Combining intercropping with semiochemical releases: optimization of alternative control of *Sitobion avenae* in wheat crops in China

Guang Wang¹, Liang-Liang Cui¹, Jie Dong¹, Frédéric Francis², Yong Liu¹* & John Tooker³

¹Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China; ²Functional & Evolutionary Entomology, Gembloux Agro-Bio-Tech, University of Liége, Gembloux, Belgium; ³Department of Entomology, The Pennsylvania State University, University Park, PA, USA

Accepted: 25 May 2011

Key words: intercrop, methyl salicylate, oilseed rape, wheat aphid, natural enemy, diversification, sustainable control, Hemiptera, Aphididae, crop yield, parasitoid, predator

Abstract

Overreliance on pesticides has large environmental and human health costs that compel researchers and farmers to seek alternative management tactics for crop pests. For insect pests, increasing crop species diversity via intercropping and using semiochemicals to alter local arthropod populations have separately proven effective at reducing pest densities. Here, we combine these two tactics in an effort to gain better control of *Sitobion avenae* (Fabricius) (Hemiptera: Aphididae), the English grain aphid, a major pest of cereal production worldwide. We conducted field experiments over 2 years testing the effectiveness of combining intercropping of wheat and oilseed rape with release of methyl salicylate (MeSA). We found that maximum and mean aphid densities were highest in wheat monocultures, significantly lower in intercropped plots and MeSA plots, and lowest when intercropping and MeSA release were combined by obtaining highest densities of predatory ladybeetles and parasitoids rates. Importantly, grain yield and quality showed a similar pattern: they were highest for combined intercropped/MeSA plots, intermediate in plots with intercropping or MeSA alone, and lowest in control monoculture plots. Our results suggest that combining these two tactics holds significant promise for improved management of aphid populations and emphasize the need to integrate alternative pest control approaches to optimize sustainable insect pest management.

Introduction

Efficiently controlling insect pest populations in agricultural crops is vital to optimizing yield and farm profitability. For cereal grains and many other crops produced in temperate climates, aphids are among the most challenging insect species to manage because their populations can increase quickly, their feeding can directly and indirectly damage the crop and influence yield, and they can vector yield-sapping pathogens (Van Emden & Harrington, 2007). Among aphid species, the English grain aphid [*Sitobion avenae* (Fabricius)] (Hemiptera: Aphididae)] can be particularly problematic (Vickerman & Wratten, 1979; Hansen, 1995). This pest species attacks a range of small grains, feeding on phloem and spreading viruses (Van Emden & Harrington, 2007). In wheat [*Triticum aestivum* L. (Poaceae)] production, *S. avenae* can frequently cause economic damage, necessitating routine insecticide use. To reduce reliance on this pesticide use and associated economic, environmental, and health costs, researchers are exploring alternative, more sustainable strategies for managing pest populations.

A substantial body of literature has illustrated that insect pests are less problematic in areas with increased plant species diversity (e.g., Andow, 1991; Landis et al., 2000). However, increasing local plant species diversity may be difficult for many growers. A simple within-field solution to increasing local plant species diversity is intercropping, which can reduce insect pest populations compared with monocultures (Andow, 1991; Landis et al., 2000; Smith & McSorley, 2000). Oilseed rape, *Brassica napus* L. (Brassicaceae), is an economically important crop that has been widely used to examine the influence of crop diversification on abundance of arthropod pests and natural enemies...
In China, oilseed rape intercropped with wheat has been demonstrated to significantly reduce the density of wheat aphids when compared to wheat monoculture (Wang et al., 2008, 2009). In addition to intercropping, semiochemicals have also been shown to be useful for managing pest populations (James, 2003, 2005; James et al., 2004). Semiochemicals are natural chemical cues that mediate interactions between organisms such as plants and insects (Nordlund & Lewis, 1976). When attacked by herbivorous arthropods, many, if not most, plant species release volatile compounds that can act as repellents for herbivores or as attractants for natural enemies of herbivores, such as predators and parasitoids (Takabayashi & Dicke, 1996). Among semiochemicals, methyl salicylate (MeSA) is a volatile plant compound known to be very important for inducing resistance against pathogens and some herbivores (Shulavea et al., 1997). Methyl salicylate has also been demonstrated to be repellent to *Rhopalosiphum padi* (L.) and other cereal aphids (Pettersson et al., 1994; Glinwood & Pettersson, 2000; Ninkovic et al., 2003), whereas it has increased abundance in crops of predaceous beetles (e.g., *Coccinella septempunctata* L., *Stethorus punctum picipes* Casey), lacewings (e.g., *Chrysopa nigricornis* Burmeister, *Hemerothus* spec.), and bugs [e.g., *Deraeocoris brevis* (Uhler) and *Orius tristicolor* (White)] (James, 2003, 2005; James et al., 2004; Zhu & Papk, 2005).

