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Abstract

This paper is devoted to the numerical modelling of the strain localisation in a
water saturated sample of soil, using a large strain finite element code. First the
large strain solid mechanics cquations are recalled. An internal friction
constitutive law is used. Then the coupling with a pore fluid is considered, and
the linkages between the seepage and the soil strain and stress evolution is taken
in account through an effective stress postulate and an adaptation of the storage
law. Coupled finite elements are developed. Unsaturated media are considered
using the Bishop formulation and an adaptation of the seepage model. Finally
the developed finite element code is applied to the modelling of the plane strain
compression of some sample differing by the pore fluid state. Drained case,
undrained fully saturated and undrained partly saturated cases arc considered.
Two soils, differing by their permeability, are modelled, in order to analyse the
seepage effect on the strain localisation availability.

1. INTRODUCTION

Strain localisation has been extensively investigated in metals, in soils and in
rocks for about two decades. Mainly drained behaviour has been studied in soils
and rocks. However practically most of these materials are fully or partially
saturated by water, oil, gas,... The question of the bifurcation to a localised
strain mode in a biphasic soil remains quite open. Now it is particularly
important, for examples in geotechnics (analysis of landslides, of foundation
stability,...) or in tectonophysics (sedimentary basin evolution,...).
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Only very few authors have proposed solution to the strain localisation
problems for saturated soils. Desrues and Mokni [3] have experimented the
undrained saturated localisation in sand. They performed a series of biaxial
compressions (in plane strain state) on Hostun sand in order to characterise the
localisation appearance and the shear band mode. Vardoulakis and Han [8, 11,
12] have realised similar experiments on a clay. Loret and Prevost [4] have
proposed first some theorctical and numerical analysis of such problems.
Schrefler [7] has more recently proposed a finite element modelling of a
multiphase localisation problem. But this analysis is limited to small strains
problems and is based on dynamic and seepage coupled model.

The present paper is devoted to a finite element modelling of the strain
localisation in a (partly) saturated soil sample during a biaxial compression, First
the large strain formalism is recalled. A Van Eckelen - Driicker Prager
constitutive law is used. The hydromechanical coupling is based on the
Terzaghi’s postulate and on the storage law. Unsaturated behaviour is then
derived as an extension of the previous equations. Monolytical finite element are
developed. The achieved code is used to model some biaxial compressions in
various states : drained, undrained saturated, undrained unsaturated,... and
under different permeabilities.

2. LARGE STRAINS IN SOLID MECHANICS

Strain localisation is generally associated to large strains and large rotations. In
the following the mechanical equilibrium is formulated in the current
configuration using the Cauchy stresses. The virtual power equation is giving a
global equilibrium equation :

_[0'175‘9:}' dv = Jt,-é‘u,- da (D
The Jaumann correction is used in order to give an objective stress rate:
oc=6+Wo+oW (2)
where W is the antisymmectrical part of the velocity gradient L:
dv
L=—==D+W (3)
dx

An elastoplastic constitutive law is postulated in order to reproduce the classical
internal friction soil model which is generally observed on sand. Most authors
arc using the Driicker-Prager model which associates in its yield surface
equation the first and second stress invariant :

f=H,+ml +k
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where & is the stress deviator. The material parameters are related to the
friction angle ¢ and to the cohesion ¢ by :
2sing,

=

J3(3-sing,)

6c cos,
V3(3-sing,)
This model can give good results for low internal friction angle materials.
However for sands whose friction angle lies between 30° and 45°, the Driicker-
Prager model gives poor (and sometimes bad) results. In fact if the model
parameters are calibrated on a triaxial friction angle the extension friction angle
is much larger. Van Eekelen [10] has proposed an extension of the Driicker

Prager model which is based on the Lode angle 5. The assumed yield surface is
the following :
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f=H;,+a(l+bsin3B)"(1, ~

ab = fet(e, )
A non associated plastic model is formulated using a plastic potential g similar
to the yield surface £ :

g=1,+A(l+Bsin3f)"(, - )

any,”  (7)

A, B = fot(We, W)

When a small strain formulation is assumed, the strain decomposition between
its elastic and plastic parts is assumed :

g=¢g"+¢' ®

In a large strain formulation one often postulates an unloaded configuration,
which is leading to a multiplicative decomposition of the elastic and plastic
Jacobian malrix :

F=F"F )]

We assume here that the elastic part of the deformation is small compared to the
unity. This yields an approximately additive decomposition of the strain rate :
D=D"+D" (10)

These hypothesis have been discussed by different authors (Sidoroft [7], Mandel
(5D.

