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ABSTRACT : This paper is devoted to the numerical modelling of the strain localisation in a water saturated
sample of soil, using a large strain finite element code. First an internal friction constitutive law is used. It
includes a Lode angle dependency. Then the coupling with a pore fluid is considered, and the linkages between
the seepage and the soil strain and stress evolution is taken in account through an effective siress postulate and
an adaptation of the storage law. Coupled monolythical finite elements are developed. Unsaturated media are
considered using the Bishop formulation and an adaptation of the seepage model. Finally the developed finite
element code is applied to the modelling of the plane strain compression (including a strain localisation) of
samples with different initial pore pressures and different drainage conditions, Drained case, undrained fully
saturated and undrained partly saturated cases are considered.

1. INTRODUCTION

Strain localisation has been investigated in soils and
in rocks for about two decades. Mainly drained
behaviour has been studied in soils and rocks.
However practically most of these materials are fully
or partially saturated by water, oil, gas,... The
question of the bifurcation to a localised strain mode
in a biphasic scil remains quite open. Now it is
particularly important for example in geotechnics
(analysis of landslides, of foundation stability,...) or
in tectonophysics (sedimentary basin evolution,...}.

Only very few authors have proposed solution to
the strain localisation problems for saturated soils,
Desrues and Mokni  (1992) have conducted
experiments on localisation in undrained saturated
sand. They performed a series of biaxial compression
tests (in plane strain state) on Hostun sand in order
to characterise the localisation appearance and the
shear band mode. Vardoulakis (1995a, 1995b) and
Han (1991) have conducted similar experiments on a
clay. Loret and Prevost (1991) first have proposed
some theoretical and numerical analysis of such
problems.  Schrefler (1996) has more recently
proposed a finite element modelling of & muttiphase
localisation problem. But this analysis is limited to
small strains problems and is based on dynamic and
segpage coupled model.

The present paper is devoted to a finite element
modelling of the strain localisation in 2 (partly)

saturated soil sample during a biaxial compression. A
Van Eekelen - Dritcker Prager constitutive law is
used. The hydromechanical coupling is based on the
Terzaghi’s postulate and on the storage law.
Unsaturated  behaviour is then derived as an
extension of the previous equations. The developed
finite element are monolythical : they are associating
2 displacements degrees of freedom and 1 water
pressure one. The developed code is used to model
some biaxial compressions in various states : drained,
undrained saturated, undrained wunsaturated and
under different permeabilities.

2, SOIL CONSTITUTIVE LAWS
2.1 Stress invariants and stress space

I, I, 0T, and [ are defined as the first stress

tensor invariant, the second deviatoric stress tensor
invagant, the third deviatoric stress tensor invariant
and the Lode angle, respectively
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2.2 Mohr Conlomb criterion (MC})

The Mohr-Coulomb failure criterion is an intrinsic
curve criterion. It expresses a linear relationship
between the shear stress t and the normal stress oy
acting on a failure plane
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where ¢ is the cohesion and ¢ the friction angle.
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Figure 1. Limit surface for Mohr-Coulomb, Driicker-
Prager and Van Eekelen criteria in the deviatoric
plane.

This criterion predicts identical fiiciion angles under
triaxial compression paths (referred as ¢) and
trisxial  extension  paths  (d).  Geometric
representation of this criterion in the deviatoric plane
gives an irregular hexagon (see figure 1), This model
is not convenient to implement in the classical
plasticity framework as the gradient of this yield
surface is undefined on the hexagon corners.
Therefore nore continuously derivable yield surfaces
are preferred.

2.3 Driicker Prager criterion (DP)

A simple approximation of the Mohr Coulomb
surface has been proposed by Driicker and Prager,
who defined the yield function f using a linear
relationship between the first stress tensor invariant
and the second deviatoric stress tensor invariant

_ 2sing, ( 3 J_
f_[]&+ﬁ(3*sin¢6,)k]" tang, =0 ®

In the principal stress space, the plasticity surface
becomes a cone which is much easier to use in
numericat algorithms. The trace of this plasticity
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surface on the deviatoric plane is then a circle (see
figure 1). Although this simpie criterion is widely
used in geomechanics to represent fiictional
behaviour, it does not depend on the third stress
invariant and thus on the Lode angle 5. This is 2 main
drawback of this model.
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Figure 2. ¢p versus ¢c for
Driicker-Prager criterion,

The radius is constant in the Driicker Prager model,

this yields
3sing. i _( sing, J
3-sing, 3-sing,
A plot of ¢¢ versus ¢y computed from equation {7) is

given on figure 2 and shows that ¢g does not increase
linearly with ¢. There is a limit value of ¢==90° for
de36.87°=d"".