Although both intercropping and semiochemicals can be effective in reducing aphid populations, to the best of our knowledge, thus far, these two tactics have been used independently. In this study, we combined the two tactics to determine whether the influences on aphid populations and crop yields of wheat intercropped with oilseed rape and MeSA release were additive or even synergistic.

Materials and methods

To test the combined influence of intercropping and semiochemical release on aphid populations, we conducted field experiments in two consecutive years at the experimental farm of Shandong Agricultural University, Shandong Province, China (36°09′N, 117°09′E). For these experiments, we used wheat variety ‘Lumai 2’ and oilseed rape variety ‘Yuyou 5’. Both varieties are currently used commercially in China, for instance in provinces Shandong and Henan. For the semiochemical portion of the experiments, MeSA (≥99.7%) was obtained from the Chinese Academy of Military Medical Sciences.

Field experiments

The field experiments comprised four treatments: (1) wheat monocultures, (2) wheat intercropped with oilseed rape, (3) MeSA release in wheat crop, and (4) wheat intercropped with oilseed rape and MeSA release. The four treatments were arranged in a completely randomized design with 10 × 10-m plots, and each treatment was replicated three times. Plots were bordered on all sides by 10-m-wide paths to decrease the possibility of natural enemies dispersing among treatments. Experimental fields were established in fall when wheat and oilseed rape were planted. Wheat was planted in 20-cm-apart rows at a rate of 120 kg ha\(^{-1}\) on 11 and 15 October in 2007 and 2008, respectively. Oilseed rape was grown at the same time with wheat and kept in a greenhouse until seedlings were transplanted into the field plots on 10 November of each year. Seedlings had six true leaves at transplanting. Oilseed rape plants were spaced 40 cm apart within plots. Intercropped plots had eight rows of wheat, two rows of oilseed rape, and then the pattern repeated (Wang et al., 2009). All treatments were fertilized with 150:50:25 (NPK) kg ha\(^{-1}\), and no insecticides or herbicides were used in the whole experimental area. Plots were irrigated twice in each year, once during seedling establishment and once during seed fill.

To release MeSA, we used a slow-release apparatus based on a small cylindrical plastic box (inner diameter 6.5 cm, 4 cm tall) containing a sponge. The chemical was injected into the sponge inside the box, which had four 2-cm holes drilled through the top. The plastic boxes were attached to crabsticks and spaced 1 m above the ground, set at the center of each plot, one box for each plot. Boxes emitted doses of 120 mg MeSA m\(^{-2}\) per week, which was based on a previous study (Pettersson et al., 1994). The first application of MeSA was made at the jointing stage on 16 and 17 April, in 2008 and 2009, respectively, and subsequently applied every 7 days, for four times in 2008 and five times in 2009.

Sampling of wheat aphids and natural enemies

To evaluate the influence of the four treatments on insect populations, we sampled plots for *S. avenae* and its predators and parasitoids. To sample *S. avenae*, we used a ‘Z-shaped’ sampling pattern in which 10 sampling sites were selected within each plot. At each sampling site, we randomly selected 10 wheat tillers and counted the *S. avenae* on all the tillers (10 sites, 10 tillers per site: 100 tillers per plot). For predatory lady beetles (i.e., *C. septempunctata*, *Harmonia axyridis* Pallas, and *Propylaea japonica* Thunberg), we counted all stages of beetles found on wheat plants within five quadrates randomly positioned within each plot, each quadrat was 0.2 m\(^2\). For aphid parasitoids (i.e., *Aphidius avenae* Haliday and *Aphidius gifuensis* Ashmead), we counted the aphid mummies on the same 100 wheat tillers mentioned above for *S. avenae*. Parasitism
rates (derived from mummy counts) were calculated at the end of each sampling period. Insect species were sampled at 3-day intervals from 16 April to 22 May in 2008 and from 17 April to 23 May in 2009 (from wheat jointing stage to mature stage).