Here we do not take any hardening into account. Therefore using the
equations (4) to (8) and the consistency condition, one obtains easily the stress
rate - strain rate equation :

G=C"¢ (1)

On some boundaries, pressures can be applied. It should be mentioned that the
imposed forces are following forces. In a large strain formalism they are
contributing to the stiffness matrix by a unsymmetrical term.




3. FLOW IN POROUS MEDIA

In a saturated porous medium, flow is assumed to follow the Darcy’s law :

v= —KZ(§+Z> (12)

where K is the permeability, p the pore pressure, z the level, v the fluid specific
weight and v the Darcy’s velocity. If partly saturation is to be considered, the
Darcy’s law (12) can be used assuming that the permeability K is varying with
the saturation degree :

K=K(S,) (13)
We will suppose hereafter that this law is a linear one :
K=K,S, (14)

The storage law is giving the evolution of the amount of fluid mass per unit of
soil volume:

S=nt- (15)

X
When the fluid saturation degree S, is varying, a second storage term is
necessary :

S=nL4ns, (16)
x“'

The balance equation :

Viv+8=0 (17)

is used and transformed using the virtual power principle in order to formulate
finite elements.

When two fluids are partly saturating the pores, two set of equations
(12-17) should be written. However if one fluid is a gas, its behaviour can
sometimes be neglected, considering that its pressure remains quile constant,
what we will do in the following,

On the other hand it is necessary to formulate a retention curve
associating the saturation degree and the suction (which is the difference
between the non-wetting and the wetting fluid pressures). We here are using an
arc tangent relation (figure 1) :

S, = im’c:‘gi_—g+l
n o 2 (18)
8= Poas ™ Pliguid

When considering a water saturated and dilatant soil under shear loading
{e.g. in the hereafier considered biaxial compression) the material tends to dilate
but the pore fluid (which is quite incompressible) does not allow that. The fluid
pressure therefore decreases from its initial value (generally a back-pressure
imposed to ensurc the good saturation by dissolving air in water). When the
water pressure tends to the atmospheric pressure, the dissolved air appears as
bubbles. The fluid is now biphasic, what means that the soil is partly saturated in




air and water. If the initial air content is low enough, a similar desaturation will
appear when cavitation will occur. In that case the gas is composed of water
vapour bubbles. Whatever the way the soil becomes partly saturated, the fluid
compressibility increases quickly at that time. This phenomenon will be simply
modelled by using a retention curve postulating a desaturation around the
atmospheric pressure (figure 1).
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Figure 1. Retention curve

4, HYDROMECHANICAIL COUPLING

Stresses are affected by the seepage. This is modelled for saturated media by the
Terzaghi’s postulate. It is here written in an incremental form:

G=6-pl (19)

If the soil is partly saturated by two fluids, this postulate is not more valid.
Bishop has proposed a modified form :

6=0"-x(S,)pL (20)

where (S, is a new function to be defined from experimental results. This
relation can be analysed as a mixture law (Schrefler [6]). It becomes then :
Q:i‘:_srp!iqufdl_(I—Sr)pgasl (21)

If the gas pressure remains near to the zero pressure reference {(atmospheric
pressute), the last term disappears.

It has been shown (Alonso et al. [1]) that this effective stress postulate
gives qualitatively good results for soils mainly shear loaded. However for soils
undergoing much isotropic loading (oedometric tests, variation of the suction
Jevel,..) it does not well reproduce the experimental results. A CamClay like
model has been proposed by Alonso, Gens and Josa [1] for these kind of
loading. However this type of model will not be used in the following.

The fluid flow is affected by the soil mechanics through the storage law
in which the pores volume is modified according to the volumetric strain rate :




S=ntvns +é, (22)

o
In this equation, it is supposed that the soil grains {or the soil squelcton) volume
does not change with respect to the mean effective stress variation.

