Luxembourg.
La Formation de Jamoigne est constituée essentiellement de marnes, de couleur grise, plus ou moins sableuses et des bancs calcaires argileux légèrement gréseux. Sur la planche, son sommet plus sableux est souvent interprété comme étant le Membre de Warcq. L’extension orientale de ce membre n’est pas connue.

III.2.1.3. Formation de Luxembourg (LUX)

Sur la carte de Meix-devant-Virton – Virton, la Formation de Luxembourg est située dans le Sinémurien. Le diachronisme de cette formation (sa base est hettangienne à l’est d’Arlon) n’est pas perceptible à l’échelle de la carte.

L’épaisseur de la Formation de Luxembourg augmente généralement vers le sud et vers l’est de 70 à 100 m avec un maximum dans la région de Croix Rouge. Elle est limitée à la base par la Formation de Jamoigne et au sommet par les argilites et argilites silteuses de la Formation d’Ethe. La Formation de Luxembourg est subdivisée en membres par une série d’extensions de la Formation d’Arlon. Sur la planche, on distingue de bas en haut les Membres de la Chevratte (CHT), de Florenville (FLO), d’Orval (ORV) et de Virton (VIT). Ces membres sont séparés successivement par les Membres de Trite, de Strassen et de La Posterie appartenant à la Formation d’Arlon (Figure III.3).

D’un point de vue lithologique, les membres de la Formation de Luxembourg sont difficiles à différencier. Ils sont caractérisés par des alternances de sables jaunes à roux, de bancs de grès tendres, de calcaires gréseux et de bancs de calcaires gréseux à lumachelles. Ils sont en pratique distingués par la présence d’intercalation des marnes de la Formation d’Arlon. Cependant, le Membre de Virton se présente généralement sous forme de sable orangé à blanchâtre plus ou moins cohérent.

III.2.1.4. Formation d’Arlon (ARL)

La Formation d’Arlon, contemporaine à la Formation de Luxembourg, est d’âge sinémurien. D’un point de vue stratigraphique, la Formation d’Arlon ne forme pas sur cette carte un seul corps continu. Elle est représentée par des membres intercalés dans la Formation de Luxembourg. Sur la carte de Meix-devant-Virton – Virton, on peut distinguer de bas en haut les Membres de Trite (TRT), de Strassen (STR), de La Posterie (POS) et de Hondelange (HON).

De manière générale, la Formation d’Arlon est principalement marnée avec des proportions variables de sables souvent décalcifiés à la surface et de calcaires gréseux argileux.

L’épaisseur du Membre du Trite est d’environ un mètre. Il affleure dans les fonds de vallée de La Soye au nord-ouest de la carte.
Le Membre de Strassen, bien que peu épais, est présent dans la partie nord de la carte sous forme d’une bande d’épaisseur variable. Cette couche semble cependant être absente dans le nord-est de la planche, où il n’y a plus de distinction entre les Membres d’Orval et de Florenville.

Par contre, le Membre de La Posterie qui sépare les Membres d’Orval et de Virton n’a pas une extension latérale continue sur toute l’étendue de la carte.

Le Membre de Hondelange repose en discordance sur la Formation de Luxembourg (Dormal, 1894). Par sa nature sableuse et gréseuse, ce membre a été souvent confondu avec le Membre de Virton (Maubeuge, 1963). En effet, l’altération jaune et ocre des bancs de calcaires argileux leur donne l’aspect des bancs de calcaires gréseux de la Formation de Luxembourg. A l’ouest de la vallée du Chou, une couche argileuse se développe à la base du Membre de Hondelange ; c’est la couche de Robelmont (RBM). Cette couche donne lieu à des sources observées notamment à Robelmont. La puissance du Membre de Hondelange augmente généralement vers le sud et varie latéralement de 5 m à l’est jusqu’à 40 m à l’ouest de la carte.

III.2.1.5. Formation d’Ethe (ETH)

La puissance de la Formation d’Ethe, formation d’âge domérien, varie entre 20 et 25 m dans la région de Virton et peut atteindre 50 m à l’est de Luxembourg belge (hors de la carte) (Boulvain et al., 2000). Elle est présente dans la partie sud de la carte de Meix-devant-Virton – Virton, à l’affleurement ou couverte par la Formation d’Aubange.

La Formation d’Ethe renferme des argilites et des argilites silteuses très finement micacées et de la marne. Les sédiments ont généralement un caractère fin et laminaire suggérant un approfondissement du bassin sédimentaire.

III.2.1.6. Formation d’Aubange (AUB)

La Formation d’Aubange est située dans le Domérien. Son épaisseur est variable et peut atteindre 50 m vers l’est (hors de la carte).

La base de la Formation d’Aubange est déterminée par l’apparition des grès calcaires. La formation est caractérisée par un faciès particulier appelé autrefois « macignos ». Il s’agit de grès tendres et de calcaires gréseux, ferrugineux ou non, qui forment la crête de la cuesta domérienne.

La grande quantité de fer que contiennent les calcaires et les calcaires gréseux confère à la Formation d’Aubange une couleur brun rouge caractéristique.
III.2.2. Cénozoïque

III.2.2.1. Alluvions anciennes (ALA)

Les dépôts des alluvions anciennes précèdent l’érosion quaternaire des vallées et se situeraient entre le Miocène et le Pliocène. Ils reposent en discordance sur les formations mésozoïques en recouvrant aussi bien la Formation de Luxembourg que la Formation d’Arlon. Les affleurements sont assez disparates avec une épaisseur moyenne d’environ 1.5 m.

Les alluvions anciennes sont formées de dépôts de sable limoneux jaune ocre à cailloux de croûte ferrugineuse assez émoussés et de dimension inférieure au centimètre.

III.2.2.2. Alluvions modernes (AMO)

Les alluvions modernes sont des dépôts récents qui couvrent les fonds de vallées des cours d’eau permanents ou intermittents. Les plus importants sont notés dans les vallées de la Chevratte et du Ton avec une épaisseur pouvant atteindre plusieurs mètres.

Les alluvions modernes peuvent être tourbeuses, argileuses, silt-o-sableuses et même graveleuses. Elles contiennent parfois des accumulations de travertin.

III.3. CADRE STRUCTURAL

Les formations mésozoïques sont constituées d’une alternance de couches monoclinales tendres et indurées de faible pendage sud (1° à 5°) (cf. carte des isohypses). Les roches indurées sont affectées de diaclasses verticales d’orientation NO-SE et NE-SO principalement. La tectonique est relativement calme par rapport aux régions situées à l’est de la carte.

A l’échelle de la Lorraine belge, le changement de direction des couches sinémuriennes est le point le plus marquant sur cette carte. D’abord SO-NE dans les régions est (Belanger et al., 2002), la direction devient E-O à NO-SE dans la région de Meix-devant-Virton. La carte des isohypses du toit de l’aquifère de Florenville confirme cette direction E-O à ONO-ESE des couches.
IV. CADRE HYDROGÉOLOGIQUE

La Gaume est caractérisée par un régime abondant et régulier des précipitations (pluie, neige, etc.) qui alimentent les réservoirs souterrains. Par ailleurs, d’après l’étude géologique régionale des terrains mésozoïques formés d’une succession de couches perméables et imperméables, plusieurs aquifères superposés peuvent exister dans la Lorraine belge. La communication éventuelle entre aquifères, la sollicitation de plusieurs aquifères par certains puits et la difficulté de déterminer les différentes nappes rendent l’étude des eaux souterraines dans la région parfois difficile.

IV.1. HYDROGÉOLOGIE RÉGIONALE

Vu l’alternance stratigraphique de couches géologiques perméables et imperméables, caractéristiques des dépôts mésozoïques de la Lorraine belge, on distingue plusieurs aquifères superposés. Ces réservoirs aquifères, de qualité et d’extension variables, constituent actuellement la seule source d’approvisionnement pour la distribution publique d’eau potable des différentes agglomérations de la région. Ils sont aussi sollicités à des fins privées comme c’est le cas avec la production d’eau minérale des entreprises Nestlé Waters Benelux.

Les aquifères les plus importants sont abrités dans :

- les grès sableux de la Formation de Mortinsart (Rhétien),
- les sables et les calcaires gréseux de la Formation de Luxembourg,
- les calcaires gréso-silteux des Formations d’Aubange et de Messancy,
- les calcaires des Formations de Longwy et de Mont-Saint-Martin.

Il existe, par ailleurs, d’autres niveaux aquifères non négligeables dans les conglomérats et dolomies de la Formation d’Habay, dans les bancs calcaires au sein des marnes de la Formation de Jamoigne, et dans les alluvions et terrains quaternaires. A l’exception des aquifères sinémuriens de la Formation de Luxembourg, toutes les autres unités aquifères ont été peu étudiées jusqu’à ce jour.

IV.1.1. Aquifclude à niveaux aquifères d’Habay

La Formation d’Habay est caractérisée par un changement latéral du faciès allant des argiles peu perméables aux conglomérats dolomitiques qui peuvent abriter localement des réservoirs aquifères intéressants. L’étendue de la Formation d’Habay ne reflète pas celle du réservoir aquifère qu’elle loge. Celui-ci est limité par la formation schisteuse du massif paléozoïque à la base et par des marnes de la Formation d’Attert au sommet. Cette dernière
peut également renfermer exceptionnellement des corps aquifères de moindre importance dans les conglomérats et grès qui peuvent y être présents.

IV.1.2. Aquifère de Mortinsart

Contrairement aux formations précitées, les grès sableux de la Formation de Mortinsart renferment un réservoir aquifère continu relativement homogène. L’aquifère s’amincit vers l’ouest pour disparaître sous forme d’un biseau au méridien des Bulles. L’aquifère de Mortinsart devient rapidement captif sous l’aquicluse à niveaux aquifères de Jamoigne ; niveau marneux imperméable qui sépare la nappe de Mortinsart des aquifères contenus dans les calcaires gréseux de la Formation de Luxembourg.

L’aquifère de Mortinsart s’alimente essentiellement au niveau de sa zone d’affleurement située au nord et dans le nord-est de la Lorraine belge. Des échanges avec d’autres aquifères par le biais de failles pourraient également compléter les apports. L’aquifère captif du Rhétien suscite ces derniers temps beaucoup d’intérêts, tant au niveau public que privé (captage de la source "Volette" par la société Nestlé Waters Benelux) et mérite une étude plus approfondie.

IV.1.3. Aquifères de la Formation de Luxembourg : la Chevratte, Florenville, Orval et Virton

Deux nappes principales sont d’importance régionale, les autres ont une importance locale. Les plus importantes sont la nappe inférieure contenue dans le Membre de Florenville et la nappe supérieure contenue dans le Membre d’Orval.

L’aquifère de Florenville affleure sur une large bande repérée par une cuesta dite cuesta sinémurienne. Une partie de l’eau infiltrée au niveau de celle-ci est drainée vers le nord et alimente le bassin de la Semois. Le reste est drainé vers le sud et alimente le bassin de la Chiers. La ligne de partage des eaux se calque assez bien sur la crête, le long de la cuesta.