Statistical analysis
Population densities of insect species were compared among treatments using analysis of variance (ANOVA), followed by comparison of means using Duncan’s multiple range test. In both years, yield (tonnes ha\(^{-1}\)) and thousand grain weight (TGW; g) were calculated for each treatment. These data were analyzed by one-way ANOVA followed by Duncan’s multiple range test. Effects of years and treatments and the possible interaction between wheat–oilseed rape intercropping and MeSA release were analyzed using general linear model (GLM) procedure. Where necessary, the data used in ANOVA and GLM were transformed using √x to meet assumptions of normality (SPSS for Windows, version 16.0).

Results

Maximum *Sitobion avenae* densities
In both 2008 and 2009, significant differences were detected in maximum *S. avenae* densities per 100 tillers between the control and the three other treatments (2008: \(F_{3,8} = 107.64, P<0.01\); 2009: \(F_{3,8} = 44.08, P<0.01\); Table 1). In both years, aphid maximum densities were lowest in the combined intercropping–MeSA plots compared to the other three treatments. No significant difference was detected between intercropping-alone and MeSA-alone plots.

Aphid densities, predatory lady beetles, and parasitoids of *Sitobion avenae*
In both 2008 and 2009, significant differences were detected in the mean numbers of aphids per 100 tillers.

Table 1 Effects of treatments on mean (± SE) maximum *Sitobion avenae* densities during 2008 and 2009

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Year 2008</th>
<th>Year 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2 483 ± 77\text{a}</td>
<td>2 218 ± 76\text{a}</td>
</tr>
<tr>
<td>Wheat–oilseed rape intercropping</td>
<td>1 120 ± 77\text{b}</td>
<td>1 145 ± 83\text{b}</td>
</tr>
<tr>
<td>MeSA release in wheat crop</td>
<td>1 320 ± 71\text{b}</td>
<td>1 361 ± 67\text{b}</td>
</tr>
<tr>
<td>Intercropping with MeSA release</td>
<td>761 ± 60\text{c}</td>
<td>935 ± 106\text{c}</td>
</tr>
<tr>
<td>MeSA, methyl salicylate.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Means in the same column followed by different letters are significantly different (Duncan’s multiple range test: \(P<0.05\)).

between the control and the other three treatments (2008: \(F_{3,8} = 97.58, P<0.01\); 2009: \(F_{3,8} = 90.11, P<0.01\); Figure 1A). The average densities of wheat aphids were highest in control plots and lowest in combined intercropping–MeSA plots. No significant difference in aphid densities was detected between MeSA and intercropped plots.

Consistent with our results for aphid densities, predatory lady beetles were most abundant in combined intercrop–MeSA plots, and these populations were significantly more abundant than intercropped-alone or MeSA-alone plots, which contained in turn significantly more predatory lady beetles than monoculture controls (2008: \(F_{3,8} = 15.43, P<0.01\); 2009: \(F_{3,8} = 23.59, P<0.01\); Figure 1B). Mean parasitism rates of *S. avenae* showed a pattern similar to that of lady beetles (2008: \(F_{3,8} = 11.22, P<0.01\); 2009: \(F_{3,8} = 18.32, P<0.01\); Figure 1C).

Yield and quality

In both years, yield and TGW differed significantly between treatments (yield, 2008: \(F_{3,8} = 15.32, P<0.01\); 2009: \(F_{3,8} = 11.39, P<0.01\); TGW, 2008: \(F_{3,8} = 15.94, P<0.01\); 2009: \(F_{3,8} = 9.51, P<0.01\); Table 2). Yield and TGW in combined intercrop–MeSA plots were significantly higher than in the other three plots. However, in 2008, no significant difference was detected among the other three treatments in yield, whereas in 2009, no significant difference in TGW was detected between intercropped and monoculture plots.

Two-factor effects
In addition to within-year analyses, we also compared results across years with two-factor ANOVA (Table 3). Between the 2 years, yield and aphid density were not significantly different, but we did detect significant differences in the number of lady beetles, parasitism rate, and TGW. Other than for parasitism rates, no significant difference was detected in interactions between year and treatments (Table 3). Between the 2 years, we also detected significant interactions between intercropping and MeSA release treatment for aphids, but no significant interaction was detected for lady beetles, parasitism rates, yields, and TGWs (Table 4).

