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Abstract. We study the maximum weighted independent-set problem on interval graphs with
uncertainty on the vertex weights. We use the absolute robustness criterion and the min-max
regret criterion to evaluate solutions. For a discrete scenario set, we find that the problem is
NP-hard for each of the robustness criteria; we also provide pseudo-polynomial time algorithms
when there is a constant number of scenarios and show that the problem is strongly NP-hard
when the set of scenarios is unbounded. When the scenario set is a Cartesian product, we prove
that the problem is equivalent to a maximum weighted independent-set problem on the same
interval graph but without uncertainty for the first objective function and that the scenario set
can be reduced for the second objective function.
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1 Introduction

Many real-life problems are modeled using interval graphs [6, 9, 11, 14]. The solution procedure
of some of these problems involves solving a maximum weighted independent-set problem (MWIS)
where a weight is assigned to each vertex of the interval graph [8, 11, 14]. An important advantage
of these models is the fact that they can be solved in polynomial time [5, 11, 12, 14]. In practice,
however, the weights of the vertices are often known only approximatively and can take different
values [2, 14]. These imprecisions are mainly due to the lack of full information about the parameters
of the problem and/or the dependence of these parameters on some uncontrolled events [10, 14].
The outputs of the deterministic models (where the weight of each vertex is fixed to a single
value) usually suffer from these imprecisions, which can make their practical implementation almost
impossible in some cases [10]. Recently, researchers have started to develop methods to cope
with such uncertainty. Two situations can be distinguished: either the decision maker is able to
determine the appropriate probability distributions for modeling the uncertain elements and then
builds and solves stochastic models [13], or there is no clear characterization of the uncertainty and
all possible scenarios affecting the parameters of the problem are considered [1, 3, 10]. The latter
setting is studied in this article.

The direct motivation for the work undertaken is the article by Saha et al. [14], who investigate
the selection of program slots of television channels for running an advertisement such as to max-
imize the number of viewers of the selected programs, with the constraint that only one program
slot be selected at any instant. The problem reduces to an MWIS problem on an interval graph,
and Saha et al. [14] model the weights (number of viewers) of the intervals (program slots) by
interval numbers, because the number of viewers of a program is not known beforehand but an in-
terval containing the number can be provided. Their analysis is no longer valid, however, when the
uncertainty affecting the weights is described by a discrete set of scenarios (which includes the case
restricted to the integers contained in the interval). For lack of stochastic information, we tackle

E-mail addresses: Fabrice.TallaNobibon@ulg.ac.be; Roel.Leus@econ.kuleuven.be
∗Corresponding author. Tel.: +32 16 326960; fax: +32 16 326624.

1



the problem from a worst-case viewpoint, maximizing the worst-case performance of the proposed
solution. Concretely, we investigate robust solution procedures for MWIS on interval graphs, mean-
ing that the produced solutions are, up to a certain point, immune to data uncertainty [4]. In the
rest of this paper, we refer to these problems as robust maximum weighted independent-set problems
(RMWIS). The uncertainties affecting the weights of the vertices are described by a discrete set of
scenarios, and we also look into the special case where this set is a Cartesian product. To evaluate
the quality of a solution, we use the absolute robustness criterion and the min-max regret criterion.
For more details about these criteria and their practical interpretation, we refer to [10]. Over the
last two decades, a number of robustness objectives have been studied for combinatorial optimiza-
tion problems; the most prominent application areas seem to be knapsack problems, scheduling
problems and general mathematical programming (see, for instance, [3, 10]). The aim of this paper
is to develop similar study for MWIS on interval graphs.

The remainder of this paper is organized as follows. First, we provide a formal description of
the problems to be studied in Section 2, Section 3 contains our results for RMWIS with absolute
robustness criterion and Section 4 is devoted to RMWIS with the min-max regret criterion. We
conclude in Section 5.