L’aquifère d’Orval est limité à la base par les marnes du Membre de Strassen. Vu la discontinuité de ce membre, il est difficile de délimiter avec précision les contours de l’aquifère, notamment vers la partie nord-est et dans le sud de la Lorraine belge. Les niveaux aquifères contenus dans la Formation de Luxembourg deviennent rapidement captifs vers le sud sous les argilites et argilites silteuses d’Ethe, et souvent également sous les marnes d’Arlon.

La Formation de Luxembourg présente une perméabilité de type mixte ; d’interstices et de fissures. Une forte dissolution des terrains sinémuriens peut provoquer localement des circulations de type pseudo-karstiques.

IV.1.4. Aquifère d’Aubange – Messancy

Les calcaires gréso-silteux d’Aubange et Messancy constituent, en Lorraine belge, un autre ensemble aquifère important séparé de celui du Luxembourg par l’importante Formation aquicluse d’Ethe. Les calcaires gréso-silteux, qui sont densément fracturés à l’affleurement, possèdent une bonne perméabilité de fissure. Le revers de la cuesta domérienne est entaillé par un réseau de ruisseaux qui sont jalonnés de sources drainant l’aquifère d’Aubange et Messancy au contact avec les argilites et argilites silteuses d’Ethe.

IV.1.5. Aquifère de Longwy – Mont-Saint-Martin

Le long de la frontière franco-belge se dresse une remarquable cuesta (cuesta bajocienne). Celle-ci est formée par les calcaires de Longwy et Mont-Saint-Martin, séparés des calcaires gréso-silteux par les argilites laminaires de la Formation de Grandcourt. Le contact de la nappe des calcaires avec les argilites et calcaires argileux sous-jacents a donné naissance à une série de sources sur le front abrupt de la cuesta.

IV.1.5.1. Remarques générales

La présence de grandes failles de direction NE-SO favorise des axes d’écoulement préférentiels dans les principaux aquifères, sans pour autant générer une morphologie karstique vu les faibles épaisseurs et l’impureté des calcaires lorrains (SWDE, inédit).
Le rendement des nappes aquifères dans le bassin Jurassique de la Gaume est parfois surestimé en regard de la superficie du bassin versant sensu stricto. Cette suralimentation peut s’expliquer par la géomorphologie en cuesta qui ménage des bassins hydrogéologiques plus étendus que les bassins hydrographiques proprement dits (SWDE, inédit).

Les estimations par jaugeages réguliers des différentes sources portent les potentialités hydriques de la Lorraine belge à environ 200 000 m³ par jour. Une étude hydrogéologique approfondie reste, toutefois, cruciale si l’on veut envisager une exploitation intensive des eaux souterraines par puits afin d’éviter le tarissement des sources sur lesquelles est basé l’essentiel du réseau publique en lorraine belge.

IV.2. HYDROGÉOLOGIE LOCALE

La correspondance entre les formations géologiques et les unités hydrogéologiques est reportée dans le Tableau IV.1. Les aquifères les plus importants sont contenus en plusieurs niveaux dans la Formation de Luxembourg.

IV.3. DESCRIPTION DES AQUIFÈRES

IV.3.1.1. L’aquifère de Mortinsart

Bien que la Formation de Mortinsart ne soit pas en affleurement sur la carte, elle mérite d’être présentée vu ses ressources en eau intéressantes exploitées ou potentiellement exploitables sur la planche. Il y existe au moins trois forages artésiens sollicitant la nappe de Mortinsart. Celle-ci est contenue dans des sables et des grès tendres.

Le captage de la Volette « FORAGE RHETIEN – VOLETTE »5, situé dans la vallée du Gros ruisseau, est exploité par les entreprises de production d’eau minérale de Nestlé Waters Benelux. Le toit de l’aquifère au droit de ce captage est situé à la cote topographique 209 m, la nappe y est captive (cf. cotes piézométriques sur la carte principale). Un piézomètre «PZ RHETIEN – VOLETTE »6 a été installé récemment à environ 150 m à l’est du captage. Le niveau de la nappe au droit de ce piézomètre est situé à 282 m. La nappe dans les grès sableux de Mortinsart est relativement homogène avec un faible pendage sud d’environ 2 degrés.

Le forage du Cron7 est situé plus au sud dans la vallée du ruisseau du Cron, au sud-ouest de la Ferme de Bar. La nappe superficielle n’est pas abondante et à 105 m de profondeur

5 X = 239220 et Y = 35704
6 X = 239402 et Y = 35668
7 X = 238342 et Y = 33738
lors du forage un débit jaillissant total de 3000 litres par heure a été noté. Les eaux sont gazeuses au début et le niveau s’est équilibré à 7 m au dessus du sol (SGB, 1937).
<table>
<thead>
<tr>
<th>Ére</th>
<th>Système</th>
<th>Étage</th>
<th>Formation</th>
<th>Membre</th>
<th>Lithostratigraphie</th>
<th>Abréviation</th>
<th>Unité hydrogéologique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cénozoïque</td>
<td>Quaternaire</td>
<td></td>
<td>Aubange</td>
<td></td>
<td>Alluvions modernes et anciennes</td>
<td>AMO</td>
<td>Aquifère alluvial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pléisto</td>
<td>Ethe</td>
<td></td>
<td>Grès tendre, grès calcaire ferrugineux ou non, siltite et argilite</td>
<td>AUB</td>
<td>Aquifère d'Aubange-Messancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cénien</td>
<td>ARL</td>
<td>Hondelange</td>
<td>Argilites et argilites siltées très finement micacées et marne</td>
<td>ETH</td>
<td>Aquifuid de Ethe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Schistes cartons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Principalement marneuse avec des proportions variables de sables</td>
<td>HON</td>
<td>Aquitard d'Arlon - Hondelange</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>souvent décalcifiés à la surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Marnex</td>
<td>RBM</td>
<td>Aquifuid d'Arlon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cénien</td>
<td>Luxembour</td>
<td>Virton</td>
<td>Sables jaunes à roux, de bancs de grès tendres, de calcaires gréseux</td>
<td>VIT</td>
<td>Aquifère de Virton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arlon</td>
<td>Marnex légèrement sableuses gris bleu.</td>
<td>POS</td>
<td>Aquifuid d'Arlon</td>
</tr>
<tr>
<td></td>
<td>Jurassique</td>
<td>Liás</td>
<td>Luxembourg</td>
<td>Orval</td>
<td>Sables jaunes à roux, de bancs de grès tendres, de calcaires gréseux</td>
<td>ORV</td>
<td>Aquifère d'Orval</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arlon</td>
<td>Marnex légèrement sableuses gris bleu.</td>
<td>STR</td>
<td>Aquifuid d'Arlon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Luxembourg</td>
<td>Alternances de bancs pluridécimétriques de calcaires gréseux et de</td>
<td>FLO</td>
<td>Aquifère de Florenville</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lits de sables calcaires, jaunes à orangé, à stratifications croisées</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>parfois interrompues par des horizons de calcaires bioclastiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Principalement marneuse avec des proportions variables de sables</td>
<td>TRT</td>
<td>Aquifuid d'Arlon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>souvent décalcifiés</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alternances de sables jaunes à roux et de calcaires gréseux</td>
<td>CHT</td>
<td>Aquifère de la Chevratte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Marnes plus ou moins sableuses et de bancs de calcaires argileux</td>
<td>JAM</td>
<td>Aquifuid à niveaux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>biodiastiques légèrement gréseux</td>
<td></td>
<td>aquiferes de Jamaigne</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sable ou grès tendre avec intercalations d'argiles noires</td>
<td>MOR</td>
<td>Aquifère de Mortinsart</td>
</tr>
</tbody>
</table>

Tableau IV.1 : Correspondance géologie-hydrogéologie sur la carte de Meix-devant-Virton – Virton
IV.3.1.2. L’aquifère de La Chevratte

Les calcaires gréseux du Membre de la Chevratte, constituent un aquifère intéressant mais dont l'extension est bien limitée. L’aquifère affleure dans le fond des vallées des ruisseaux de la Chevratte, de la Fontaine aux Bouillons et de la Blanche Fontaine au nord-est de la carte. Ce membre disparaît latéralement vers l’est sur la planchette de Virton (71/2) où le Membre de Florenville repose directement sur les marnes de la Formation de Jamoigne.

Cantonné entre le sommet des marnes de la Formation de Jamoigne et les marnes du Membre du Trite, sur une épaisseur d’une dizaine de mètres, l’aquifère de la Chevratte est captif. Il n’existe pas, à l’heure actuelle, d’informations hydrogéologiques suffisantes concernant cet aquifère.

IV.3.1.3. L’aquifère de Florenville

L’aquifère de Florenville, qui est une nappe à la fois de fissures et d’interstices, est contenu dans une alternance de bancs de sables et de grès calcaires de la Formation de Luxembourg (Membre de Florenville). Il a, par conséquent, une capacité d’emmagasinement généralement importante et une bonne perméabilité (10⁻⁴ à 10⁻³ m/s).

La limite nord-est des marnes du Membre de Strassen n’est pas connue avec précision. Par conséquent, la limite d’affleurement de l’aquifère est extrapolée en tenant compte des affleurements les plus au nord des marnes de Strassen.

Le Membre de Florenville affleure au nord, dans les bassins de Laclaireau et du Gros Ruisseau. La vallée de ce dernier entaille toute la formation jusqu’aux marnes de Jamoigne sous-jacentes. Au contact avec ces marnes, on peut repérer de nombreuses émergences.

Au nord du Haut du Wâ, la Chevratte et le ruisseau de La Hage recoupent également l’aquifère jusqu’aux marnes du Membre du Trite. Comme les vallées sont fort encaissées, la zone d’affleurement de l’aquifère de Florenville est relativement étroite. On ne trouve cependant pas de sources bien nettes alimentées par la nappe de Florenville. Celle-ci contribue toutefois au débit des cours d’eau par des venues diffuses dans le lit de la rivière.

Entre la Chevratte et Laclaireau, les calcaires gréseux du Membre de Florenville sont présents en profondeur sous les marnes du Membre de Strassen. Ils y ont été repérés dans les forages de Croix Rouge, Mère-Dieu (Debbaut et Vander Borght, 1988) et Neulimont (Boulvain et al., 1995) (Figure IV.1). Dans cette zone, la nappe qu’ils contiennent est captive. Comme le ruisseau de Laclaireau entaille profondément la formation, il provoque un rabattement local important. Ainsi, au puits « Plateau de Bâr » (Figure IV.1), situé plus près de ce cours d’eau, la nappe est libre.
La présence de nombreuses sources au contact entre les calcaires gréseux du Membre d’Orval et des marnes du Membre de Strassen témoigne de l’indépendance relative des aquifères contenus dans le Membre de Florenville et dans le Membre d’Orval. Des communications locales entre les deux aquifères ne sont cependant pas exclues. Faut-il souligner que la couche marneuse de Strassen n’est pas continue (Belanger, 2006). Elle est affectée par de petites failles, effondrements de type karstique ou éventuellement par des lacunes de sédimentation (Debbaut et Vander Borght, 1988 ; Masson et al., 1993). Ceci implique que le Membre d’Orval participe indirectement à l’alimentation de la nappe de Florenville.