The soil mechanics is involving large strains. This does not affect the
fluid flow in the sense that the balance equation is formulated at one instant per
time step (generally at the step end). Moreover the storage and Darcy’s flow
laws are not depending on the history. Therefore no objective correction is
needed. On the other hand, the additive strain decomposition (10) is here
assumed to remain valid (De Buhan et al. [2]).

5. FINITE ELEMENTS

A plane large strain finitc element has been implemented in the finite element
code LAGAMINE. It is an isoparametric element with 8 nodes and 4 Gauss
integration points. This means that the co-ordinates, velocitics and pore
pressures are discretised by the same shape functions. The hydromechanical
coupling is a monolithical one. The stiffness matrix is tangent in the Newton
Raphson sense. It associates 3 dof per node. It can been schematised as follow :

K m—m m—m m—s||dx
di F, p={m—m m~-m m—s|qdx, (23)
O, s—m s—m s—s||dp,

Staggered schemes have also been proposed (Zienckiewicz [13]) which
allow to obtain solutions for some problems for which the monolithical scheme
fails due to opposite time stepping conditions for the mechanical and hydraulical
problems. However the monolithical scheme has proved to be efficient for the
considered problem.

6. APPLICATION

We consider in the following the biaxial compression which is a classical test for
the study of the strain localisation in soils (Mokni and Desrues [3], Vardoulakis
[9,11,12]). A parallelepiped sample of soil (figure 2) is under plane strain
conditions thanks to 2 rigid glass plates. Two sample sizes are considered : 175
x 350 mm® and 164 x 173 mm’.

A constant pressure is applied to the lateral boundaries. The initial stress
state is isotropic. This lateral pressure remains then constant. The lower basis
lies on a frictionless plateau; the upper one is compressed by a second
frictionless plateau.




Figure 2. Soil sample under biaxial compression,

6.1. Rectangular sample
The initial stress state is isotropic with ¢’9 = 100 kPa, The sample is

discretised by 10 x 20 8-nodes finite elements. The soil is modelled by a elastic -
perfectly plastic Driicker-Prager model whose parameters are indicated in table
1. The seepage parameters are given in the same table. The compression

velocity (upper plateau) is H =18 107 mm/s.

parameter symbol | value
Young modules E 26 GPa
Poisson's ratio v 0.3
compression friction e 25°
angle
dilatancy angle ] 10°
water compressibility | ¥ 3. GPa
porosity n .45

table 1: Rectangular sample - mechanical
and seepage parameters.

case drainage |saturation permeability
number

| drained no means p=0

2 undrained | saturated 10 m/s

3 undrained | saturated 10 m/s

4 undrained [ varying saturation 107 m/s

table 2 : rectangular sample - various modelled cases.

Some different cases have been modelled (table 2). The first modelling
case corresponds to a drained sample. The figure 3 shows the deformed mesh
after 5, 10 and 15 % of axial strain (no deformation amplification). A shear band
has clearly appeared. Shear strains up to 80% and volumetric strains up to 5%




can be observed inside the band (the peak value is of course depending on the
mesh size). This shear banding results is typical from soil shear band modelling.
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Figure 3. Case 1: deformed mesh after 5, 0 and 15 % of axial strain (no
deformation amplification).

In the case 2, the sample is fully saturated by water and the initial back-
pressure is high enough to avoid any cavitation or other de-saturation. The
mesh remains rectangular and the stress and pore pressure state is homogeneous
during the whole compression process. The global volume remains constant.
The volumetric strains are quasi null. The pore pressure variation is Ap = 500
kPa at the end of the simulation.

The case 3 is similar but the permeability is much more larger. The
deformed mesh after 5, 10 and 15 % of axial strain (no deformation
amplification) is presented at figure 4. Two shear bands have now appeared.
The stress and pore pressure state is no more homogeneous. The global volume
remains always constant. However the volumetric strains are not homogeneous
(figure 5) and varies from about 4% dilatation inside the band to about 1.5%
contraction outside it.
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Figure 4. Case 3 : deformed mesh after 5, 10 and 15 % of axial strain (no
deformation amplification).