2 Definitions and problem statement

We write an interval as Ii = [ai, bi], where ai, bi ∈ R and ai < bi. An undirected graph G =
(V,E) with |V | = n vertices and |E| = m edges is called an interval graph for a finite family
I = {I1, I2, . . . , In} of n non-empty intervals on the real line if there is a one-to-one correspondence
between I and V such that two intervals in I have non-empty intersection if and only if their
corresponding vertices in V are adjacent to each other. In the rest of this paper, we assume that
the set I contains closed intervals and is such that no two intervals share a common endpoint. We
also assume that the intervals are sorted in increasing order of their right endpoint bi and that the
interval Ii ∈ I corresponds to vertex i in V (i = 1, . . . , n). An independent set of G is a subset of
vertices of G not containing two adjacent vertices.

An interval graph G = (V,E) is weighted if each vertex i ∈ V is associated with a number wi

(the weight of i). In this note, we consider the weights wi to be non-negative integers. A non-empty
discrete set S contains the scenarios: each s ∈ S represents an n-vector W s = (ws

1, . . . , w
s
n) where

ws
i is the weight of vertex i under scenario s. For a given interval graph, each s ∈ S corresponds

to an MWIS instance defined by:

(MWISs) max
X

Fs(X) =

n∑
i=1

ws
ixi

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E
xi ∈ {0, 1} i = 1, . . . , n.

In this notation, vector X = (x1, . . . , xn). Let F ∗s be the optimal value of MWISs. Let K be
the set of all independent sets of G, i.e., K = {X ∈ {0, 1}n : xi + xj ≤ 1, ∀(i, j) ∈ E}; where
xi = 1 if and only if vertex i is in the independent set. For a given solution X ∈ K, the regret
of X under the scenario s is the value F ∗s − Fs(X) and the maximum regret Z(X) of X is defined
by: Z(X) = max{F ∗s − Fs(X) : s ∈ S}. In this paper, we examine RMWIS with two objective
functions, which will be the topics of Sections 3 and 4.
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3 Absolute robustness

In this section, we study RMWIS with the absolute robustness criterion, given by:

(AbRMWIS) max
X∈K

min
s∈S

Fs(X).

Below, we show that this problem is NP-hard. In the proof, we refer to the even-odd partition
problem (EOPP), which is defined as follows:

Instance: A finite set A = {1, 2, . . . , 2n} with size ai ∈ Z+ \ {0} for each i ∈ A, and
Q = 1

2

∑
i∈A ai.

Question: Does there exist a subset A′ ⊂ A with |A′| = n,
∑

i∈A′ ai = Q and precisely
one of 2i, 2i− 1 belongs to A′, for i = 1, . . . , n?

EOPP is NP-hard [7].

Proposition 1. AbRMWIS is NP-hard even when S contains only two scenarios.

Proof: We describe a reduction from EOPP. Given an arbitrary instance of EOPP, we build an
interval graph G =

(
V,E

)
with 4n− 2 vertices. The set E is built as follows. Given a vertex i,

• if i = 2` − 1 with 1 ≤ ` ≤ 2n − 1, then the edges {i, i + 1} and {i, i + 2} are in E provided
that i+ 2 ≤ 4n− 2, and the edge {i, i+ 3} ∈ E when i+ 3 ≤ 4n− 2.

• if i = 2` with 1 ≤ ` ≤ 2n − 1, then edge {i, i + 1} ∈ E provided that i + 1 ≤ 4n − 2, and
{i, i+ 2} ∈ E on condition that i+ 2 ≤ 4n− 2.

It can be verified that G is an interval graph. To complete the description of the AbRMWIS
instance, we next describe the set S with two scenarios:

w1
i =


a2`+1 if i = 4`+ 1, ` = 0, 1, . . . , n− 1,
a2`+2 if i = 4`+ 2, ` = 0, 1, . . . , n− 1,
0 otherwise,

w2
i =


a2`+2 if i = 4`+ 1, ` = 0, 1, . . . , n− 1,
a2`+1 if i = 4`+ 2, ` = 0, 1, . . . , n− 1,
0 otherwise.