Discussion
Our results support the combined power of intercropping and semiochemical release. Control of aphids attained when the two approaches were combined was significantly improved compared to intercropping and MeSA release individually. In fact, the effect on aphid control was so strong that the two tactics seemed to act in synergy. The mechanism of this improved control might have been due
to two factors. First, MeSA may have been directly repellent to *S. avenae*, reducing initial aphid colonization early in the season (Pettersson et al., 1994). Alternatively, MeSA may have increased the mobility of aphids, enhancing their exposure to predators (Griffiths et al., 1985; Sunderland et al., 1986). Increased mobility may also have reduced time spent in optimal feeding sites, preventing populations from growing as quickly as they could (Wiktelius, 1989). Second, combined MeSA and intercropping plots may have developed larger populations of natural enemies that killed more aphids. This notion was supported by the greater numbers of lady beetles and parasitized aphids in combined plots (Figure 1B and C). These natural enemies could have been attracted to plots by MeSA (Zhu et al., 1999; Kean et al., 2003; James & Price, 2004; Prinsloo et al., 2007) and then maintained within the combined plots by alternative prey provided by intercropped plants. As for some other natural enemy species

\[\text{Figure 1} \quad \text{Field experiment testing the influence of four treatments (wheat monoculture, wheat intercropped with oilseed rape, methyl salicylate (MeSA) release in wheat crop, and the combination of MeSA and wheat–oilseed intercrop) on insect populations (mean number per 100 tillers ± SE). (A) *Sitobion avenae*, (B) lady beetles, and (C) *S. avenae* parasitized. Bars capped with different letters within a year are significantly different (Duncan’s multiple range test: } P < 0.05 \). \]
(e.g., spiders, lacewings, and syrphids), their numbers were too small to have any significant effect on the aphids. On oilseed rape plants, we found at least two other aphid species, *Myzus persicae* Sulzer and *Lipaphis erysimi* (Kaltenbach), which could have served as alternative hosts for a parasitoid (i.e., *A. gifuensis*) and predators (i.e., *P. japonica*, *H. axyridis*, and *C. septempunctata*) during the early stage of wheat growth, because these two aphid species reach their peaking period about 10 days earlier than that of *S. avenae* in intercropping plots.

The flowering period of oilseed rape in Shandong province is from 15 to 30 days earlier than that of wheat, which allows for a significant increase in yield and thousand grain weight (TGW) in the intercropping plot compared to the control plot. The results of the analyses are presented in Tables 2, 3, and 4.

Table 2: Mean (± SE) yield and thousand grain weight (TGW) of wheat in treatment plots

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Yield (tonnes ha⁻¹)</th>
<th>TGW (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2008</td>
<td>2009</td>
</tr>
<tr>
<td>Control</td>
<td>5.30 ± 0.11c</td>
<td>5.39 ± 0.09b</td>
</tr>
<tr>
<td>Wheat–oilseed rape intercropping</td>
<td>5.88 ± 0.19b</td>
<td>5.63 ± 0.10b</td>
</tr>
<tr>
<td>MeSA releases in wheat crop</td>
<td>6.06 ± 0.12b</td>
<td>5.72 ± 0.18b</td>
</tr>
<tr>
<td>Intercropping with MeSA releases</td>
<td>6.65 ± 0.14a</td>
<td>6.42 ± 0.13a</td>
</tr>
</tbody>
</table>

Means in the same column followed by different letters are significantly different (Duncan’s multiple range test: P<0.05).

Table 3: F-statistics for effect of year and treatment on abundance of *Sitobion avenae*, lady beetles, parasitism rate, yield, and thousand grain weight (TGW)

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>d.f.</th>
<th>Aphids</th>
<th>Lady beetles</th>
<th>Parasitism rate</th>
<th>Yield</th>
<th>TGW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>3</td>
<td>190.84**</td>
<td>38.19**</td>
<td>71.04**</td>
<td>26.04**</td>
<td>24.44**</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
<td>0.44ns</td>
<td>31.93**</td>
<td>186.32**</td>
<td>3.42ns</td>
<td>9.90**</td>
</tr>
<tr>
<td>Treatment*year</td>
<td>3</td>
<td>2.82ns</td>
<td>0.33ns</td>
<td>6.62**</td>
<td>0.97ns</td>
<td>0.27ns</td>
</tr>
</tbody>
</table>