If non-associated plasticity is considered, a plastic
potential g can be defined in a similar fashion than
the yield surface f replacing ¢ by win equations (6).

7
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2.4 Van Fekelen criterion (VE)

A imore sophisticated model can be built from the
Driicker-Prager cone by introduction of a
dependence on the Lede angle B in order to match
more closely the Mohr Coulomb criterion. It consists
in smoothing the Mohr Coulomb plasticity surface.
The formulation proposed by Van Eekelen (1980) is

adopted
)

tang,

with the coefficient i defined by

f=1I -i-m(]a - 3]




m = a(l+bsin3p) 9)
The only difference between DP and VE criteria
comes from the point that the coefficient m is
constant for DP whereas it is a function of the Lode
angle for VE. Coefficients @ and & allow an
independent choice for ¢ and ¢e . The exponent n
actually controls the convexity of the yield surface.
Following the conclusion of Van Eekelen (1980), the
default value #=-0.229 has been chosen, The trace of
this plasticity surface in the deviatoric plane is
displayed on figure 2. If non-associated plasticity is
considered, a flow potential g can also be defined in &
similar fashion than the plastic potential f.

2.3 Comparison between Mohr Coulomb, Driicker
Prager and Van Eekelen criteria

At very low friction angles, the three criteria are
pretty much similar. The difference between the DP
criterion on the one hand and the MC or VE criteria
on the other hand increases as friction angle gets
larger. This is directly linked to the refation between
dc and ¢p : from equation (7) it is found that for DP
$5=26° for ¢pc=20°. However as friction angle ¢ gets
closer to the fimit value 36.89°, the corresponding
angle ¢ approaches 90°. Therefore if low friction
angles are considered (let say below 209), the three
criteria will give approximately the same results,
However, above this value of 20°, some significant
differences can be expected between the DP eriterion
on the one hand and the MC or VE criteria on the
other hand.

3. LARGE STRAINS IN SOLID MECHANICS

Strain localisation is generally associated to large
strains and large rotations. The strain amount
observed inside the hereafter modelled shear bands
can as high as 50% to 100%. In the following the
mechanical equilibrium is formulated in the current
configuration using the Cauchy stresses. The
Jaumann correction is used in order to give an
objective stress rate,

When a small strain formulation is assumed, the
strain decomposition between its elastic and plastic
parts is assumed. In a large strain formulation one
often postutates an unloaded configuration, which is
leading to a multiplicative decomposition of the
elastic and plastic Jacobian matrix :

F=F"F* (10)

2

We assume here that the elastic part of the
deformation is small compared to the unity. This
yields an approximately additive decomposition of
the strain rate :

D=D"+D* (11)

4. FLOW IN POROUS MEDIA

In a saturated porous medivm, flow is assumed to
follow the Darcy’s faw :

v=-KY(+2) (12)
where K is the permeability, p the pore pressure, z
the level, v the fluid specific weight and v the Darcy’s
velocity. If partly saturation is 0 be considered, the
Darcy’s law (12) can be used assuming that the
permeability X is varying with the saturation degree
K=K(S,) (13)
We will suppose hereafier that this law is a linear one
K=K,S§ (14
The storage law is giving the evolution of the amount
of fluid mass per unit of soil volume. When the fluid
saturation degree S, is varying, two storage terms are
to be taken in account :

P

S=nttus (15)

When two fluids are partly saturating the pores,
two sets of equations (12-15) should be written,
However if one fluid is a gas, its behaviour can be
neglected, considering that its pressure remains quite
constant, or equivalently that it is highly
compressible,

On the other hand it is necessary to formulate a
retention curve associating the saturation degree to
the suction s (which s the difference between the
non-wetting and the wetting fluid pressures). We
here are using the following relation ;

