

ESR evidence of superoxide anion, hydroxyl radical and singlet oxygen generation during the photosensitization of PPME in HCT-116 cells

C.Quoilin, P.-H. Guelluy, A. Grammenos and M. Hoebeke Laboratory of Biomedical Spectroscopy, University of Liège, Belgium

1. INTRODUCTION

Photodynamic therapy (PDT) appears to be a powerful technique against several common types of cancers (skin, prostate, esophagus,...). This treatment involves the combination of photoactive molecules (non-toxic in the dark), known as **photosensitizers** (PS), and light radiations belonging to the visible spectrum. The absorption of a photon by the PS, in the presence of oxygen, starts the creation of **reactive oxygen species** (ROS) that can damage cellular constituents leading to necrosis or apoptosis as final issue [1].

Photosensitizer molecules have a high probability of triplet state formation after excitation. PS in the triplet state can react with its environment via two competing pathways:

- Type-I photochemical reaction: transfer of electrons to solvent before ROS production;
- Type-II photochemical reaction: transfer of energy to oxygen to form the very reactive singlet oxygen [2].

2. EXPERIMENT

The photosensitizer used during our experiments is the *Pyropheophorbide-a methyl ester* (PPME). This 2nd generation PS is studying largely on cancerous cells *in vitro* for nearly a decade and seems to be a potent candidate for future clinical *in vivo* applications.

Our study has consisted of identifying and quantifying the ROS generation induced by light-activation of intracellular PPME.

Protocol:

5 μM of PPME has been incubated in HCT-116 cells (colon cancer cells) 20h before electron spin resonance (ESR) analysis. After excitation of cells at 633 nm (66kJ/m²), ESR spectrum were recorded.

3. ELECTRON SPIN RESONANCE

The ESP Brucker 300 used for the experiments

Electron Spin Resonance (ESR) spectroscopy is a technique for studying chemical species that have one or more unpaired electrons: paramagnetic species.

ESR allows the quantification and qualification of ROS produced by cells themselves, by oxidative stress (drug) or by therapeutic treatments (photodynamic therapy).

4. SPIN TRAPPING TECHNIQUE

The detection of short-lived free radicals by ESR must be indirect.

The spin trapping technique makes use of a diamagnetic compound, the spin trap, which reacts with a free radical creating a relatively stable ESR-observable radicalar component, the spin adduct [3].

$$R^{\centerdot} + spin trap \rightarrow spin adduct^{\centerdot}$$

Due to the intracellular localization of PPME, the majority of ROS are generated inside HCT-116. ESR experiments were thus performed using an intracellular located spin trap, POBN (4-pyridyl 1-oxide-N-tert-butylnitrone), in order to detect directly in situ the ROS production.

5. DETECTION OF HYDROXYL RADICALS

During the photosensitization of the PPME, hydroxyl radicals are produced via the Fenton reaction:

$$O_2^{*-} + Fe^{3+} \rightarrow^3 O_2 + Fe^{2+}$$

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^-$$

<u>RESULTS</u>: Irradiation of PPME in HCT-116 cells in the presence of POBN spin trap and ethanol (EtOH) scavenger leads to the apparition of the ESR spectrum characteristics of POBN/ethoxy adduct.

Chemical substances	Property	Reduction of the signal
Catalase (CAT)	Hydrogen peroxide quencher	30%
Superoxide dismutase (SOD)	Superoxide anion quencher	30%
Desferroxamine	Iron chelator	20%

ESR spectrum of intracellular photoexcited PPME 5μM control (A) with catalase (B) with SOD (C) with desferroxamine (D)

6.DETECTION OF SINGLET OXYGEN

RESULTS:

ESR spectrum of intracellular photoexcited PPME 5μΜ
(A) control
(B) with DABCO

Chemical substancesPropertyReduction of the signalDABCOSinglet oxygen quencher70%

7. CONCLUSIONS

- •It was shown using ESR associated with spin trapping technique that photoexcited PPME is able to generate superoxide anion, hydroxyl radical and singlet oxygen.
- •Production of POBN/ethoxy was partly inhibited by SOD, catalase and desferroxamine, suggesting that the Fenton reaction is the way of formation of hydroxyl radical.
- •The complementary inhibition of POBN/ethoxy production by DABCO is consistent with singlet oxygen generation by PPME. Furthermore, it makes appear the possibility of singlet oxygen detection by POBN and EtOH.
- •All our results seem to indicate that PPME is a 30%/70% type I/ type II sensitizer in HCT 116 cells.

REFERENCES

[1] A P. Castano, T N. Demidova, M R. Hamblin, «Mechanics in photodynamic therapy», in *Photodiagonis and Photodynamic Therapy* (2004) 1, 279-293 [2] K. Plaetzer and al., «Photophysics and photochemistry of photodynamic therapy: fundamental aspects», in *Lasers Med Sci* (2009) 24, 259-268 [3] C. Anderson Evans, «Spin trapping», in *Aldrichimica Acta* (1979) 12, 2