**P<0.01, ns: P>0.05.

Table 4: F-statistics for effect of wheat–oilseed rape intercropping and methyl salicylate (MeSA) releases on abundance of *Sitobion avenae*, lady beetles, parasitism rate, yield, and thousand grain weight (TGW)

<table>
<thead>
<tr>
<th>Year</th>
<th>Source of variation</th>
<th>Aphids</th>
<th>Lady beetles</th>
<th>Parasitism rate</th>
<th>Yield</th>
<th>TGW</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Intercropping</td>
<td>99.68*</td>
<td>16.03*</td>
<td>19.48*</td>
<td>16.99*</td>
<td>13.31*</td>
</tr>
<tr>
<td></td>
<td>MeSA</td>
<td>147.01*</td>
<td>30.25*</td>
<td>12.85*</td>
<td>29.68*</td>
<td>15.04*</td>
</tr>
<tr>
<td></td>
<td>Intercropping*MeSA</td>
<td>46.06*</td>
<td>1.29ns</td>
<td>1.33ns</td>
<td>0.06ns</td>
<td>0.18ns</td>
</tr>
<tr>
<td>2009</td>
<td>Intercropping</td>
<td>139.81*</td>
<td>31.14*</td>
<td>19.88*</td>
<td>12.55*</td>
<td>17.56*</td>
</tr>
<tr>
<td></td>
<td>MeSA</td>
<td>113.66*</td>
<td>39.47*</td>
<td>33.47*</td>
<td>18.01*</td>
<td>30.21*</td>
</tr>
<tr>
<td></td>
<td>Intercropping*MeSA</td>
<td>16.87*</td>
<td>1.65ns</td>
<td>1.62ns</td>
<td>2.69ns</td>
<td>0.05ns</td>
</tr>
</tbody>
</table>

*P<0.05, ns: P>0.05.
April, more than 8 days before the *S. avenae* population peak. Therefore, oilseed rape likely provided alternative resources, such as floral nectar and/or pollen, that benefited natural enemies and facilitated improved pest control. As mentioned earlier, we found other aphid species that could have helped support natural enemies in intercrop–MeSA plots.

Although wheat–oilseed rape intercropping enhanced the abundance of predators and parasitoids, they may have failed to suppress the initial aphid colonization of wheat, because at the time of transplant of the young small oilseed rape plants and the wheat seedlings, there was abundant bare soil in those plots. Aphids locate potential host plants by contrasting the plant with the soil background (Kennedy et al., 1959, 1961), so the appearance of bare soil may have encouraged aphids to preferentially colonize wheat in wheat–oilseed rape intercropping fields. Alternatively, as a repellent to *S. avenae* and an attractant to its natural enemies, MeSA release in intercropped plots may have offset initial aphid colonization, enhancing the killing action of predators and parasitoids.

Our results strongly support the efficacy of combining intercropping and semiochemical release to attain improved pest control in small grain production. Whereas these two tactics have been shown to improve pest control independently, their combined power is even greater. Based on the simplicity of each tactic, there would appear to be only a few minor barriers to adoption by growers. Given widespread adoption, integrating these two tactics would appear to hold great promise for improving sustainable pest management while reducing reliance on insecticides.

Acknowledgements

We thank the international cooperation Shandong project, with financial support of the Cooperation Universitaire au Développement (CUD) from Belgium, and the National Science and Technology project (2010 DFA 32810) for funding. Thanks also to the Cotton and Oil Crop Institute of Henan Academy of Agricultural Sciences at Zhengzhou, Henan, for supplying oilseed rape variety ‘Yuyou 5’. We thank the two anonymous reviewers for their constructive comments.

References

Prinsloo G, Ninkovic V, van der Linde TC, van der Westhuizen AJ, Pettersson J & Glinwood R (2007) Test of semiochemicals and a resistant wheat variety for Russian wheat aphid...
Dear Author,
During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers on the query sheet if there is insufficient space on the page proofs. Please write clearly and follow the conventions shown on the attached corrections sheet. If returning the proof by fax do not write too close to the paper’s edge. Please remember that illegible mark-ups may delay publication.

Many thanks for your assistance.