We now show that the EOPP instance is a YES instance if and only if the optimal value of the
instance of AbRMWIS is greater than or equal to Q.

On the one hand, suppose that the answer to the EOPP instance is YES, so an appropriate
subset A′ exists. Consider the set of vertices C = {4`+1 : 2`+1 ∈ A′, ` = 0, 1, . . . , n−1}∪{4`+2 :
2` + 2 ∈ A′, ` = 0, 1, . . . , n − 1}; this is an independent set in G(V,E) with exactly n vertices.
Additionally, the solution X ∈ {0, 1}4n−2 corresponding with C is such that the total weight for
any scenario is exactly Q.

On the other hand, suppose that the instance of AbRMWIS has optimal objective value greater
than or equal to Q (note that Q is also an upper bound on the optimal value). Let C be an optimal
solution (independent set); observe that it is a subset of {4`+ 1, 4`+ 2 : ` = 0, 1, . . . , n− 1} since
these are the only vertices with positive weights. We construct the set A′ = {2` + 1 : 4` + 1 ∈
C, ` = 0, 1, . . . , n− 1} ∪ {2`+ 2 : 4`+ 2 ∈ C, ` = 0, 1, . . . , n− 1}, which can be seen to fulfill all the
conditions required for the OEPP instance to have a YES answer. �

We also obtain the following positive result:

Proposition 2. AbRMWIS can be solved in pseudo-polynomial time when S is bounded.
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Algorithm 1 DP algorithm for AbRMWIS with bounded scenario set

1: Compute F ∗s for all s ∈ S
2: for α1 = 0 to F ∗1 do

3:
. . .

4: for α|S| = 0 to F ∗|S| do
5: Fn+1(α1, . . . , α|S|) = mins∈S αs

6: end for
7: end for
8: for k = n down to 0 do
9: for α1 = 0 to F ∗1 do

10:
. . .

11: for α|S| = 0 to F ∗|S| do

12: Fk(α1, . . . , α|S|) = maxk<`≤n+1, Ik∩I`=∅
{
F`(α1 + w1

` , . . . , α|S| + w
|S|
` )

}
13: end for
14: end for
15: end for
16: return F0(0, . . . , 0)

Below, we provide a pseudo-polynomial-time algorithm for solving AbRMWIS when S is bounded
by a constant. To derive this algorithm, we first adapt the instance of AbRMWIS by adding two
new vertices, namely vertex 0 and vertex n+ 1, each with weight 0 under any scenario. These two
vertices are neither adjacent to each other nor to any other vertex in V . For ease of exposition,
the adapted graph is also called G. We recall that the vertices of G are ordered such that for two
vertices i and j with i < j, the corresponding intervals Ii = [ai, bi] and Ij = [aj , bj ] satisfy bi < bj .
Our algorithm is based on dynamic programming (DP). We use the following value function:

Fk

(
α1, . . . , α|S|

)
≡ the maximum of the minimum weight over all scenarios for an independent

set included in {k+1, . . . , n+1} without vertex adjacent to k, if weight αs

is added to the objective under scenario s.

The quantity αs represents the weights collected for scenarios s ∈ S when selecting an independent
set included in {0, 1, . . . , k} and containing the vertex k. An initial condition is specified by:
Fn+1(α1, . . . , α|S|) = mins∈S αs. A recursive relation for the remaining vertices is formulated as
follows:

Fk

(
α1, . . . , α|S|

)
= max

k<`≤n+1, Ik∩I`=∅

{
F`

(
α1 + w1

` , . . . , α|S| + w
|S|
`

)}
.

The optimal value to AbRMWIS is F0(0, . . . , 0). The complete pseudocode of the procedure is
given as Algorithm 1. Its time complexity is O

(
|S|n log n+ nL|S|

)
, where L = maxs∈S F

∗
s and

each value F ∗s can be computed in time O(n log n) [11]. Thus, if |S| is bounded by a constant, the
algorithm runs in pseudo-polynomial time.