IV.3.1.4. Les aquifères d’Orval, de Virton et de Hondelange

L’aquifère d’Orval, formé de sables et de calcaires gréseux, est limité à la base par les marnes du Membre de Strassen qui le séparent de l’aquifère de Florenville. Plusieurs vallées recoupent l’aquifère sur toute sa hauteur et s’encaissent sous le Membre de Strassen (Gros Ruisseau, Laclaireau, ruisseau du Cron, ruisseau de Lahage, Chevratre). On peut y observer un chapelet de sources qui jaillissent au contact entre les marnes et l’aquifère d’Orval. Ces
émergences donnent fréquemment naissance à des accumulations de travertin (tuf calcaire) appelées « cron » dans la région.

Le ruisseau de Lanframba est orienté parallèlement à la direction des couches. Au fond de sa vallée affleurent les marnes du Membre de Strassen. Ce cours d’eau est jalonné de nombreuses sources au débit important drainant la nappe d’Orval.

Au nord-est de Virton, les ruisseaux du Chou et de Rabais sont alimentés par des émergences de la nappe d’Orval. Ces sources ne sont pas, comme les précédentes, situées au contact des marnes de Strassen ; la surface piézométrique se trouve une quinzaine de mètres au-dessus de ces marnes et affleure en fond de vallée.

Dans la région de Gérouville, l’aquifère d’Orval est limité au sommet par les marnes du Membre de La Posterie qui supportent une nappe perchée contenue dans les grès sableux du Membre de Virton. Le Membre de La Posterie, qui est peu épais, n’est pas continu et une communication possible entre la nappe supérieure de Virton et la nappe inférieure d’Orval n’est pas exclue.

Par ailleurs, à l’ouest de la vallée de Rabais, l’aquifère d’Orval est limité au sommet par les marnes de la couche de Robelmont qui le sépare de l’aquitard d’Arlon-Hondelange. Une série de sources jaillissent au contact avec ces marnes, alimentant notamment le réseau hydrographique de la Chevratte. Par contre, la disparition des marnes de Robelmont à l’est de cette vallée permet de grouper le Membre d’Orval et le Membre de Hondelange en un seul et unique aquifère.

IV.3.1.5. L’aquifère d’Aubange – Messancy

Rappelons que la Formation de Messancy (non affleurant sur la carte), est composée principalement de siltites nettement plus grossières que les argilites et argilitès silteuses de la Formation d’Ethe sous-jacente. Par contre, la Formation d’Aubange sus-jacente est constituée de grès tendres et de grès calcaires. L’absence de niveau de sources au contact des deux formations suggère une continuité hydraulique entre les deux niveaux. Pour assurer une continuité avec les carte voisines, la Formation de Messancy et groupée avec la Formation d’Aubange pour constituer l’aquifère d’Aubange – Messancy.

La Formation d’Aubange affleure au sud de la carte de Meix-devant-Virton – Virton sous forme de lambeaux discontinus plus ou moins importants reposant sur les argilites et argilitès silteuses de la Formation d’Ethe. Elle a une épaisseur d’environ 25 m dans la région de Virton et peut contenir des réserves d’eau intéressantes.

Très peu de sources sont notées au contact entre la Formation d’Aubange et les argilites et argilitès silteuses d’Ethe.
IV.3.2. Ressources en eau souterraine de la Formation de Luxembourg

Les données de débits enregistrées à chaque station sont présentées dans les rapports relatifs à ces études. Elles ont servi à calculer des volumes de réserves mobilisables et à établir des bilans hydrologiques pour les bassins versants concernés. Les résultats de ces calculs sont résumés ci-après.

IV.3.2.1. Bassin de Laclaireau

Le ruisseau de Laclaireau résulte de la confluence de la Rouge Eau et du Gros Ruisseau, deux cours d'eau dont les vallées orientées est-ouest recoupent la Formation de Luxembourg jusqu'à sa base, au contact de la Formation de Jamoigne.

Le bassin versant de Laclaireau se caractérise par des réserves aquifères importantes (supérieures à 500 mm à l'étiage) qui se vidangent lentement (le coefficient de tarissement \(\alpha \) est compris entre 0,0020 j\(^{-1}\) et 0,0030 j\(^{-1}\)), un rapport débit de crue / débit en étiage compris entre 2 et 3,5 qui témoigne d'un ruissellement peu important et du soutien du débit d'étiage par les aquifères, et une erreur de fermeture négative indiquant un apport d'eau en provenance des bassins versants adjacents.

Le bilan sur l'ensemble du bassin indique qu'un volume équivalent à près de 7,5 millions de m\(^3\) par an est exporté du bassin de la Semois vers le bassin de Laclaireau à la faveur du pendage des couches géologiques vers le sud. Comme la zone d'affleurement de la nappe localisée au sein du Membre d’Orval est limitée au bassin versant étudié, ce volume ne peut être apporté que par l’aquifère de Florenville et dont la zone d'alimentation déborde dans le bassin de la Semois.

IV.3.2.2. Bassin du ruisseau de Lanframba

Le bassin du ruisseau de Lanframba possède un réseau de cours d'eau dont le comportement est assez variable d'un secteur à l'autre.

La partie amont est orientée grossièrement nord-sud, alors qu'à l'aval le cours d'eau s'écoule d'est en ouest, recueillant au contact des marnes de Strassen l'écoulement vers le sud dans l'aquifère d'Orval. L'amont a un coefficient de tarissement deux fois plus élevé (0.004 j\(^{-1}\)) et
des réserves mobilisables plus faibles que le tronçon aval (120 mm et 280 mm respectivement).

Globalement, l'erreur de fermeture du bilan du bassin versant montre des apports en provenance d'autres bassins (celui du ruisseau de Lahage et une partie de celui de la Semois). Les résultats détaillés mettent en évidence une suralimentation abondante au niveau du bassin aval.

IV.3.2.3. Bassin de la Chevratte

Ce bassin, d'orientation générale nord-sud, avec des cours d'eau qui recoupent l'ensemble de la Formation de Luxembourg, est caractérisé par des coefficients de tarissement bas (0.004 j⁻¹) et des réserves mobilisables importantes (280 mm à l'été). Les bilans indiquent un transfert depuis des bassins contigus, principalement le bassin de la Semois au nord.

IV.3.2.4. Bassin du Ton

Les sous bassins du Ton, développés en partie ou en totalité dans les faciès sablo-gréseux du sinémurien sont caractérisés par :

- des coefficients de tarissement bas, impliquant une vidange lente des aquifères ;
- des volumes des réserves mobilisables élevés : mis à part de petits sous-bassins comme celui de la source de la Rouge Eau, les réserves sont généralement de 100 à 200 mm pour les parties amont alimentées par la nappe d'Orval. Ces réserves augmentent jusqu'à 650 mm quand le Membre de Floreville est recoupé ;
- des bilans excédentaires pour tous les cours d'eau importants : les excédents proviennent des déficits observés dans le bassin de la Semois.

IV.3.3. La piézométrie

Seules les isopièzes des nappes d'Orval et de Floreville ont pu être tracées sur la carte de Meix-devant-Virton – Virton. Outre la disponibilité relative des données, ce choix est fondé sur le fait que ces nappes constituent le plus grand potentiel hydrogéologique de la Gaume et représentent l'essentiel du réservoir aquifère sinémurien. Des cotes piézométriques ponctuelles des aquifères de Virton et de Mortinsart sont également indiquées, avec la date de la mesure.

Il faut néanmoins souligner que, faute de piézomètres suffisants, des mesures supplémentaires ont été effectuées sur des puits exploités ou non. Dans ce cas, le niveau piézométrique mesuré est une résultante de plusieurs nappes superposées. Le niveau est attribué à la nappe principale qui est généralement la nappe de Floreville ou parfois la nappe d'Orval. Deux campagnes de mesures ont eu lieu dans le cadre de la réalisation de la

Par ailleurs, les calcaires gréseux de la Formation de Luxembourg sont entaillés par plusieurs cours d’eau qui rabattent la surface piézométrique. Ainsi, les cartes piézométriques ont été tracées en tenant compte des niveaux des sources drainant la nappe correspondante, des niveaux de certains cours d’eaux et des niveaux de la nappe dans les puits et piézomètres en période des basses eaux.

Les deux cartes piézométriques ont été reportées sur fond topographique au 1/25.000. Dans les deux cas, l’écoulement s’effectue dans le sens du pendage des couches, c.à.d. vers le sud alimentant le réseau hydrographique de la Chiers. Il faut toutefois souligner de profondes déformations des isopièzes au voisinage des principaux cours d’eau tels que le Gros Ruisseau et la Chevratte.

Si la nappe d’Orval est libre sur toute l’étendue de la carte, la nappe de Florenville devient assez rapidement captive vers le sud. Néanmoins, elle devient libre à proximité de certains cours d’eau à cause du drainage comme c’est le cas près du ruisseau de Laclaireau.

Par ailleurs, il est fort probable que les deux nappes se rejoignent au sud suite à la disparition du Membre de Strassen (cf. 3. cadre géologique). Les niveaux piézométriques des deux nappes se rapprochent vers l’extrême sud de la planche témoignant vraisemblablement d’une continuité hydraulique.

Les fluctuations annuelles et saisonnières des niveaux piézométriques de la nappe sont illustrées par la Figure IV.2 qui montre les variations des niveaux d’eau dans les piézomètres dénommés de « la Mère-Dieu »8, de « Croix-Rouge »9 et de « Plateau du Bar »10:

\begin{itemize}
\item 8 X = 235044 ; Y = 33054
\item 9 X = 234520 ; Y = 35370
\item 10 X = 237190 ; Y = 35040
\end{itemize}
Figure IV.2 : Evolution piézométrique de la nappe de Florenville
Le niveau piézométrique moyen annuel est relativement constant dans les piézomètres de Croix-rouge et du Plateau de Bar ; les variations n’excèdent pas 0.5 m. Par contre, au droit du piézomètre de la Mère-Dieu, la variation peut atteindre 1.5 m. Le maximum est noté en 1988 et le minimum en 1998. Les variations saisonnières sont d’amplitude faible mais de manière générale, la période des basses eaux est observée au mois de novembre et celle des hautes eaux au mois de juin.

IV.3.4. La karstification des calcaires gréseux de Luxembourg

La cranière ou croaonière est le terme local pour désigner un dépôt ou un massif de travertin. La roche, appelée cron, est un tuf calcaire. La cranière apparaît généralement au fond de la plupart des vallées encaissées du revers de la cuesta sinémurienne. On la trouve ainsi dans les vallées des ruisseaux du Cron, de la Chevratte, de Lahage et du Gros Ruisseau.