Figure 5. Case 3 : volumetric strains in the deformed mesh after 15 % of axial

According to these variations of the void ratio the water storage and the
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pore pressure are also varying. Tt results in pressure gradients and in water
flows which are presented on the figure 6. These Darcy’s velocities are showing
that the two shear bands (figure 4) arc not always active together. After 5 % of
strain the shear banding is not really clear. After 10 % the two shear bands are
slipping together. At the end of the analysis only one band is active.
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Figure 6. Darcy's velocities in the deformed mesh after 5, 10 and 15 % of axial

The last analysis case (n° 4) is concerned with a unsaturated case. There

is no initial back-pressure. Therefore any pore pressure decrease is inducing a
de-saturation, Due to the Bishop’s effective stress principle, the pore pressure

9




effect is reduced. Moreover the gas phase is supposed to be under constant
pressure, what means that it is highly compressible. This is relaxing in some
sense the constant volume condition, which is associated to undrained saturated
tests. Therefore we come back to similar results as in the case 1.

6.2, Squarc sample

The initial stress state is isotropic with ¢‘9 = 100 kPa. The sample is
discretised by 30 x 30 8-nodes finite elements, The soil is modelled by a elastic -
perfectly plastic Van Eekelen model whose parameters are given in table 3. The
seepage parameters are indicated in the same table.

parameter symbol | value
Young modules E 35 MPa
Poisson's ratio \ 0.4
compression friction angle O, 41°
extension friction angle . 41°
dilatancy angle \f 10°
permeability K 10"°m/s
water compressibility Yw |3.GPa
porosity n 0.3

table 3 : Square sample: mechanical
and scepage parameters.

When globally undrained states are considered, the sample is supposed
to be inside a impervious membrane. Therefore the total pore fluid mass remains
constant. An initial back-pressure po = 30 kPa is applied. The rate of
displacement of the upper boundary is V= 1.64 10"mm/s or 107 %fs (of the
initial height).

Loading has been performed up to 10 % of mean axial deformation.
The simulation results are partly given in the figures n° 7, 8 and 9. Their analysis
can be summarised as follow. No strain localisation is apparent on the deformed
mesh. However the water pore pressurc map (figure 7) shows clearly a
localisation band where the pore pressure has highly decreased (from 130 kPa
initially to -120 kPa after 9% of axial deformation). A little later (10%
compression) the localisation scheme has changed (figure 8a) and two localised
band have appeared. The lower water pressure is a little lower (-160 kPa).
These negative pore pressures are associated to a partial saturation (retention
curve - cf. figure 1) At the band centre the saturation degree has decreased to
S; = 0,95. The water pore pressure has decreased because of the band dilatancy.
The sample shearing concentrates in the band and it is associated to a local
volume increase. Water accommodates this by decreasing its pressure. Due 1o
the resulting pressure gradient water flow from outside the band to inside it
(figure 8b).
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Figure 8. Water flow - Darcy’s velocities after 10% compression.

11. CONCLUSIONS

A hydromechanical large strains finite element code has been developed for soils
and rocks modelling. Tt has been applied to the modelling of biaxial
compressions on various soil samples.

Pure mcchanical analysis (on drained samples) shows clearly a strain
localisation. The modelling is possible up to very large strains.

In a saturated soil sample, if the permeability is small enough compared
to the loading velocity, water has not enough time to move during any strain
localisation process. Then the unsaturated state is a global and a local one. No
strain localisation can appear.

In a dilatant sample the pore pressure is continuously decreasing during
the stress deviator increase (uniaxial compression phase). When that pressure
becomes small enough, gas bubble are appearing due to cavitation in pure water
or to the end of air dissolution in other cases. Then the pore fluid becomes a
biphasic one with a high compressibility, and a drained like localisation is
possible.

If the permeability is larger, then water moves and allows a strain
localisation in a dilatant medium, The undrained condition is a global one. This
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means that the total volume remains constant due to the low fluid
compressibility. However at a local level, dilatancy as well as contractancy are
appearing. The volumetric strain integral over the whole sample volume is quite
null (with respect to the fluid compressibility).
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