We define the problem 3-partition, which is strongly NP-hard [7]:

Instance: A finite set A = {1, 2, . . . , 3m}, a bound B ∈ Z+, and a size ai ∈ Z+ for
each i ∈ A such that B

4 < ai <
B
2 and such that

∑
i∈A ai = mB.

Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that for
1 ≤ k ≤ m,

∑
i∈Ak

ai = B?

Proposition 3. AbRMWIS is strongly NP-hard when S is unbounded.
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Proof: The proof uses a reduction from 3-partition. Given an arbitrary instance of the 3-partition
problem, we build an interval graph G = (V,E) as the union of 3m disjoint interval graphs Gk =
(Vk, Ek) for 1 ≤ k ≤ 3m. Each graph Gk is a complete graph with m vertices {vki|i = 1, . . . ,m}.
The reader can easily verify that G is an interval graph. The set S contains m scenarios defined as
follows:

ws
vki

=

{
ak if i = s,
0 otherwise.

We claim that there exists a 3-partition if and only if the instance of AbRMWIS built above has
an optimal value of B.

On the one hand, suppose there exists a 3-partition ofA into A1, A2, . . . , Am with
∑

i∈Ak
ai = B,

k = 1, . . . ,m. An optimal solution to the instance of AbRMWIS can be found by considering the
independent set C containing the vertices vik for i ∈ Ak, k = 1, . . . ,m. This is an independent set
with a total weight of B for each scenario.

On the other hand, suppose that the instance of AbRMWIS has an independent set C with
optimal value B. For each k = 1, . . . ,m, let Ak = {i|vik ∈ C}. By the structure of G, it is
clear that the sets Ak are disjoint. It also holds that the total weight of C under scenario k is∑

i∈Ak
wk
vik

=
∑

i∈Ak
ai (k ∈ {1, . . . ,m}). Since by definition the optimal value of AbRMWIS is B,

we have
∑

i∈Ak
ai = B for all Ak, and so the set of sets Ak constitutes a 3-partition. �

We now examine the special case where S is a Cartesian product. Suppose that the weight wi

of vertex i can take any value in a given set Wi and let the scenario set be the Cartesian product
of the Wi, so S =

∏n
i=1Wi. This corresponds to the situation where the weight of one vertex does

not depend on the particular weights of the other vertices. Let Li = min{w ∈ Wi} and consider
the scenario s̄ ∈ S defined by ws̄

i = Li for each vertex i and let MWISs̄ be the associated MWIS
problem. The next result shows that in the case of Cartesian scenarios, a solution to AbRMWIS
is obtained by solving MWISs̄.

Proposition 4. An optimal solution to AbRMWIS is obtained by solving MWISs̄.

Proof: Let ∆ be the optimal value of AbRMWIS and ∆s̄ be that of MWISs̄; we want to show
that ∆ = ∆s̄. On the one hand, since s̄ ∈ S we have ∆ ≤ ∆s̄. On the other hand, let X ∈ K
be an independent set. For each s ∈ S we have

∑n
i=1w

s̄
ixi ≤

∑n
i=1w

s
ixi; by taking the minimum

over s, we get
∑n

i=1w
s̄
ixi ≤ mins∈S

∑n
i=1 w

s
ixi. By further taking the maximum over X, we obtain

maxX∈K
∑n

i=1w
s̄
ixi ≤ maxX∈K mins∈S

∑n
i=1w

s
ixi; that is ∆s̄ ≤ ∆. We conclude that ∆ = ∆s̄. �

Corollary 1. The problem AbRMWIS can be solved in polynomial time when the set S of scenarios
is a Cartesian product.

Proof: This result follows from Proposition 4 and the fact that MWISs̄ can be solved in polynomial
time [5, 11, 12, 14]. �

4 Min-max regret

This section is devoted to the minimization of the maximum regret (min-max regret), defined as:

(ReRMWIS) min
X∈K

max
s∈S

F ∗s − Fs(X).

A result similar to that of Proposition 1 holds.