Les crons sont formés à l’aval de sources dont l’eau est sursaturée par rapport à la calcite : dans l’aquifère, les eaux sont en équilibre avec une pression partielle de CO₂ supérieure à celle présente dans l’atmosphère, ce qui les rend plus agressives vis-à-vis du calcaire. À l’émergence, l’eau se met à l’équilibre avec la pression partielle de CO₂ de l’atmosphère en dégageant du CO₂, ce qui provoque la précipitation de CaCO₃. Le phénomène d’accumulation est particulièrement important à mi-pente dans les vallons les plus abrupts où la forte turbulence de l’écoulement permet une mise à l’équilibre plus rapide.

Par ailleurs, une zone de perte a été identifiée au fond de la vallée du ruisseau de la Blanche Fontaine. La perte se fait sur une centaine de mètres et le point de résurgence est situé à la Grosse Fontaine.
V. HYDROCHIMIE

Aucune campagne de prélèvement chimique n’a été organisée dans le cadre de la réalisation des cartes hydrgéologiques. Ce point reprend et traite des données existantes, les plus récentes, qui nous ont été fournies par la Région wallonne et par NAPA concernant les ouvrages de Nestlé Waters Benelux ainsi que ceux qui sont disponibles à la Fondation Universitaire Luxembourgoise (actuellement Département des Sciences et Gestion de l’Environnement de l’Université de Liège). Les points où une analyse chimique a été réalisée et encodée dans la base de données hydrogéologiques (*BDHYDRO*), ont été reportés sur la carte thématique au 1/50.000 « *Carte des informations complémentaires et des caractères des nappes* ». L’accès à ces données peut se faire au cas par cas en adressant une demande à la Région\(^{11}\). On dénombre sur la carte 58 points pour lesquels des données qualitatives existent.

V.1. CARACTÉRISTIQUES PHYSICOCHIMIQUES

Les paramètres physico-chimiques représentés sur la Figure V.1 ont été mesurés in-situ. Les valeurs indiquées ne sont pas des moyennes mais simplement des valeurs prises au hasard pour chaque ouvrage. Il faut souligner néanmoins que le pH oscille entre 7 et 8 pour toutes les nappes, l’oxygène dissous varie peu et la conductivité est moyenne en général.

- **pH** : Dans toutes les nappes de la Formation de Luxembourg (les aquifères de la Chevratte, de Virton, d’Orval et de Florenville) le pH est neutre. Exception faite dans la partie nord-est de la carte où il est généralement situé à 8 quel qu’il soit le type d’ouvrage (source, piézomètre, puits, etc.). Pour les deux ouvrages sollicitant l’aquifère de Mortinsart entre Buzenol et Ethe, on note des pH de 8. Attention, ces deux valeurs ne permettent pas une généralisation sur l’ensemble de l’aquifère.

- **Oxygène dissous (en mgO₂/l)** : Les seules valeurs disponibles se rapportent aux nappes de la Formation de Luxembourg. L’oxygène dissous est relativement constant à 10 mg/l. Il faut toutefois remarquer que les valeurs qui figurent sur la carte se rapportent à des nappes libres et à des ouvrages de surface (drain, source et galerie).

- **Conductivité (en µs/cm)** : La conductivité est variable au sein de la même nappe mais elle reste autour de valeurs reflétant des eaux moyennement minéralisées (conductivité autour de 400 µs/cm).

\(^{11}\) Direction générale opérationnelle Agriculture, Ressources naturelles et Environnement (DGO3) du Service Public de Wallonie. Ministère de la Région wallonne. Avenue Prince de Liège, 15. 5100 NAMUR.
V.1.1. Remarque générale

Les valeurs des paramètres physico-chimiques figurant sur la carte de Meix-devant-Virton – Virton ne reflètent pas de zones contaminées. Le pH et la conductivité sont conformes à la nature géologique du sous sol (cf. géologie).

Figure V.1 : Caractérisation physicochimique des eaux souterraines sur la planche de Meix-devant-Virton – Virton
V.2. CARACTÉRISTIQUES MINÉRALES

Dans l’ensemble, les eaux des différentes aquifères sont moyennement minéralisées avec des variations notables entre certaines nappes. Par exemple, les concentrations en calcium sont les plus basses dans la nappe de Mortinsart avec une moyenne de 51 mg/l. Ceci reflète bien la nature sableuse et gréseuse de la formation. Du point de vue minéral, les eaux des différentes nappes sont généralement de bonne qualité. Seuls les piézomètres « Fonds des Naux P1\(^{12}\) et Fonds des Naux P2\(^{13}\) » présentent des valeurs élevées en certains éléments (Mn, Ni et Zn notamment). Il faut noter que ces deux ouvrages ont été forés dans le cadre du plan de réhabilitation de l’ancienne décharge communale de Virton. Les dépassements des normes observés sont liés à une contamination très localisée et bien maîtrisée. La preuve que les ouvrages avoisinants ne montrent aucun signe de contamination de ce genre.

V.3. NITRATES

Les concentrations en nitrates des eaux souterraines sont généralement faibles sur la carte de Meix-devant-Virton – Virton (Figure V.2). Cependant, des valeurs plus élevées approchant le seuil acceptable sont à signaler dans la partie sud de la planche à cause des pratiques agricoles. Même si l’examen détaillé de l’évolution de ces concentrations ne montrent pas de tendance alarmante, une surveillance reste obligatoire.

V.4. CARACTÉRISTIQUES BACTÉRIOLOGIQUES

Du point de vue bactériologique, il n’y a pratiquement rien à signaler dans les analyses disponibles si ce n’est quelques rares ouvrages qui montrent certaines niveaux de contamination en germes totaux à 22 °C qu’il faudra surveiller.

\(^{12}\) X = 233960 et Y = 32388
\(^{13}\) X = 234100 et Y = 32380
Figure V.2 : Teneurs en nitrates des eaux souterraines sur la planche de Meix-devant-Virton – Virton
VI. EXPLOITATION DES AQUIFÈRES

Le nombre d’ouvrages recensés et existant en décembre 2002 lors de la réalisation de la carte hydrogéologique a été mis à jour pour décembre 2008. Sans distinction de nature, tous ces points d’eau ont été reportés (puits, piézomètres, sources...) sur la carte thématique « Carte des volumes d’eau prélevés » au 1/50.000. Chaque ouvrage est symbolisé par la couleur de l’aquifère (cf. carte 1/25.000) dans lequel il est établi. L’intérêt de cette couche est de pouvoir rapporter toute information ponctuelle quantitative (volume prélevé ou autre) et qualitative (caractéristiques chimique par exemple) à la nappe correspondante.

Pour les ouvrages de prise d’eau dont le débit est connu, des pastilles rouges (pour les sociétés de distribution d’eau) ou vertes (pour les exploitations privées ; agricoles domestiques ou autre) de diamètre proportionnel au débit prélevé ont été utilisées comme indicateur. Les données les plus récentes qui ont été déclarées et entièrement encodées par l’Administration wallonne correspondent à l’année 2006.

Par ailleurs, l’exploitation d’une prise d’eau souterraine n’est pas constante pour plusieurs raisons. D’abord pour répondre à des besoins hydriques variables selon la pluviométrie, l’activité économique ou autre. Mais aussi, à cause de contraintes techniques liées à l’ouvrage ou de contraintes qualitatives et/ou quantitatives liées à la nappe. La présentation des volumes moyens prélevés correspondant aux cinq dernières années déclarées et encodées à la Région illustre de manière plus réaliste l’exploitation des eaux souterraines sur une planche. Ces valeurs moyennes ne sont pas représentatives du potentiel d’exploitation ni de l’exploitation réelle des nappes. Elles reflètent simplement, de manière indicative, l’importance d’un site d’exploitation pendant les cinq dernières années considérées. Il se peut que pendant ces années, un ouvrage d’appoint n’ait fonctionné que sur une seule année. Par ailleurs, cette présentation permet de montrer l’importance d’un ouvrage principal d’exploitation qui, pour une raison ou une autre, n’aurait pas fonctionné pendant la dernière année encodée.

Enfin, l’aquifère de Florenville constitue le plus grand potentiel hydrogéologique de la Lorraine belge. Ainsi, l’essentiel des grands captages répertoriés sur la carte de Meix-devant-Virton – Virton est alimenté par cet aquifère. Ils sont principalement exploités par les entreprises de production d’eau minérale Nestlé Waters Benelux et par les services communaux d’Etalle, de Virton, de Meix-devant-Virton et de Rouvroy (Figure V.1). A noter que la part du privé est représentée principalement par l’embouteillage d’eau par Nestlé Waters Benelux.
Figure VI.1 : Exploitation des eaux souterraines sur la planche de Meix-devant-Virton – Virton.
En terme de nombre d’ouvrages, les exploitations privées sont assez nombreuses (Figure VI.2), mais l’ensemble des volumes prélevé par les particuliers est relativement faible si l’on exclut les ouvrage de la société Nestlé. Il faut souligner toutefois que l’encodage des petits volumes est suspendu à la Région depuis 2003.
VII. CARACTÉRISATION DE LA COUVERTURE ET PARAMÈTRES HYDRAULIQUES DES NAPPES

Si l’aquifère n’est pas à l’affleurement, la couverture est définie comme perméable, semi-perméable ou imperméable par rapport aux nappes sous-jacentes. Les caractéristiques de la couverture sont représentées sur la carte thématique intitulée « Carte des informations complémentaires et des caractères de couverture des nappes » au 1/50.000.

Par ailleurs, les données hydrogéologiques concernant les paramètres d’écoulement et de transport sont relativement rares.

VII.1. CARACTÉRISATION DE LA COUVERTURE DES NAPPES

Pour les aquifères contenus dans la Formation de Luxembourg, on est en présence de nappes superposées séparées par des membres marneux de la Formations d’Arlon. Ces membres, discontinus et de faibles épaisseurs, permettent vraisemblablement des communications entre les différents niveaux aquifères. Ils ne représentent donc pas de véritables couvertures imperméables et peuvent être considérés comme semi perméables. Par contre, dans la partie sud de la carte, la Formation d’Ethe principalement constituée d’argilites et d’argilites siltueuses est une couverture imperméable pour les nappes sous-jacentes.

VII.1.1. Aquifère de Mortinsart

L’aquifère n’affleure nulle part sur la carte. Il est sous couverture imperméable sous les marnes de la Formation de Jamoigne.

VII.1.2. Aquifère de la Chevratte

A l’exception de quelques bandes d’affleurement étroites le long des vallées au nord-ouest de la planchette de Meix-devant-Virton, l’aquifère est sous une couverture semi perméable. Celle-ci est assurée par l’alternance des membres marneux de la Formation d’Arlon avec les autres membres de la Formation de Luxembourg.

VII.1.3. Aquifère de Florenville

Plusieurs zones d’affleurement de l’aquifère sont observées, toutes dans la partie nord de la planche et toutes dans des fonds de vallées encaissées. En dehors de ces zones, l’aquifère est sous une couverture semi-perméeable sous le Membre de Strassen. Par contre, à l’extrême sud, l’absence probable de ce dernier met l’aquifère de Florenville en contact avec l’aquifère d’Orval. Les deux aquifères groupés peuvent être considérés alors à l’affleurement sauf en dessous des argilites de la Formation d’Ethe.
VII.1.4. Aquifère d’Orval

L’aquifère est à l’affleurement sur la majeure partie de la carte. Par contre, sa couverture est semi-perméable sous l’aquitard d’Arlon – Hondelange et sous le Membre de la Posterie. Rappelons qu’l’extrême sud il est groupé avec l’aquifère de Florenville sous une couverture imperméable assurée par l’aquiclude d’Ethe.

