STOCHASTIC BEHAVIOUR OF EUROPEAN STOCK
MARKETS INDICES

Albert Corhay
University of Liége anagx}lmverslty of Limburg

A. Tourani Rad
University of Limburg.

-
—

1. Introduction

This paper is concerned with modelling return generating
processes in several European stock markets.
Distributional properties of daily stock returns play a
crucial role in valuation of contingent claims and mean-
variance asset pricing models, as well as in their empirical
tests. A common assumption underlying a considerable
body of finance literature is that the logarithm of stock
price relatives are independent and identically distributed
according to a normal distribution with constant variance,
while little attention is paid to the the empirical fit of the
postulated process. For instance, the mean-variance asset
pricing models of Sharpe (1964) and the option pricing
model of Black and Scholes (1973) are based on the
assumption of normally distributed returns. Moreover,
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the normality assumption and the parameter stability are
necessary for most of statistical methods usually applied in
empirical studies.

As early as 1963, Mandelbrot observed that returns series
tend not to be independent over time, but characterised
by succession of stable and volatile periods, that is, "large
changes tend to be followed by large changes - of either
sign - and small changes tend to be followed by small
changes". He also observed that the distributions of
returns are leptokurtic and proposed the family of the
stable Paretian distributions as an alternative to the
normal distribution. Such Paretian distributions with
characteristic exponent of less than two indeed exhibit
heavy tails and conform better to the distributions of
returns series. Fama (1965) contributed further evidence
supporting Mandelbrot's hypothesis. ’

While the approach of these studies is based on the
empirical fit of observed stock return distributions, an
alternative approach relies on describing the process that
could generate distributions of returns having fatter tails
than normal distributions. For instance, Paretz (1972),
Blattberg and Gonedes (1974) showed that the scaled-t
distribution, which can be derived as a continuous
variance mixture of normal distributions, fits better daily
stock returns than infinite variance stable Paretian
distributions. Other models using different mixtures of
normal to generate distributions that would account for
the higher magnitude of kurtosis, are, among others, the
Poisson mixtures of Press (1967) and the discrete
mixtures of Kon (1984). Furthermore, Clark (1973),
Merton (1982) and Tauchen and Pitts (1983) put forward
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models where the distribution of variance is a function of
the arrival of the information rate, the trading activity and

the trading volume. Such models are, however. too
complex to be used in empirical applications.

There i{s yet no unanimity regarding the best stochastic
return generating model. One of the most recent
proposed class of return generating pracess in the
literature that can capture the empirical characteristics of
stock return series, i.e. changing variance and high level of
kurtosis, is the class of autoregressive conditional
heteroskedastic processes introduced by Engle (1982)
and its generalized version by Bollerslev (1986). Empirical
studies showed indeed that such processes are successful
in modelling various time series. Sée, for example,
French, Schwert and Stambaugh (1987), Baillie and
Bollerslev (1989), Hsieh (1989) and Baillie and De
Gennaro (1990), Interested readers can consult Taylor

(1990) who provides many references of applications of
this class of models in finance.

As far as stock markets are concerned, this class of
models has been mainly applied to American stock
markets with the exception of the Amsterdam (Corhay and
Tourani Rad, 1990) and the London (Taylor and Poon,
1992) stock exchanges. In this paper we apply these
models to stock price indices of several European
countries. To that end, we have selected the following five
countries: France, Germany, Italy, the Netherlands and the
United Kingdom. The study of stock price behaviour in
these markets is interesting in that it can provide further
evidence in favour of or against the use of this type of
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models for describing stock price behaviour in smaller
and thinner markets.

The rest of this paper is organised as follows. Section two
presents the data and descriptive statistics of all the five
countries. Section three determines which univariate
autoregressive moving average model fits the data best for
the countries of which returns series are serially
dependent. In section four, the class of autoregressive
conditional heteroskedastic models is presented and tests
for the presence of heteroskedasticity in the returns
series are carried out. The next section is then devoted to
the estimation of the best model for each country. In the

final section, comparisons between countries and
implications are drawn.

2, Data and descriptive statistics

The indices of five European stock markets were
collected from DATASTREAM for the period 1/1/1980 to
30/9/1990. They are indices for France (CAC General),
Germany (Commerzbank), Italy (Milan Banca), the
Netherlands (general CBS) and the U.K. (FT All-Shares).
The daily returns of these market indices are continuously
compounded returns. They are calculated as the
difference in natural logarithm of the index value for two
consecutivé days. Rt=log(Pt)-log(Pt-1).

We first carry out a detailed analysis of the distributional
and time-series properties of the stock market indices of
the five countries. Descriptive statistics for each country
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Table 1 — Sample Statistics on Daily Returns Series’

Statistics France Germany Italy Netherl. UK

Mean (x10°) .4699 2933 6819 6047 5109

t(mean=0) 2.3998 13757 2.5259 29956 2.9908
Variance (x103f 1074 .1274 2043 1142 0817

Skewness 15118 -1.1168 -9916 -5427 -1.6873
Kurtosis 16941 15,035 11738 13.4161 9.662
Range | o0.1979 02117 02315 0.2183 0.1778
Median (x103) | 0.0000 0.1105 0.0985 0.0000 0.8475
IQR (@3-Q1) 0.0093 00111 0.0119 0.0109 0.0103
D-statistic 00971 00749 00999 00678 00567

Log-Likelihood 11406. 11167. 10506. 11321. 11789.

*Values of the tests statistically significant at the one per
cent level are underlined.

are presented in table 1. They include the following
distributional parameters: mean, variance, skewness,
kurtosis, range, median and inter-quartile range (IQR).
The value of the maximized likelihood function when a
normal distribution is imposed on the data is also
reported. It can be observed that there are differences
across the countries regarding the mean and variance of
the returns series. All means are statistically significant,
except for Germany. Italy has the highest mean and
variance of returns. All distributions are negatively highly
skewed, indicating that they are non-symmetric.
Furthermore, they all exhibit high level of kurtosis
meaning distributions are more peaked and have fatter
tails than normal distributions. The presence of negative
skewness can be due to the inclusion of the crash of




53

October 1987 in the sample period. Corhay and Tourani
Rad (1990) show that the skewness of the distribution of
the Dutch index is negative but not statistically significant
for the period before the 1987 crash. A direct test of
normality has been carried out. Under the null hypothesis
of identically, independently normal distribution of
returns, the coefficients of skewness and excess kurtosis
are both zero. Their sample estimates have standard
deviations of \FGTE and V24/n, respectively, where n is the
number of observations in the series. This test always
rejects the .null hypothesis at a very high level of
significance. Moreover, the Kolmogorov-Smirnov
D-Statistic for the null hypothesis of normality has been
calculated, and it also rejects the hormality assumption at
a significant level of one per cent in all cases. The results
confirm the well known fact that daily stock returns are
not normally distributed, but are leptokurtic and skewed,
whatever the country concerned. It also appears that the
size of non-normality in stock returns of European
markets is much more pronounced than that observed by
Akgiray (1989) in the American market.

In order to test the hypothesis whether returns are strict
white noise, i.e. random walk, the Box-Pierce test
statistics up to lag 25 is calculated and presented in the
table 2. This is a joint test that the first k autocorrelation
coefficients are zero. Under the null hypothesis, that the
sample autocorrelations are not asymptotically correlated,
the Box-Plerce statistic, @=nY & p(1)2, has chi-square
distribution with k degrees of freedom, where pli) is the i-
th autocorrelation. The values of Q are all significant at the



Table 2 — Sample Autocorrelations of Daily Returns

Series*

France Germany Italy Netherl. UK
Pl ' J4s1 0284 L1367 -.0308 .1367
(.0292) (.0440) (.0351)\ '£0510) (.0651)
0 0455  -.0545 -0378 0018 .0477
(.0399) (.0353) (.0325) (.0532) (.0481)
03 _ 0273 0169  .0447  .0003 .0261
(.0353) (.0329) (.0372) (.0438) (.0394)
04 0218 0217 .0601  .0114 .0535
(.0307) (.0294) (.0337) (.0367) (.0479)
0s 0177  .0207 .0062 .0507 .0153
(.0285) (.0208) (.0300) (.0422) (.0385)
010 0661  .0308 .0682  .0207 .0541
(.0323) (.0332) (.0283) (.0339) (.0292)
P15 -0035  -.0131  .0283  .0116 .0294
' (.0292) (.0297) (.0259) (.0365) (.025%)
020 0302  -0027 .0413 0011 .0099
(:0277) (.0271) (.0267) (.0218) (.0269)
P25 -0249  -.0172  .0005 -.0319 -.030%
(.0268) (.0199) (.0258) (.0226) (.0209)
Q(25) 154.23 56,03 13958 4669 11113
Q*(25) 65.66 22.52 52684 17.32 26.30