Proposition 5. ReRMWIS is NP-hard even when S contains only two scenarios.
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Proof: Consider the reduction used for the proof of Proposition 1. Observe that the total weight
of the maximum weighted independent set for each scenario in isolation is the same, i.e. δ =
F ∗1 = F ∗2 =

∑n
i=1 max{ai−1, ai}. The same reasoning as in the proof of Proposition 1 leads to the

conclusion that the optimal value of ReRMWIS is less than or equal to θ = δ−Q if and only if the
EOPP instance is a YES instance. �

Proposition 6. ReRMWIS can be solved in pseudo-polynomial time when S is bounded.

Algorithm 1 can be used to solve ReRMWIS in pseudo-polynomial time if the following modifica-
tions are made:

1. In line 5, compute Fn+1

(
α1, . . . , α|S|

)
= maxs∈S {F ∗s − αs}.

2. In line 12, use min instead of max.

The time complexity of the algorithm remains the same.

Proposition 7. ReRMWIS is strongly NP-hard when S is unbounded.

Proof: Consider exactly the same layered graph G as built in the proof of Proposition 3. Notice
that the optimal objective values for each scenario s ∈ S individually are F ∗s = mB. The same
reasoning as in the proof of Proposition 3 leads to the conclusion that there exists a 3-partition if
and only if ReRMWIS has an optimal value less than or equal to (m− 1)B. �

Next, we again consider a Cartesian scenario set. Recall that in this case S =
∏n

i=1Wi, where
the set Wi contains all the possible weights of vertex i. We define Li = min{w ∈ Wi} and
Ui = max{w ∈Wi} and let W ′i = {Li, Ui} (W ′i is a singleton if Li = Ui). We define a new scenario
set with at most 2n scenarios as S′ =

∏n
i=1W

′
i .

Proposition 8. When S is a Cartesian product, a solution to ReRMWIS can be obtained by solving
a reduced instance where S is replaced by S′.

Proof: Let X ∈ K. We define Z(X) = max{F ∗s −Fs(X) : s ∈ S} and Z ′(X) = max{F ∗s −Fs(X) :
s ∈ S′} and we want to show that Z(X) = Z ′(X). Clearly, Z(X) ≥ Z ′(X) since S′ ⊆ S. Let s0 ∈ S
such that Z(X) = F ∗s0 − Fs0(X). If s0 ∈ S′ then Z(X) = Z ′(X); otherwise (s0 /∈ S′) let X0 ∈ K
such that F ∗s0 =

∑n
i=1w

s0
i x

0
i ; then consider the scenario s1 ∈ S′ defined as follows. If x0

i = 1 then
ws1
i = Ui, else ws1

i = Li. We have F ∗s0 ≤
∑n

i=1w
s1
i x

0
i ≤ F ∗s1 . Moreover,

Z ′(X) ≥ F ∗s1 −
n∑

i=1

ws1
i xi ≥

n∑
i=1

ws1
i x

0
i −

n∑
i=1

ws1
i xi =

n∑
i=1

ws1
i

(
x0
i − xi

)
≥

n∑
i=1

ws0
i

(
x0
i − xi

)
= Z(X).

Therefore, Z(X) = Z ′(X) and by taking the minimum over X ∈ K we have the required proof. �

Notice that Proposition 8 does not imply straightforward complexity results because the scenario
set is still a Cartesian product.

5 Conclusions

In this paper, we have studied the robust maximum weighted independent-set problem on interval
graphs with two different criteria, namely the absolute robustness criterion and the min-max regret
criterion. For a discrete scenario set, we prove that the problem is NP-hard for each of the robustness
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criteria but solvable in pseudo-polynomial time when there is a constant number of scenarios. We
show that the problem is strongly NP-hard when the set of scenarios is unbounded. For the scenario
set given as a Cartesian product, the problem is equivalent to a maximum weighted independent-set
problem on the same interval graph but without uncertainty for the first objective function, and
we find that the scenario set can be reduced for the second objective function.
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