VII.1.5. Aquifère de Virton

L’aquifère n’est représenté que par des lambeaux d’extension limitée par rapport aux aquifères de Florenville et d’Orval. Ces Lambeaux sont pratiquement partout à l’affleurement et constituent des nappes perchées comme cela montré sur la coupe hydrogéologique.

VII.1.6. Aquitard d’Arlon – Hondelange

L’aquitard est à l’affleurement et constitue lui-même une couverture semi-perméable pour les nappes sous-jacentes.

VII.1.7. Aquifère d’Aubange – Messancy

L’aquifère est à l’affleurement sur la carte de Meix-devant-Virton – Virton dans l’extrême sud de la planche.

D’autre part, si l’aquifère de Virton qui est une nappe perchée, les aquifères d’Orval et d’Aubange – Messancy sont libres, les aquifères de Florenville et de la Chevratte sont des nappes captives vers le sud. Il est difficile de cartographier la zone captive de ces nappes à cause des variations de piézométrie (cf. piézométrie). La nappe de Mortinsart est captive sous les marnes de Jamoigne.

VII.2. PARAMÈTRES D’ÉCOULEMENT ET DE TRANSPORT

Les données hydrogéologiques disponibles concernant les paramètres d’écoulement et de transport sont relativement rares sur la carte de Meix-devant-Virton – Virton (Figure VII.1). Les informations détaillées des conditions de ces essais se trouvent dans les références correspondantes.

Puits « Ferme de Bar »: Le puits est crépiné dans la nappe d’Orval qui est libre et dont l’épaisseur saturée est d’environ 20 m. Bien que le puits soit incomplet lors des essais et malgré le pompage dans des puits à proximité, la transmissivité de la nappe est importante de l’ordre de 15010^{-4} (Masson et al., 1993). Mergen (1985) a obtenu en effet des transmissivités plus faibles ailleurs ; 2.110^{-4} m2/s et 610^{-4} m2/s respectivement à Huombois (*Puits Huombois 4*) et à Meix-devant-Virton « Puits Lepage ». Les caractéristiques
hydrodynamiques du puits « Ferme de Bar » s’expliquent par une zone de fracturation observée lors du forage entre 15 et 19 m de profondeur.

Puits « Plateau de Bar » : Le puits a été foré à 86 m de profondeur, atteignant probablement la base de la Formation de Luxembourg. Il a été crépiné entre 48.5 m et 86 m au niveau de l’aquifère de Florenville. Les descriptions du forage montrent l’existence d’une zone fortement fracturée juste en dessous des marnes de Strassen. Par ailleurs, il s’agit essentiellement de sables fins avec des bancs de grès et de calcaire.

L’interprétation des essais de pompage en régime permanent a révélé une perméabilité de 8×10^{-5} m/s au niveau de la zone fracturée située au sommet de l’aquifère. Ailleurs, la perméabilité obtenue était d’environ de 2×10^{-5} m/s (Debbaut et Vander Borght, 1988).

![Figure VII.1 : Résultats de pompages d’essai](image)
Puits « Croix-Rouge » : Le puits a été foré à 76 m de profondeur. Avant d’atteindre la nappe de Florenville, il a recoupé l’aquifère d’Orval sur 22 m d’épaisseur et l’aquiclude d’Arlon (Membre de Strassen) sur environ 10 m. Le puits est crépiné sur 32.5 m, entre 32.5 et 65 m de profondeur au niveau de l’aquifère de Florenville. C’est un niveau formé principalement de grès calcaire et de calcaire avec très peu de sable. Des cavités ou de grosses fissures ont été révélées lors du forage à 42 m de profondeur et entre 55 et 60 m. Elles correspondent à des venues d’eau importantes. Le débit mesuré à la première (10.5 m³/h) est resté relativement constant jusqu’à 52 m de profondeur puis il a augmenté pour atteindre 30 m³/h à 62 m. Le niveau statique s’est stabilisé après le forage à 22 m du sol, montrant ainsi le caractère captif de la nappe à ce niveau.

La transmissivité obtenue sur ce puits lors des études précitées est de 6.3 10⁻⁴ m²/s correspondant à une perméabilité de 1.9 10⁻⁵ m²/s (Debbaut et Vander Borght, 1988).

Puits « Bois de Neulimont » : Les essais de pompage sur ce puits ont été exécutés par le Service géologique de Belgique. Les valeurs de transmissivité obtenues à l’issu de ces pompages sont comprises entre 9 10⁻⁴ et 14 10⁻⁴ m²/s (cité dans Masson et al., 1993).

Puits « SGB-RW » : Il s’agit initialement d’un puits de reconnaissance foré à 66 m de profondeur. Actuellement c’est un piézomètre qui sert à un suivi régulier des niveaux de la nappe de Florenville.

<table>
<thead>
<tr>
<th>Palier, Q, m³/h</th>
<th>Méthode de Jacob</th>
<th>Méthode de Cooper-Jacob</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transmissivité T, 10⁻⁴ m²/s</td>
<td></td>
</tr>
<tr>
<td>27,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30,66</td>
<td>52</td>
<td>27,4</td>
</tr>
<tr>
<td>25,38</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>24,99</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>38,87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39,21</td>
<td>60,42</td>
<td></td>
</tr>
</tbody>
</table>

Tableau VII.1 : Résultats des essais de pompage au niveau du puits « SGB-RW » à Buzenol
VIII. ZONES DE PRÉVENTION

VIII.1. GÉNÉRALITÉS

Suite au développement économique, les ressources en eaux souterraines sont de plus en plus sollicitées et en même temps soumises à des pressions environnementales qui menacent leur qualité.

Afin de limiter les risques de contamination des captages, des périmètres de prévention doivent être mis en place. La législation wallonne définit 4 niveaux de protection à mesure que l'on s'éloigne du captage : zones de prise d'eau (Zone I), de prévention (Zones II a et II b) et de surveillance (Zone III). Ces zones sont délimitées par des aires géographiques déterminées notamment en fonction de la vulnérabilité de la nappe aquifère.

Diverses mesures de protection ont été définies au droit des trois zones :

Zone I ou zone de prise d'eau

La zone de prise d'eau est l'aire géographique délimitée par la ligne située à 10 m des limites extérieures des ouvrages de surface de prise d'eau. A l'intérieur de la zone de prise d'eau, seules les activités en rapport direct avec la production d'eau sont tolérées.

Zones IIa et IIb ou zones de prévention rapprochée et prévention éloignée

L'aire géographique dans laquelle le captage peut être atteint par tout polluant sans que celui-ci ne soit dégradé ou dissous de façon suffisante et sans qu'il ne soit possible de le récupérer de façon efficace, s'appelle la "zone de prévention".

La zone de prévention d'une prise d'eau souterraine en nappe libre est scindée en deux sous-zones :

- la zone de prévention rapprochée (zone IIa) : zone comprise entre le périmètre de la zone I et une ligne située à une distance de l'ouvrage de prise d'eau correspondant à un temps de transfert de l'eau souterraine jusqu'à l'ouvrage égal à 24 heures dans le sol saturé.

A défaut de données suffisantes permettant de définir la zone IIa selon le critère des temps de transfert, la législation suggère de délimiter la zone IIa par une ligne située à une distance horizontale minimale de 35 mètres à partir des installations de surface, dans le cas d'un puits, et par deux lignes situées à 25 mètres au minimum de part et d'autre de la projection en surface de l'axe longitudinal dans le cas d'une galerie.

• La zone de prévention éloignée (zone IIb) : zone comprise entre le périmètre extérieur de la zone IIa et le périmètre extérieur de la zone d'appel de la prise d'eau. Le périmètre extérieur de la zone d'appel de la zone IIb ne peut être situé à une distance de l'ouvrage supérieure à celle correspondant à un temps de transfert de l'eau souterraine jusqu'à l'ouvrage de prise d'eau égal à 50 jours dans le sol saturé.

A défaut de données suffisantes permettant la délimitation de la zone IIb suivant les principes définis ci-avant, le périmètre de cette zone est distant du périmètre extérieur de la zone IIa de :

• 100 mètres pour les formations aquifères sableuses ;
• 500 mètres pour les formations aquifères graveleuses ;
• 1000 mètres pour les formations aquifères fissurés ou karstiques.

Zone de surveillance

La zone de surveillance englobe l'entièreté du bassin hydrographique et du bassin hydrogéologique situés à l'amont du point de captage.

VIII.2. ZONE DE PRÉVENTION REPRISE SUR LA CARTE

Plusieurs zones de préventions ont été définies pour protéger les captages communaux de Meix-devant-Virton – Virton (cf. carte principale). Toutes ces zones sont actuellement approuvées par arrêt ministériel qui est publié au Moniteur belge (Tableau VIII.1).

<table>
<thead>
<tr>
<th>Nom d'ouvrage</th>
<th>Ancienne commune</th>
<th>Statut</th>
<th>Date arrêt</th>
<th>Date publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robelmont Lanframba A</td>
<td>Robelmont</td>
<td>Eloignée arrêté</td>
<td>06-nov-07</td>
<td>29-nov-07</td>
</tr>
<tr>
<td>Robelmont Lanframba A</td>
<td>Robelmont</td>
<td>approchée arrêtée</td>
<td>06-nov-07</td>
<td>29-nov-07</td>
</tr>
<tr>
<td>Captage des Volettes</td>
<td>Meix-Dévant-Virton</td>
<td>Eloignée arrêté</td>
<td>06-nov-07</td>
<td>29-nov-07</td>
</tr>
<tr>
<td>Captage des Volettes</td>
<td>Meix-Dévant-Virton</td>
<td>approchée arrêtée</td>
<td>06-nov-07</td>
<td>29-nov-07</td>
</tr>
<tr>
<td>Gerouville Captage de Limes</td>
<td>Gerouville</td>
<td>Eloignée arrêté</td>
<td>06-nov-07</td>
<td>29-nov-07</td>
</tr>
<tr>
<td>Gerouville Captage de Limes</td>
<td>Gerouville</td>
<td>approchée arrêtée</td>
<td>06-nov-07</td>
<td>29-nov-07</td>
</tr>
<tr>
<td>A la Perrière</td>
<td>Meix-Dévant-Virton</td>
<td>Eloignée arrêté</td>
<td>06-nov-07</td>
<td>29-nov-07</td>
</tr>
<tr>
<td>A la Perrière</td>
<td>Meix-Dévant-Virton</td>
<td>approchée arrêtée</td>
<td>06-nov-07</td>
<td>29-nov-07</td>
</tr>
<tr>
<td>Galerie-Sommethonne</td>
<td>Sommethonne, Meix-Dévant-Virton</td>
<td>Eloignée arrêté</td>
<td>19-nov-07</td>
<td></td>
</tr>
<tr>
<td>Galerie-Sommethonne</td>
<td>Sommethonne</td>
<td>approchée arrêtée</td>
<td>19-nov-07</td>
<td></td>
</tr>
<tr>
<td>Robelmont Lanframba B</td>
<td>Robelmont, Virton</td>
<td>Eloignée arrêté</td>
<td>06-nov-07</td>
<td>29-nov-07</td>
</tr>
<tr>
<td>Robelmont Lanframba B</td>
<td>Robelmont</td>
<td>approchée arrêtée</td>
<td>06-nov-07</td>
<td>29-nov-07</td>
</tr>
</tbody>
</table>