<table>
<thead>
<tr>
<th>Query reference</th>
<th>Query</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>AUTHOR: Please check and approve the edit made in the article title.</td>
<td>Yes</td>
</tr>
<tr>
<td>Q2</td>
<td>AUTHOR: Journal style requires that the full postal address should be given. Please check and provide missing details.</td>
<td>We checked</td>
</tr>
<tr>
<td>Q3</td>
<td>AUTHOR: James et al., 2004 has not been included in the Reference List, please supply full publication details.</td>
<td>Replaced of James & Price, 2004</td>
</tr>
<tr>
<td>Q4</td>
<td>AUTHOR: Zhu et al., 2005 has been changed to Zhu and Papk, 2005 so that this citation matches the Reference List. Please confirm that this is correct.</td>
<td>Yes</td>
</tr>
<tr>
<td>Q5</td>
<td>AUTHOR: Please give manufacturer information for ‘SPSS’: company name, town, state (if USA), and country.</td>
<td>SPSS company, Illinois, USA</td>
</tr>
<tr>
<td>Q6</td>
<td>AUTHOR: Please define ‘TWG’.</td>
<td>Replaced of TGW</td>
</tr>
<tr>
<td>Q7</td>
<td>AUTHOR: Please check the journal title ‘Chinese Journal of Applied Ecology’.</td>
<td>Yes, it's right</td>
</tr>
</tbody>
</table>
USING E-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

Required Software
Adobe Acrobat Professional or Acrobat Reader (version 7.0 or above) is required to e-annotate PDFs. Acrobat 8 Reader is a free download: http://www.adobe.com/products/acrobat/readstep2.html

Once you have Acrobat Reader 8 on your PC and open the proof, you will see the Commenting Toolbar (if it does not appear automatically go to Tools>Commenting>Commenting Toolbar). The Commenting Toolbar looks like this:

![Commenting Toolbar](image)

If you experience problems annotating files in Adobe Acrobat Reader 9 then you may need to change a preference setting in order to edit.

In the “Documents” category under “Edit – Preferences”, please select the category ‘Documents’ and change the setting “PDF/A mode:” to “Never”.

![PDF/A View Mode](image)

Note Tool — For making notes at specific points in the text
Marks a point on the paper where a note or question needs to be addressed.

![Note Tool](image)

How to use it:
1. Right click into area of either inserted text or relevance to note
2. Select Add Note and a yellow speech bubble symbol and text box will appear
3. Type comment into the text box
4. Click the X in the top right hand corner of the note box to close.

Replacement text tool — For deleting one word/section of text and replacing it
Strikes red line through text and opens up a replacement text box.

![Replacement text tool](image)

How to use it:
1. Select cursor from toolbar
2. Highlight word or sentence
3. Right click
4. Select Replace Text (Comment) option
5. Type replacement text in blue box
6. Click outside of the blue box to close

Cross out text tool — For deleting text when there is nothing to replace selection
Strikes through text in a red line.

![Cross out text tool](image)

How to use it:
1. Select cursor from toolbar
2. Highlight word or sentence
3. Right click
4. Select Cross Out Text
Approved tool — For approving a proof and that no corrections at all are required.

<table>
<thead>
<tr>
<th>Change to small capitals</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED</td>
</tr>
<tr>
<td>Change to lower case</td>
</tr>
<tr>
<td>Change italic to upright type</td>
</tr>
</tbody>
</table>

How to use it:
1. Click on the Stamp Tool in the toolbar
2. Select the Approved rubber stamp from the ‘standard business’ selection
3. Click on the text where you want to rubber stamp to appear (usually first page)

Highlight tool — For highlighting selection that should be changed to bold or italic.

How to use it:
1. Select Highlighter Tool from the commenting toolbar
2. Highlight the desired text
3. Add a note detailing the required change

Attach File Tool — For inserting large amounts of text or replacement figures as a file.

How to use it:
1. Click on paperclip icon in the commenting toolbar
2. Click where you want to insert the attachment
3. Select the saved file from your PC/network
4. Select appearance of icon (paperclip, graph, attachment or tag) and close

Pencil tool — For circling parts of figures or making freeform marks

How to use it:
1. Select Tools > Drawing Markups > Pencil Tool
2. Draw with the cursor
3. Multiple pieces of pencil annotation can be grouped together
4. Once finished, move the cursor over the shape until an arrowhead appears and right click
5. Select Open Pop-Up Note and type in details of required change
6. Click the X in the top right hand corner of the note box to close.
Help
For further information on how to annotate proofs click on the Help button to activate a list of instructions: