

DOWNLOAD ME

$f(H z)$

$\mu=\mu_{a i r}$

introduction

It is possible to avoid the coalescence of a droplet with a bath when the bath is sinusoidally v vbrated with a sufficient acceleration defined as the acceleration threshold. The main mechanism is the lubrication force exerted by the squeezed air film located between the droplet and the
bath [1]. More recently, we showed the role of the deformation of the droplet on the bouncing bath [1]. More
threshold [2].

In the bubble world, Krasowska et al demonstrated that a bubble that collide with the surface of the bath does not coalesce instantaneously but may bounce [3]. The main mechanism is the lu brication force exerted by the liquid film located between the bubble and the air. The role of deformation is predominant for determining the bouncing condition.
In this work, we merged both subjects. By vibrating an interface, we studied the bouncing conditions for a bubble [4]. This poster sums up the common points and the differences between droplet and a bubble that bounces on a vibrated interface.

bubble

Experimental details

Silicone oil (Dow Corning 200) is used.

Droplet typical size: $2 \mathrm{R}=1.0 \mathrm{~mm}$
Dhe range of viscosity can me
ubble typical size: $2 \mathrm{R}=0.5 \mathrm{~mm}$
The range is much reduced in the bubble case. If the viscosity is too low, Faraday instability is riggered at low frequency. If the viscosity is too large, the bubble cannot move because of viscous forces.

The acceleration is measured using an accelerometer positioned on the plate. The exciting fre quency, f, is then fixed. Increasing the acceleration of the plate, the minim
quired for the bouncing is determined as soon as a bouncer is observed.

Bouncing threshold

Droplet

The acceleration threshold for bouncing increases monotonously in the case of high viscous droplets. On the other hand, in the case of low viscous droplet, minima are found at given fre quency suggesting resonance modes. Indeed, at high viscosities, any deformation of the drop hat the deformations play a key role in the bouncing mechanism.
Bubble
The acceleration threshold for bouncing increases monotonously. The higher the viscosity, the higher is the threshold. Indeed, more energy is required to move the bubble. T.
of the bubble does play a role which was observed using high speed camera.

Lubrication-Deformations-Dissipation
bouncing mechanism is based on the lubrication force FL generated when the intervening film (air for droplet and oil for bubble) is squeezed between the droplet or the bubble and the main phase.

The
the interaction time with the interface is to be lower than the drainage time

$$
F_{L} \approx \frac{\mu R^{4} \dot{\eta}}{\eta^{3}}
$$

Droplet:
Eigen modes are Raileigh modes described by spherical harmonics functions. For given freEigen modes are Raileigh modes described by spherical harmonics functions. For given
quency, the system droplet+air film resonates which decreases the value of the threshold. Bubble

The maximum deformation (dh) of the bubble is imaged by measuring the maximum diameter of the bubble during the impact. This deformation must be sufficient, i.e. larger than a critica value, in order to bounce.

Droplet:

The main dissipating process occurs in the droplet as a motion is observed inside (PIV). The scillation of the bath has to provide enough energy for the motion of the center of mass, fo fluid work produce the droplet

Bubble
The energy is mainly dissipated around the bubbe The mechanism and a precise determina tion of the flows have to be performed in order to allow to calculate the threshold acceleration.

Conclusion
The bouncing of a droplet and of a bubble presents a lot of similarities: The lubrication force must be detailed to explain the bouncing threshold
The deformation of the object is of importance
On the other hand, the dissipation of the energy occurs at different places. Consequently, the range of viscosity of the liquid used is very different whether a droplet or a bubble is considered
a model should be built in order to rationalise the motion of the liquid during the bouncing process.

The work was supported by the COST P21 "Physics of Droplets" network (ESF). Financial support from the Ministry of Science and Higher Education (grant Nr $45 / \mathrm{N}$-COST/2007/0 and luventus Plus 0490/H03/2010/70) is acknowledged with gratitude. S.D. thanks FNRS for financial nally, this work was also supported by an FNRS-PAN agreement (2011-2012).

References

[^0]
[^0]: [1] Dynamics of a Bouncing Droplet onto a Vertically Vibrated Interface T. Gilet et al, Phys. Rev. Lett. 100, 167802 (2008) R] Resonant and rolling droplet
 Dorbolo et al, New. J. Phys. 10, 113021 (2008).
 [3] Kinetics of bubble collision and attachment to hydrophobic solids: Effect of surface roughness
 M. Krasowska et al, Int. J. of Min. Proc., 81, 205 (2007). [4] Bouncing bubble on a liquid/gas interface resting or vibrating Zawala et al, Soft Matter 7, 6719 (2011).