-

Values of the tests statistically significant at the one per
cent level are underlined. Numbers in parentheses are
heteroskedasticity-consistent standard errors.

one per cent level, which means that the null hypothesis
of strict white noise is rejected, reflecting a rather long
range of dependency in the returns series. However, it can
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be questioned whether this test accounts for the full
probability distribution of the returns series since
heteroskedasticity can lead to the underestimation of the
standard error, ¥1/n, of each sample, and therefore to the
overestimation of the t- and x2-statistics. Diebold (1987)
provided a heteroskedasticity-consistent estimate of the
standard error for the i-th sample autocorrelation
coefficient:

-
S(l):V%[l +1§‘;1—Q) (1)

where yg2(i) is the i-th sample autocovariance of the
square data and ¢ is the sample standard deviation of the
data. These adjusted standard errors are presented in the
table 2 under their respective autocorrelation coefficient.
It can be seen that only few autocorrelation coefficients
are statistically different from zero. Using these adjusted
standard errors, Diebold proposed an adjusted Box-Pierce
statistic:

Q' = ifi,(c)m/(sm)’) (2)

which is asymptotically chi-square distributed with k
degrees of freedom, under the null hypothesis of no serial
correlation in the data. The values of Q° which are
presented in fable 2 are much lower than the non
adjusted ones. They are significant at one per cent level
for France and Italy only. So, even after adjusting for
heteroskedasticity, there remains some significant
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autocorrelations in the series of returns for these two
countries.

Looking at the autocorrelation coefficients, we can observe
that the first order coefficients are 0.1461 for France,
0.0284 for Germany., 0.1367 for Italy, -0.0308 for the
Netherlands and 0.1367 for the UK. These are significant
at one per cent level for France and Italy, and at five
percent for the UK, indicating that the daily index returns
for these countries are first order serially correlated. This
is in accordance with empirical findings for other stock
markets. Stock indices usually show a rather large
first-order autocorrelation, even |if autocorrelation
coefficients of individual stocks returns are very low. The
presence of autocorrelation in the index returns is due to
the existence of intertemporal cross covariance between
stock returns which is caused by some friction in the
trading process (Cohen, Hawawini, Maier, Schwartz and
Whitcomb (1980)). The rather low and insignificant
coefficients of the first order serial correlation in the
German and Dutch indices might be explained by the
important weight of a few large, frequently and highly
traded firms, of which returns are not autocorrelated, in
the calculation of the indices.

A comparison between the values of Q and Q" suggests that
the rejection of serial independence using Q, which is
based on the standard testing procedure, is due to the
presence of heteroskedasticity in the returns series. The
presence of significant values of Q* in the French and
Italian returns indices indicates, however, that these
returns series are not white noise processes.
Furthermore, the fact that the first lag autocorrelation is
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significant for these two countries at the one per cent
level and for the UK at the five per cent level implies the
rejection of white noise, 1.e. uncorrelated process.
Therefore, we have to eliminate the serial correlation in
these three series before searching for appropriate
models that could account for heteroskedasticity in the
returns. One way to do this is to apply Autoregressive
Moving Average (ARMA) models.

3. ARMA models

The class of univariate ARMA models might adequately
represent the behaviour of the stock returns. Therefore,
several ARMA models were applied to the returns of the
three countries which exhibit rather significant serial
dependence, namely, France. Italy and the UK. We found
that an AR(1) fits all three returns series best.

Ry=00 + 61 Ry + €t (3)

The estimates of the above regression model for each
country are presented in table 3. In order to observe
whether the residuals et obtained from equation (3) are
uncorrelated, we applied the same tests for normality and
serial correlation as for the returns series. As before, the
values of the autocorrelation coefficients and their
respective standard errors adjusted for heteroskedasticity
are presented in table 4. The first order autocorrelation
coefficient for all three countries is not significantly



Table 3 — The Autoregressive Model"

France Italy UK

Estimates of the model Ry = ¢p + ¢1R¢-1 + &t

¢0 ' .0004 .0006 .0004
ti60) 2.0704 2.1881 2.6220
1 1461 1367 1367
to1) 78140 73012 73075
F-statistic 61.0810 53.3160 53.4100
R2 0.0213 0187 0187
Fuller's test 2743.18 2750.64 2750.59

*Values of the tests statistically significant at the one per
cent level are underlined.

Table 4 — Sample Statistics on Daily Residuals Series"

France Italy UK
Mean (x103) | ~70000 .0000 .0000
t{mean=0) .0000 .0000 .0000
Variance (x1031r .1052 2005 .0802
Skewness -1.4215 =.8295 =1.307%
Kurtosis 17,3579 12,1476 16,8439
Range 0.2005 0.2361 0.1813
Median (x103) | -0.0035 -0.3102 0.2390
IOR (@3-Q1) 0.0089 0.0116 0.0102
D-statistic 0.0069 0.0097 0.0480

TValues of the tests statistically significant at the one per
cent level are underlined.
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- different from zero. Furthermore, the results indicate that
the AR(1) transformation of the returns provides an
uncorrelated series of residuals. One can indeed observe
that while the standard Box-Pierce statistics rejects the
null hypothesis of no serial correlation at the one per cent
-level of significance for France and Italy, and at the five
per cent level for the UK, the adjusted one does not reject
the null hypothesis at the one percent level for all three
“countries.

The estimate of ¢; is statistically significant at the one
percent level and the Dickey-Fuller test for unit roots
indicates that ¢; is significantly less than one. The three
series of returns appear to follow a stationary random
walk. As far as the assumption of normality of the residuals
is concerned, it can be rejected by the direct test of
normality as well as by the Kolmogorov-Smirnov D-statistic
at one percent significance level. The residual series
appear to be leptokurtic and skewed. Moreover, again a
comparison between values of Q and Q° in table 5 indicates
that the three residuals series still exhibit
heteroskedasticity.

The presence of heteroskedasticity in stock prices and in
the market model has been documented by, for example,
Morgan (1976) and Giaccoto and Ali (1982). But while
they focused on unconditional heteroskedasticity, in this
paper we use Engle's Autoregressive Conditional
Heteroskedasttc (ARCH) model which focuses on
conditional volétility movements. It is interesting to note
that, according to Diebold et al. (1988), the presence of
ARCH effect appears to be generally independent of
unconditional heteroskedasticity. Excess kurtosis
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Table 5 — Sample Autocorrelations of Daily Residuals

Series’
France Italy UK
1 -.0036 0075 -.0045
(.0328) (.0393). (.0660)
02 0216 -.0648 0275
(.0419) (.0321) (.0537)
P3 .0185 0431 0131
(.0336) (.0384) (.0431)
P4 0208 0554 .0495
(.0300) (.0332) (.0444)
P5 -.0227 .0049 0056
(.0301) (.0301) (.0394)
P10 0514 0642 .0457
(.0321) (.0281) (.0305)
P15 -.0047 0213 0344
(.0291) (.0261) (.0259)
P20 .0280 0368 .0084
_(.0272) (.0267) (.0263)
025 .0205 0010 -.0271
(.0267) (.0252) (.0208) |
Q(25) 76.32 92.00 43.95|
Q"(25) 34.54 38.34 17.67 |:

*statistical tests significant at the one per cent level are

underlined.

Numbers in parentheses
heteroskedasticity-consistent standard errors.

are:
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,f&bserved in both returns and residuals series can be

:i;yolatility. ARCH models and its extensions have been

éf:;,iéuccessfully applied, for instance, in foreign exchange

Fho)

0

TS

- and in stock markets by Akgiray (1989) and Baillie and De
¢ Gennaro (1990).

PR

.......

4, Conditional Heteroskedastic Models
a) ARCH and GARCH Models

The ARCH process imposes an autoregressive structure on
the conditional variance which permits volatility shocks to
persist over time. It can therefore allow for volatility
clustering, that is, large changes are followed by large
changes, and small by small, which has long been
recognized as an important feature of stock returns
behaviour. In this process, the conditional error
distribution is normal, with a conditional variance that is a
linear function of past squared innovations. The model,
denoted by ARCH(p), is the following:

etlly-1 ~ N(O,hy)
ht = (Xo=+ Ef;lm E& (4)

with p>0; a4>0, i=0....,p,
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and where vt is the information set of all information
through time t, and the gt are obtained from a linear
regression model.

An important extension of the ARCH model is the
Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) process of Bollerslev (1986), denoted by
GARCH(p,q). In this model, the linear function of the
conditional variance includes lagged conditional variances
as well. The equation (4) in the case of a GARCH model
becomes:

P q
ht=0p + 12:&1 €t2_1 + ;&Bj ht-j (5)
=] =

where also q 2 0 and By O, j=1.....q. The GARCH(p.q)
model reduces to an ARCH(p) for g=0.

Before estimating (GJARCH models, it is useful to test for
the presence of ARCH properties on the returns series.
This is the object of the next subsection.

b) Testtng-'for‘ARCH presence

In an ARCH process, the variance of a time series depends
on past squared residuals of the process. Therefore, the
appropriateness of an ARCH model can be tested by means
of a LM test, i.e. by regressing the squared residuals
against a constant and lagged squared residuals (Engle,
1982).

n
&=y + ‘_Zlm 2 (6)
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Under the null hypothesis of no ARCH process, the
coefficient of determination R2 can be used to obtain the
‘test statistic TR? which is distributed as a chi-square with
1 degrees of freedom. This LM test has been applied to our
series up to lag 10 for all the five returns series. The
values we obtained for the TR2 are reported in table 6.
They are all statistically significant at the one per cent
level, which strongly indicates the presence of an ARCH
process in the series.

Table 6 — LM test statistic®

France Germany Italy Netherl. UK.

ARCH(1) 164.2 356.3 330.8 643.0 1089.5
ARCH(2) 264.7 370.6 347.8 859.6 1090.7
ARCH(3) 280.9 381.5 431.0 859.8 1091.1
ARCH(5) 285.4 389.1 442.7 922.1 - 1141.1
ARCH(10) 311.1 423.8 492.5 942.3 1160.2

*All LM test statistics for ARCH(p) are significant at the
one per cent level.

¢) Estimating (GJARCH models

The parameters of a (GJARCH model are obtained through
a maximum likelihood estimation. Given the return
series and initial values of ¢; and hyj, for 1=0,...,r and with
r=max(p,q), the log-likelihood function we have to
maximise for a normal distribution is the following:
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2
L1p.q) = -5 T In(2n) + Dter m( \(_) (th) (7)

where T is the number of observations, h¢, the conditional
variance, is defined by equations (4) and (5) for the ARCH
and GARCH models respectively, €2 are the residuals
obtained from the appropriate linear ré'gre‘ssion model
according to the country in consideration.

As the values of p and q have to be prespecified in the
model, we tested several combinations of p and gq. The
values of the maximised likelihood functions for all pairs of
p and q are presented in table 7. We also calculated the
generalized likelihood ratio LR=-2{L{¢n)-L(¢q)} of the
maximised likelihood functions under the null hypothesis,

e., the normal distribution, and the various alternate
hypothesis. Under the null hypothesis LR is chi-square
distributed with degrees of freedom equal to the
difference in the number of parameters under the two
hypotheses. The third column of table 7 gives the values of
the LR test for each model. It can be observed that the
value of the LR test for all (GIARCH models is statistically
significant at the one percent level, which means that all
of these models fit the data more likely than does the
normal distribution. In order to distinguish between an
improvement in the likelihood function due to a better fit
and an improvement due to an increase in the number of
parameters, we also calculated Schwarz's order selection
criterion, SIC=-2L(¢)+(InT)K, where K is the number of
parameters in the model. According to this criterion, the
model with the lowest SIC value fits the data best. The SIC
values are reported in the fifth column of table 7. The
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Table 7 — Maximum log likelihoods for (GIARCH models

Model p.q Log likelihood LR test — Schwarz
criterion
France
Normal - 11406.50
ARCH (1,0) 11560.95 308.80 -23113.96
ARCH (2,0) 11664.35 515.70 -23312.82
ARCH (3,0) 11677.31 541.62 -23330.80
Germany
Normal - 11167.36
ARCH (1,0) 11335.34 335.96 -22662.74
ARCH (2,0) 11396.47 458.22 ~22777.06
ARCH (3,0) 11490.67 646.62 -22957.52
GARCH (1,1) 11576.18 817.64 -23136.48
GARCH (2,1) 11578.72 822.72 -23133.62
GARCH (1,2) 11569.26 803.80 -23114.70
Italy
Normal - 10506.12 L
ARCH (1,0) 10653.91 295,68 -21299.88
ARCH (2,0) 10757.64 503.04 -21499.40
ARCH (3,0) 10886.73 761.22 -21749.64
GARCH (1,1) 10992.68 973.12 -21969.48
GARCH (2,1)
GARCH (1,2)
GARCH (2,2) 10998.15 984.06 -21964.55
The Netherlands
Normal - 11321.07
ARCH (1,0) 11483.11 324.08 -22958.28
ARCH (2,0) 11582.53 522.92 -23149.18
ARCH (3,0) 11597.34 552.54 -23170.86
GARCH (1,1) 11657.18 672.22 -23298.48
GARCH (2,1) 11650.63 659.12 -23277.44
GARCH (1,2) 11650.68 659.22 -23277.54
The UK
Normal - 11789.03
ARCH (1,0) 11991.12 404.18 -23974.30
ARCH (2,6) " 12046.90 515.74 -24077.92
ARCH (3,0) -~  12062.77 547.48 -24101.72
GARCH (1.1) 12097.46 616.86 -24179.04
GARCH (2,1)
GARCH (1,2) 12091.50 604.94 -24159.18

GARCH (2,2)
~.. indicates where the op

fimization routine failed,
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GARCH(1,1) model has the lowest SIC values for all
countries except France. For the latter the ARCH(3)
supersedes the other models.

The sum of Y P a+Y L 8y in the conditional variance
equations measures the persistence of the volatility. Engle
and Bollerslev (1986) have shown thatif this sum is equal
to one, the GARCH process becomes an integrated GARCH
or IGARCH process. Such integrated model implies the
persistence of a forecast of the conditional variance over
all future horizons and also an infinite variance of the
unconditional distribution of gt. We calculated the sum of
the parameters )P a1+ (LB for the appropriate GARCH
models. They are respectively 0.9923, 1.0005, 0.9761,
0.9520 and 0.4329 for France, Germany, Italy, the
Netherlands and the UK. It can be noticed that it is less
than unity for four countries, though rather close to one,
which indicates a long persistence of shocks in volatility.
" This means that this model is second order stationary and

that the second moment exists for these four countries.

The unconditional variances of residuals, shown in table 8,
are respectively 62=a0/(1-a1-81) for Italy, the Netherlands

and the UK and o2=0¢/(1-a;-a2-ag) for France, and, for
returns, it is 6§=02/(1-¢3%).

As for Germany, the sum o)+B; is greater than unity,
indicating that the series is not stationary and that an
integrated model is more appropriate, i.e. the conditional
variance follows an integrated process. The GARCH(1,1)
model has therefore been reestimated with the restriction



Table 8 — Model Estimates®
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France Germany Italy Netherl,

UK.
$0(thousands) 6881 6246  .8061  .9255 6775
t(60) 41215 40899 38546 356614 46100
o 2031 _ .1909 - .1519
ti¢1) 2.5706 - 17043 - 15064
a0(thousands) .0581 0021 0064 L0053 .0053
t{ap) 247654 37088 62085 49619 51517
ay 1739 1406 1394 1113  .1131
te1) 6.6687 85353 90820 7.6855 2.5200
o2 .1612 = o s g
t{a2) 6.4882 - - - -
a3 0978 - - - -
t{a3) 4.3288 = = i %
B1 _ 8594 8367  .8407 .8153
t{B1) - 955779 52.0732 40.728] 35.6342
Toi+Thy 4329 1.0000 .9761  .9520 .9284
o2 (x103) .1025 - 2678 - .0740
ok (x103) 1069 2779  .1104 .0758
LFt statistics significant at the one percent level are
underlined.

that o1 +B1=1. Table 8 contains the results of fitting
GARCH(1,1) Pprocess’ to the returns series of Italy, the
Netherlands and the UK, ARCH(3) to that of France, and

finally

IGARCH(1,1) for Germany. All estimated

coefficients, except that of ¢g9 and og for Germany, are
statistically significant at the one percent level.
Interestingly, the estimates of op are much smaller than
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the sample variances of returns or residuals reported in
tables 1 and 4, indicating that conditional variances are
changing over time.

5. Conclusions

This paper provides empirical support that the class of
autoregressive conditional heteroskedasticity models is
generally consistent with the stochastic behaviour of daily
stock returns in five European countries. The results show
that stock market indices exhibit a significant level of non
linear dependence which cannot be accounted for by the
random walk model. Descriptive statistics and ‘normality
tests reveal that the distribution of returns is not normal,
whatever the country concerned, and that three out the
five country indices exhibit significant first order
autocorrelation. It has further been shown that the
residuals obtained after applying an AR(1) model, which
accounts for the presence of autocorrelation in the
returns, exhibit non linear dependence and non normality.
Then we observed the presence of ARCH in the returns
series and tested various models belonging to the class of
autoregressive conditional heteroskedasticity models. Qur
results reveal that this class of models supersedes the
random walk model. And among the different models the
GARCH(1,1) fits the data best for Italy, the Netherlands
and the UK, the ARCH(3) for France and IGARCH(1,1) for

Germany.
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