Tableau VIII.1 : Liste des zones de prévention arrêtées sur la carte de Meix-devant-Virton - Virton
La liste des zones de prévention est mise à jour chaque fois que de nouvelles zones sont proposées ou arrêtées. Pour avoir les données les plus actualisées, il est important de consulter directement le site : http://environnement.wallonie.be/zones_prevention/
IX. PRÉSENTATION DE LA CARTE HYDROGÉOLOGIQUE

La carte hydrogéologique de Meix-devant-Virton – Virton est publiée gratuitement sur Internet : en version papier (fichier PDF téléchargeable), mais aussi sous forme interactive via l’application WebGIS (http://environnement.wallonie.be/cartosig/cartehydrogeom). L’objectif de cette diffusion est de faciliter l’accès à de nombreuses données déjà vivement sollicitées par divers acteurs dans le domaine de l’environnement. L’application WebGIS a été conçue pour permettre une multitude de combinaisons des couches d’information géographique. Dans un premier temps, la carte est diffusée de manière statique (à une date donnée) et discontinue (par planche). À terme, la diffusion sera continue à l’échelle de la Wallonie et dynamique grâce à des mises à jour régulières. Contrairement à la version papier, la carte hydrogéologique interactive peut être personnalisée par l’utilisateur pour répondre à des besoins spécifiques.

Le document papier comporte ce présent livret explicatif et un poster au format A0. Celui-ci est composé d’une carte principale (1/25.000), de cartes thématiques (1/50.000), d’une coupe hydrogéologique, ainsi que d’un tableau de correspondance entre les formations géologiques et les unités hydrogéologiques.

Le poster de la carte hydrogéologique est composé de :

1. « une carte principale » au 1/25.000, représentant différentes couches d’informations (topographiques, hydrogéologiques, hydrographique …) recouvrant un extrait de la carte topographique de Belgique de l’Institut Géographique National (I.G.N.) : carte 71/1-2 Meix-devant-Virton – Virton,

2. une carte thématique intitulée « Carte des informations complémentaires et des caractères de couverture des nappes » (Echelle : 1/50.000). Elle représente des données spécifiques disponibles telles que :
 • le caractère de la couverture des nappes,
 • des tests réalisés (essai de pompage) ainsi que d’autres informations complémentaires comme l’existence de données hydrochimiques, de diagraphies, etc.

3. une seconde carte thématique intitulée « carte des volumes prélevés » (Echelle : 1/50.000). Elle représente :
 • les ouvrages de prise d’eau, les sources et les piézomètres selon l’aquifère sollicité,
 • les volumes pompés en distinguant les volumes des sociétés de distribution d’eau potable et les autres volumes,
• les volumes moyens calculés sur les cinq dernières années déclarés et encodés à la Région.

4. une troisième carte thématique « carte des isohypses » également au 50000ème. Elle représente :
 • des cotes ponctuelles du toit de l’aquifère de Mortinsart,
 • des isohypses du toit de l’aquifère de Florenville.

5. une coupe hydrogéologique orientée NO-SE montrant la structure des unités hydrogéologiques et les niveaux piézométriques à une date donnée.

6. un tableau de correspondance entre les formations géologiques et les unités hydrogéologiques.

IX.1. CARTE PRINCIPALE (1/25.000)

La carte principale comprend les informations suivantes :

1. le nouveau fond topographique provenant de la carte IGN au 10.000ème; il s’agit des planchettes de Meix-devant Virton (71/1) et de la planchette de Virton (71/2). La couche sert principalement de localisation et de topographie.

2. l’hydrographique comporte plusieurs couches ; réseau hydrographique, les principaux lacs et les berges.

3. les unités hydrogéologiques :
 3.1. l’aquifère de Mortinsart, n’affleurant pas sur la carte, correspond aux sables et grès de la Formation de Mortinsart (Rhétien),
 3.2. l’aquiclude à niveaux aquifères de Jamoigne, est représenté par les marnes et les passages de bancs calcaires de la Formation de Jamoigne,
 3.3. l’aquifère de La Chevratte, est formé par les calcaires gréseux du Membre de La Chevratte de la Formation de Luxembourg,
 3.4. l’aquiclude d’Arlon, est composé de plusieurs niveaux marneux distincts, séparant les nappes de la Formation de Luxembourg. Il s’agit des membres de Trite, de Strassen et de la Posterie.
 3.5. l’aquifère de Florenville, correspondant au Membre de Florenville qui appartient aux sables et calcaires gréseux de la Formation de Luxembourg. L’aquifère de Florenville peut s’étendre à la Formation de Luxembourg indifférenciée dans le cas d’une continuité géométrique et hydrogéologique en absence du Membre de Strassen.
3.6. L’aquifère d’Orval, correspondant au Membre d’Orval qui appartient aux sables et calcaires gréseux de la Formation de Luxembourg.

3.7. L’aquifère de Virton, correspondant au Membre de Virton faisant partie des sables et calcaires gréseux de la Formation de Luxembourg,

3.8. L’aquitard d’Arlon-Hondelange, correspondant aux sables marneux du Membre de Hondelange de la Formation d’Arlon,

3.9. L’aquiclude de Robelmont, correspondant aux marnes de la couche de Robelmont de la Formation d’Arlon,

3.10. L’aquiclude d’Ethe, correspondant aux argilites et argilites silteuses de la Formation d’Ethe,

3.12. L’aquifère des alluvions, dont les ressources sont très limitées en raison de son extension assez restreinte étant confiné au fond de certaines vallées.

4. les points d’eau constitués de puits forés ou traditionnels, de piézomètres, de galeries, de drains et de sources. Il s’agit de :
 - captages des sociétés de distribution d’eau publique (sur cette carte, il s’agit des Services communaux de Meix-devant-Virton, de Virton, d’Etalle et de Rouvroy) ;
 - captages de production d’eau minérale des entreprises Nestlé Waters Benelux ;
 - captages privés exploités et déclarés à la Région wallonne ;
 - piézomètres, ces derniers étant considérés comme tout point d’accès à la nappe non exploité (forages de petit diamètre, puits non équipés) ;
 - des sources exploitées ou non.

5. les ouvrages ponctuels comme les stations limnimétriques de la Direction des Cours d’Eau Non Navigables et celles installées par la FUL ainsi que des stations climatiques de l’IRM.

6. les isopièzes de l’aquifère de Florenville (en rouge), les isopièzes de l’aquifère d’Orval (en vert) avec des sens probables d’écoulement pour chacune des nappes. Des cotes ponctuelles des nappes de Virton et de Mortinsart sont également indiquées.

7. les phénomènes karstiques ponctuels ; cron et perte.

8. la localisation de la coupe hydrogéologique.
IX.2. CARTES THÉMATIQUES (1/50 000)

Sur toutes les cartes thématiques sont présentés : les principales localités, l'hydrographie (réseau hydrographique, principaux lacs, les berges et les bassins hydrographiques) et l'infrastructure (le réseau routier principal et autoroute).

IX.2.1. Carte des informations complémentaires et des caractères de couverture des nappes

La carte représente la couverture de l’aquifère de Mortinsart, la couverture des nappes contenues dans la Formation de Luxembourg et la couverture de l’aquifère d'Aubange et Messancy. Cette carte localise également les différents sites au droit desquels des données quantitatives ou qualitatives sont disponibles (analyses chimiques, essais de pompage et diagraphies).

IX.2.1.1. Couverture de l’aquifère de Mortinsart

L’aquifère de Mortinsart n’affleure pas sur la carte. Il se trouve sous la couverture imperméable constituée par les marnes de la Formation de Jamoigne. Celle-ci affleure de manière très restreinte dans certaines vallées, notamment du Gros Ruisseau et de La Rouge Eau, situées au nord-est de la carte. La nappe sous la couverture est captive.

IX.2.1.2. Couverture des principales nappes de la Formations de Luxembourg

Aquifère de Florenville : L’aquifère de Florenville est à l’affleurement dans certaines vallées encaissées dans la partie nord de la carte ainsi que dans le coin nord-est de la planchette de Virton. Partout ailleurs sur la planche, la nappe de Florenville est sous couverture. Les alluvions constituent généralement une couverture perméable d’épaisseur variable mais assez faible.

La couverture imperméable de l’aquifère de Florenville a été définie sur base de l’étendue de l’auciclude des argilites et argilites siltueuses d’Ethe. Relativement restreinte, cette couverture est localisée dans le sud de la carte. La nappe sous la couverture est captive.

La couverture semi-perméable de l’aquifère de Florenville est très étendue sur la carte. Elle est formée par les membres marneux de la Formation d’Arlon, qui subdivisent la Formation de Luxembourg en différents aquifères. Il est toutefois difficile d’exclure toute communication entre ces différents aquifères. En effet, la couche marneuse de Strassen, par exemple, n’est pas continue. Elle est affectée par des petites failles, effondrements de type karstique, ou éventuellement par des lacunes, ce qui implique que le Membre d’Orval participe indirectement à l’alimentation de la nappe de Florenville. La nappe sous la couverture est libre au nord et elle devient rapidement captive dans la partie sud de la carte.
Aquifère d’Orval : l’aquifère d’Orval est à l’affleurement sur une grande partie de la planche. Ce qui lui confère une bonne source d’alimentation mais aussi une grande zone de vulnérabilité potentielle notamment vis-à-vis des activités agricoles dans la partie sud de la carte. Dans la partie sud-ouest de la planche, l’aquifère est sous une couverture semi-perméable formée par les sables argileuses d’Hondelange.

IX.2.1.3. La couverture de l’aquifère d’Aubange – Messancy.

La nappe est à l’affleurement au dessus des marnes de la Formation d’Ethe. Son étendue est très limitée sur la carte de Meix-devant-Virton – Virton.

IX.2.2. Carte des volumes prélevés

Tous les ouvrages recensés en 2008 sur la planche sont présentés sur la carte des volumes prélevés, en discernant :

- les ouvrages (puits, piézomètres, sources …) différenciés selon l’aquifère qu’ils atteignent. Les couleurs des symboles utilisés sont celles des nappes recoupées (cf. carte principale). Si plusieurs niveaux aquifères sont recoupés, le symbole porte la couleur de la nappe principale.
- les volumes de distribution publique d’eau potable déclarés à la Région wallonne pour l’année 2006 sont représentés en pastille rouge de diamètre proportionnel aux débits captés. Les volumes plus récents ne sont pas encore complètement encodés à la Région,
- les autres volumes prélevés (privés) sont représentés par des pastilles vertes de diamètre proportionnel aux débits captés. Il s’agit principalement des captages de la société Nestlé Waters Benelux.

IX.2.3. Carte des isohypses

Toit de l’aquifère de Mortinsart : Le toit de l’aquifère de Mortinsart est signalé à titre indicatif, au droit du forage de la Volette (X = 239402, Y = 35668) au nord-est de la carte ainsi qu’au forage du Cron (X= 238342, Y = 33738). Une autre valeur correspond au forage de
Neulimont (Boulvain et al., 1995) ainsi qu’au forage de la Soye situé quelques mètres à l’ouest de la limite de la carte.

Rappelons que cette carte des isohypses du toit de l’aquifère de Florenville reflète la direction E-O à NO-SE des couches, et leur structure tabulaire avec un léger pendent sud d’environ 3°.

IX.2.4. Coupe hydrogéologique

La coupe hydrogéologique, orientée NO-SE, est calquée sur la coupe géologique (Belanger, 2006). Du nord sud, elle passe par une série de ruisseaux ; Fontaine aux Bouillons, La Chevratte, Lanframba, Rabais, Chou, Ton et Magenot.

L’exagération des hauteurs d’un facteur 10 permet une meilleure lisibilité des données hydrogéologiques. La coupe montre clairement une succession des couches mésozoïques à structure tabulaire de faible pendent sud. La coupe illustre bien la superposition des nappes de la Formation de Luxembourg séparées par les membres de la Formation d’Arlon. Contrairement à l’interprétation géologique, il est fort probable que le Membre de Strassen soit absent vers le sud de la coupe et que les nappes de Florenville et d’Orval soit continues.

Le niveau piézométrique (novembre 2002) est reporté par une ligne rouge sur la coupe. La coupe hydrogéologique met en évidence la structure des différentes formations aquifères et aquicludes rencontrées sur la carte. La coupe piézométrique montre le rabattement de la nappe à proximité des principaux cours d’eau tranchant l’aquifère ainsi que le caractère captif de la nappe de Florenville au sud du ruisseau de Lanframba.

IX.2.5. Tableau de correspondance : Géologie - Hydrogéologie

La correspondance entre les formations géologiques et les unités hydrogéologique est basée sur la nature lithologique. La description lithologique des formations géologiques fait référence à la carte géologique de Meix-devant-Virton – Virton (Belanger, 2006). Les caractéristiques hydrogéologiques sont définies en terme de :

aquifère: formation perméable contenant de l’eau en quantités exploitables (UNESCO - OMM. 1992.);

aquiclude: couche ou massif de roches saturées de très faible conductivité hydraulique et dans lequel on ne peut extraire économiquement des quantités d’eau appréciables (UNESCO - OMM. 1992.);

Remarque : ces notions restent relatives et doivent s’adapter au contexte hydrogéologique.
X. MÉTHODOLOGIE DE L’ÉLABORATION DE LA CARTE HYDROGÉOLOGIQUE

La réalisation de la carte hydrogéologique de la Wallonie est basée essentiellement sur un travail de synthèse des données existantes provenant de sources multiples et variées (Figure X.1). Ces données sont en outre complétées par des campagnes de mesures et de recherches d'information sur le terrain. Les informations récoltées sont ensuite stockées dans une base de données géorelationnelle "BDHYDRO".

Dans le projet cartographique, développé sous ArcGIS-ESRI, toutes les données sont structurées dans une "Personal Geodatabase". Les couches d'informations (layers) qui composent cette base de données sont élaborées de différentes manières.

Type d'information

<table>
<thead>
<tr>
<th>Type d'information</th>
<th>Sources d'information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ouvrages</td>
<td>Région wallonne</td>
</tr>
<tr>
<td>Localisation</td>
<td>Service Géologique de Belgique</td>
</tr>
<tr>
<td>Type</td>
<td>Sociétés de distribution publique d'eau</td>
</tr>
<tr>
<td>Equipement ...</td>
<td>Services communaux</td>
</tr>
<tr>
<td>Exploitation</td>
<td>Associations intercommunales</td>
</tr>
<tr>
<td>Autorisation</td>
<td>Institut Géographique National</td>
</tr>
<tr>
<td>Exploitants</td>
<td>Institut Royal de Météorologie</td>
</tr>
<tr>
<td>Usage</td>
<td>Universités</td>
</tr>
<tr>
<td>Volumes</td>
<td>Bureaux d'études en environnement</td>
</tr>
<tr>
<td>Piézométrie</td>
<td>Sociétés de forage</td>
</tr>
<tr>
<td>Hydrochimie</td>
<td>Sociétés d'embouteillage d'eau</td>
</tr>
<tr>
<td>Tests</td>
<td>Carriers</td>
</tr>
<tr>
<td>Diagraphie</td>
<td>Industries</td>
</tr>
<tr>
<td>Pompage</td>
<td>Particuliers</td>
</tr>
<tr>
<td>Traçage</td>
<td>Campagnes de terrains</td>
</tr>
<tr>
<td>Zones de prévention</td>
<td>Autres</td>
</tr>
<tr>
<td>Géologie</td>
<td></td>
</tr>
<tr>
<td>Géophysique</td>
<td></td>
</tr>
<tr>
<td>Hydrographie</td>
<td></td>
</tr>
<tr>
<td>Stations</td>
<td></td>
</tr>
<tr>
<td>Limnimétrique</td>
<td></td>
</tr>
<tr>
<td>Climatique</td>
<td></td>
</tr>
<tr>
<td>Phénomènes</td>
<td></td>
</tr>
<tr>
<td>karstiques</td>
<td></td>
</tr>
<tr>
<td>Topographie</td>
<td></td>
</tr>
<tr>
<td>Pédologie</td>
<td></td>
</tr>
<tr>
<td>Autres</td>
<td></td>
</tr>
</tbody>
</table>

Figure X.1 : Liste non exhaustive des différents types d'information et des sources de données utilisées dans la réalisation de la carte hydrogéologique
X.1. COLLECTE DE DONNÉES

La première étape de la réalisation de la carte hydrogéologique est la collecte de données auprès de différentes sources. Les principales sources d'informations qui ont servi à la réalisation de la carte hydrogéologique de Meix-devant-Virton – Virton sont :

- la base de données Dix-sous de la Région wallonne qui fourni des informations, telles que les localisations géographiques, les types d'ouvrages, les propriétaires, les exploitants, les volumes captés, les mesures piézométriques, etc., sur les ouvrages répertoriés par à la Région,
- la base de données Calypso de la Région wallonne qui renseigne sur l'aspect qualitatif des eaux,
- la Division Eau de la Région wallonne - Section de Marche-en-Famenne, où sont regroupées bon nombre d'informations relatives aux prises d'eau recensées en province de Luxembourg,
- les archives géologiques et hydrogéologiques du Service Géologique de Belgique (S.G.B.),
- la DGARNE qui a fourni la couche des zones de prévention, les données de la trame commune (réseau hydrographique, limites des bassins versants, réseau routier et autoroutier, etc.).
- l’Institut Géographique National (I.G.N.) pour les fonds topographiques,
- Napa Engineering pour les données de la société Nestlé Waters Benelux,
- Le Département des Sciences et Gestion de l’Environnement de l'Université de Liège (Ex F.U.L.) qui disposent de nombreuses données hydrogéologiques sur les aquifères sinémuriens notamment,
- autres.

La deuxième étape consiste en un travail important mené sur le terrain afin de vérifier, compléter et parfois corriger les données collectées. Les tâches les plus importantes sur le terrain sont :

- la localisation précise des ouvrages,
- la vérification du type d'ouvrage,
- la mesure piézométrique,
- la collecte d'autres données techniques, telles que les équipements des puits et le diamètre des forages, quand elles sont disponibles,
- autres.
X.2. DONNÉES GÉOLOGIQUES

Au Service Géologique de Belgique, plusieurs forages sont décrits au droit de la carte Meix-devant-Virton – Virton (71/1-2). Certains de ces sondages ont fait l’objet d’une étude détaillée (Boulvain et al., 2000).

De nombreuses descriptions proviennent notamment des études hydrogéologiques précédentes (Debbaut et Vander Borght, 1988 ; Masson et al., 1993) et d’autres proviennent de notes de terrains de la société de forage Arnould.

D’autres descriptions de forages ont été communiquées par Napa Engineering. Ces forages ont été réalisés pour l’entreprise de production d’eaux embouteillées de Nestlé Waters Benelux (eaux Valvert, Acacias, Volette, Charmoise).

X.2.1. Données hydrogéologiques

X.2.1.1. Localisation des ouvrages et sources

Dans la base de données, 224 ouvrages existants en 2008 ont été introduits et reportés sur la carte au 1/25.000 (dont 92 puits, 29 piézomètres, 7 galeries, 20 drains, 73 sources et 3 autres ouvrages indéterminés). Ils sont répertoriés comme prise d’eau ou point d’accès à la nappe. La localisation des ouvrages a été vérifiée sur le terrain tout en collectant des données complémentaires sur l’équipement des ouvrages et autres informations.

- Les données liées à ces différents ouvrages proviennent :
 - des sociétés de distribution d’eau (services communaux d’Etalle, de Meix-devant-Virton – Virton, de Rouvroy et de Virton),
 - des études hydrogéologiques du Sinémurien réalisées à la FUL (Debbaut et Vander Borght, 1988 ; Masson et al., 1993),
 - de Napa Engineering pour Nestlé Waters Benelux,
 - de la base de données de la Région wallonne
 - des particuliers contactés sur le terrain.

X.2.1.2. Données piézométriques

hautes eaux et une autre pendant la période des basses eaux ont été réalisées dans le cadre de l’établissement de la carte hydrogéologique. Le nombre de mesures piézométriques encodées dépasse 4750 enregistrements. Ces derniers couvrent une période allant de janvier 1982 à avril 2007 tout en soulignant qu’un certain nombre de piézomètres font l’objet d’un suivi régulier par la Région.

X.2.1.3. Données de pompage

La plupart des données des essais de pompages proviennent des études hydrogéologiques du Sinémurien précitées et du Service géologique de Belgique (cf. chapitre 7.2).

X.2.1.4. Données des volumes prélevés

Ce sont des volumes déclarés par les exploitants à la Région.

X.2.1.5. Données hydrochimiques

X.3. CAMPAGNE SUR LE TERRAIN

Un travail important est mené sur le terrain afin de vérifier, compléter et parfois corriger les données collectées. En effet, les données reçues des administrations sont généralement d’ordre réglementaire (numéro d’exploitation, code du titulaire), avec peu d’informations techniques. Ceci s’applique principalement aux puits des particuliers.

Les tâches les plus importantes sur le terrain consistent à la localisation précise de tous les ouvrages, à la mesure piézométrique quand c'est possible et à la vérification du type d'ouvrage. En plus de ce travail, d'autres données techniques, telles que les équipements des puits et le diamètre des forages, sont également recueillis quand elles sont disponibles.

X.4. MÉTHODOLOGIE DE CONSTRUCTION DE LA CARTE

X.4.1. Encodage dans une base de données

De telles données, aussi complexes et plus ou moins abondantes, nécessitent une organisation structurée de manière à optimaliser leur stockage, leur gestion et leur mise à jour. Ainsi une base de données hydrogéologiques géorelationnelle a été développée (Gogu
et al. 2001). Cette première version de la base de données BDHHYDRO a été régulièrement améliorée.

Dans un souci d'homogénéité entre les équipes et d'autres institutions (dont l'administration wallonne, DGARNE), la base de données a été révisée. Le but est de créer un outil de travail commun et performant, répondant aux besoins des spécialistes impliqués dans la gestion des eaux souterraines. Les données hydrogéologiques dispersées géographiquement devaient être disponibles dans une seule base de données centralisée.

Ainsi les données détaillées de l'hydrochimie, de la piézométrie, des volumes exploités, des paramètres d'écoulement et de transport, de géologie telles que les descriptions de log de forage et d'autres données administratives ou autre sont stockées dans la BDHYDRO qui se trouve à la DGARNE\(^\text{15}\). Ces données peuvent être demandées à la Région qui décide de leur accessibilité au cas par cas.

X.4.2. Construction de la carte hydrogéologique

Les couches d'information qui composent une carte hydrogéologique sont intégrées au projet cartographique par différentes manières :

1. Les données récoltées sous forme de couches numérisées (fichier vecteur) sont extraites pour chaque carte, ensuite stockées dans la "personal geodatabase" et enfin projetées sur la carte. C'est le cas des zones de prévention et de la trame commune. Celle-ci comporte des données hydrographiques (réseau hydrographique, berges, bassins versants et lacs) et administratives (réseau routier et autoroutier, localisation des agglomérations, frontières, etc.).

Jusqu'à présent, les *fonds IGN* sont reçus sous forme d'images raster géo-référencées qui sont simplement importées dans le projet cartographique et représentées sur la carte principale 1 : 25.000.

D'autres images géo-référencées seront digitalisées pour produire des couches numérisées qui seront directement stockées dans la *PGDB*. Dans cette catégorie se

\(^{15}\) Direction générale opérationnelle Agriculture, Ressources naturelles et Environnement (DGO3). Département de l'Etude du Milieu naturel et agricole - Direction de l'Etat environnemental. Coordination Géomatique et Informatique. Avenue Prince de Liège 15 - B-5100 Jambes, Belgique
trouvent des couches d'informations comme les lignes hydrogéologiques (galeries et drains), les zones de prospection géophysiques, les failles, etc.

Le fond géologique vectorisé servira de base pour la réalisation de la couche des unités hydrogéologiques et de la couche de la couverture des nappes :

• Les unités hydrogéologiques sont définies principalement sur base de la lithologie des formations géologiques mais aussi sur des critères piézométriques et géométriques. Dans certains cas, plusieurs formations géologiques superposées sont groupées en une seule unité hydrogéologique en tant qu’aquifère, aquiclude ou aquitard, selon leurs caractéristiques hydrogéologiques. Dans d’autre cas, la même formation géologique peut être scindée en plusieurs niveaux aquifères si elle est entrecoupée par des niveaux aquicludes suffisamment imperméables. C’est le cas de la Formation de Luxembourg sur la carte de Meix-devant-Virton – Virton.

• Sur la carte des unités hydrogéologiques figurent les unités à l'affleurement. Une bonne compréhension de cette carte doit tenir compte des coupes géologiques et hydrogéologiques ainsi que du tableau de correspondance entre les formations géologiques et les unités hydrogéologiques. L’ensemble des unités hydrogéologiques, définies en Wallonie dans le cadre du projet carte des eaux souterraines, est inventorié dans un tableau récapitulatif avec le nom et la couleur respectifs de chaque unité.

• Le type de la couverture d'une nappe est déterminé sur base de la lithologie des formations géologiques qui affleurent sur la carte géologique. Plusieurs possibilités sont alors envisagées : nappe à l'affleurement, nappe sous couverture perméable, nappe sous couverture imperméable et nappe sous couverture semi-perméable. Dans le cas de la superposition de plusieurs nappes, c’est la couverture de la nappe principale qui est considérée et dans d’autres cas, c’est la couverture de la nappe supérieure qui est représentée. Dans le cas de la superposition des nappes sur la carte de Meix-devant-Virton – Virton c’est généralement la nappe de Florenville, en tant que nappe principale, qui est considérée.

3. Les données ponctuelles, encodées dans la BDHYDRO (base de données hydrogéologiques), sont structurées dans différentes requêtes. Celles-ci sont créées sur base du numéro de la carte et sur d’autres critères selon le type d’information. Chaque requête sera ensuite chargée dans la couche appropriée de la PGDB et projetée sur la carte correspondante.

On retrouve dans cette catégorie, les points hydrogéologiques, les points nappes, les cotes piézométriques ponctuelles, les mesures (chimie, pompage, traçage et

4. D'autres couches d'informations géographiques sont créées dans le projet cartographique par interpolation ou extrapolation de données. C'est le cas des isopiezès, des isohypses et du caractère hydraulique des nappes.

- Les isopiezès sont tracées par interpolation des cotes piézométriques mesurées, des cotes altimétriques des sources et des niveaux des cours d'eau. Il faut s'assurer que les cotes piézométriques considérées appartiennent à la même nappe, en examinant la profondeur de l'ouvrage et son équipement (niveaux des crépines). Les sources et les niveaux des cours d'eau doivent aussi être en continuité hydraulique avec la nappe en question. C'est le cas lors du tracé des cartes piézométriques des nappes de Florenville et d'Orval. Si par contre, les cotes piézométriques ne sont pas suffisamment bien réparties sur la carte, ou si la nappe n'est pas continue, il est très difficile de tracer des isopiezès. Dans ce cas, seules des cotes ponctuelles sont présentées sur la carte avec la mention de la date de mesure. C'est le cas des nappes de Mortinsart et de Virton sur la carte de Meix-devant-Virton – Virton.

- Les isohypses sont tracées par interpolation des cotes ponctuelles de la base ou du sommet d'un aquifère d'après les données de forage. Ces données sont complétées par les cotes altimétriques des contacts à l'affleurement de cet aquifère avec les unités hydrogéologiques voisines. Son contact avec l'unité sous-jacente détermine sa base, alors que son contact avec l'unité sus-jacente détermine son sommet. Si les unités hydrogéologiques ont une structure tabulaire, les isohypses peuvent être assez facilement extrapolées comme c'est le cas du toit de l'aquifère de Florenville. Dans le cas des structures plissées et faillées, il est très souvent difficile de tracer de telles isohypses.

- Le caractère hydraulique des nappes peut être déterminé par le croisement des isopiezès et des isohypses du même aquifère. Il faut cependant souligner que le battement de la nappe peut être significativement important et que les limites de la nappe captive peuvent varier saisonnièrement. C'est ainsi que le caractère libre ou captif de la nappe de Florenville n'a pas été tracé.
XI. BIBLIOGRAPHIE

MERGEN, P., 1985 : Géologie et hydrogéologie du Lias inférieur et moyen en Lorraine belge, thèse de doctorat, Université catholique de Louvain, 3. vol., 2 annexes, inédite.

SOUCHEZ, R., 1963 : Sonderdruck aus (ERDKUNDE, Archiv für wissenschaftliche Geographie), Band XVII, Lfg, ¾, Bonn.

WOJDA, P., DACHY, M., POPESCU, I.C., RUTHY, I. & GARDIN, N., 2006 : Manuel d'utilisation de la banque de données hydrogéologiques de la région wallonne, inédit, pp. 44,
1. Liste des abréviations

ArGEnton : Université de Liège, Département ArGEnton, GEO-Hydrogeology,
Bâtiment B52/3, niveau -1, Sart-Tilman, B-4000 Liège Belgique

DGARN : Direction générale opérationnelle Agriculture, Ressources naturelles et
Environnement (DGO3), Département de l'Étude du Milieu naturel et agricole -
Direction de l'État environnemental. Coordination Géomatique et Informatique.
Avenue Prince de Liège 15 - B-5100 Jambes, Belgique

F.U.L. : Fondation universitaire luxembourgeoise, actuellement « Département des
sciences et gestion de l'environnement de l'Université de Liège (ULg) ».
Av. de Longwy, 185 à 6700 Arlon.

I.G.N. : Institut Géographique National
Abbaye de la Cambre 13 à 1000 Bruxelles

I.R.M. : Institut Royal Météorologique, Section Climatologie.
Avenue Circulaire, 3 à 1180 Bruxelles

R.W. : Région wallonne

S.G.B. : Service géologique de Belgique.
Rue Jenner 13 à 1000 Bruxelles
2. Liste des figures

Figure I.1 : Localisation de la carte de Meix-devant-Virton – Virton ...10
Figure II.1 : Schéma du cadre géomorphologique général de la zone couverte par la carte de Meix-
devant-Virton – Virton, (Masson et al., 1993). Remarque : les hauteurs ont été
exagérées ...12
Figure II.2 : Réseau hydrographique sur la planche de Meix-devant-Virton – Virton.........................13
Figure II.3 : Évolution mensuelle des débits du Ton observés pendant l’année 2007 au niveau de la
station limnimétrique L6440 – Virton - Ton de la DGRNE–Direction des cours d’eau
non navigables. (Source : http://aqualim.environnement.wallonie.be/). ...15
Figure III.1 : Carte géologique simplifiée de la Lorraine belge (Boulvain et al., 2001).....................16
Figure III.2 : Schéma lithostratigraphique général de la Lorraine Belge (Boulvain et al., 2001)........17
Figure III.3 : Colonnes stratigraphiques de la carte géologique de Meix-devant-Virton – Virton
(Belanger 2006). ..20
Figure IV.1 : Situation des forages traversant le Membre de Florenville ..31
Figure IV.2 : Evolution piézométrique de la nappe de Florenville ..36
Figure V.1 : Caractérisation physicochimique des eaux souterraines sur la planche de Meix-
devant-Virton – Virton ..39
Figure V.2 : Teneurs en nitrates des eaux souterraines sur la planche de Meix-devant-Virton –
Virton ...41
Figure VI.1 : Exploitation des eaux souterraines sur la planche de Meix-devant-Virton – Virton........43
Figure VI.2 : Exploitation des principaux ouvrages de prise d’eau sur la planche de Meix-devant-
Virton – Virton pour les années 2003 à 2007 ..44
Figure VII.1 : Résultats de pompages d’essai ...47
Figure X.1 : Liste non exhaustive des différents types d’information et des sources de données
utilisées dans la réalisation de la carte hydrogéologique ..59
3. Liste des tableaux

Tableau IV.1 : Correspondance géologie-hydrogéologie sur la carte de Meix-devant-Virton – Virton .. 29
Tableau VII.1 : Résultats des essais de pompage au niveau du puits « SGB-RW » à Buzenol........... 48
Tableau VIII.1 : Liste des zones de prévention arrêtées sur la carte de Meix-devant-Virton - Virton 50