§—7 +l
o 2
5= Poos — Prgua
When considering & water saturated and dilatant
soil under shear loading (eg. in the hereafter
considered biaxial compression) the material tends to
dilate but the pore fluid (which is quite
incompressible) does not allow that. The fluid
pressure therefore decreases from its initial value
(generally a back-pressure imposed to ensure the
good saturation by dissolving air in water). When the
water pressure tends to the atmospheric pressure, the
dissolved air appears as bubbles. The fluid is now
biphasic, what means that the soil is partly saturated

]
S = -~arct
PEE (16)




in air and water. If the initial air content is low
enough, a similar desaturation will appear when
cavitation will occur. In that case the gas is
composed of water vapour bubbles. Whatever the
way the soil becomes partly saturated, the fluid
compressibility increases quickly at that time. This
phenomenon will be simply modelled by using a
retention curve postulating a desaturation around the
atmospheric pressure.

5. HYDROMECHANICAL COUPLING

Stresses are affected by the seepage. This is modelled
for saturated media by the Terzaghi’s postulate. It is
here written in an incremental form:
g=0¢'-pl 1n
If the soil is partly saturated by two fluids, this
postulate is not more valid. Bishop has proposed a
modified form :
o=6"-2(5)pL (18}
where (S, is a new function to be defined from
experimental results. This relation can be analysed as
a mixture law (Schrefler, 1950). It becomes then :
.(.Z: iiSrpl:q-.-;‘dl._(i—Sr)pgul. (kg)
On the other hand, the fluid flow is affected by the
soil mechanics through the storage law in which the
pores volume is madified according to the volumetric
strain rate :

S§=nt. +n8, (20)
-

In this equation, it is supposed that the soil grains (or

the soil skeleton) volume does not change with

respect to the mean effective stress variation.

The soil mechanics is involving large strains. This
does not affect the fluid flow in the sense that the
balance equation is formulated at one instant per time
step (generally at the step end). Moreover the
storage and Darcy's flow laws are not depending on
the history, Therefore no objective correction is
needed. On the other hand, the additive strain
decomposition (11} is here assumed to remain valid
{Bourgeois et al (1995)).

The hydromechanical coupling is implemented in
the finite element code LAGAMINE trough a
monolythical scheme, which has proved to be
efficient for the considered problems.

6. APPLICATION

We consider in the following the biaxial compression
which is a classical test for the study of the strain
localisation in soils (Mokni and Desrues {1992),

Vardoulakis (1991, 1995 a & b). A parallelepiped
sample of soil is under plane strain conditions. Two
sample sizes are considered: 175 x 350 mm’
(rectangular) and 164 x 173 nux” (square). The
initial stress state is isotropic. A pressure is applied
to the lateral boundaries. It remains constant during
the axial loading. The lower base lies on a frictionless
platen ; the upper one is compressed by a second
frictiontess platen.

6.1 Rectangular sample

The initial stress state is ¢’p = 100 kPa. The
sample is discretised by 10 x 20 8-nodes finite
elements. The soil is modelled by an elastic -
perfectly plastic  Driicker-Prager model whose
parameters are indicated in table 1. The seepage
paramecters are given in the same table. The
compression  velocity  (upper  plateau) is
H=18 107 mm/s. Some different cases have been
modelled. Most results are not illustrated here, due
to the lack of space.

table 1: Rectangular sample - mechanical and
Seepage parameters.
parameler symbol | value
Young modulus E |26GPa
Poisson's ratio v 0.3
compression friction angle | 4, 25°
dilatancy angle W 10°
water compressibility Yo 3. GPa
porosity i 0.45

Case 1 : Tt corresponds to a drained sample. A shear
band clearly appears, as generally under such kind of
condition. Small imperfections have been introduced
in order to help this bifircation. However it should
be noted that numerical imperfection are sufficient to
induce the strain localisation.

Case 2 : The sample is fully saturated by water and
the initial back-pressure is high enough to avoid any
cavitation or other de-saturation. The permeability is
low : K=10% ms?. The mesh remains rectangular
and the stress and pore pressure state s
homogeneous during the whole compression process.
The global volume remains constant. The volumeltric
strains are zero. The pore pressure variation is Ap =
500 kPa at the end of the simulation,

Case 3 : The permeability is much more larger than
in the preceding example: K=107 ms”. Two shear
bands now appear. The global volume remains
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always constant. However the volumetric strains are
not homogeneous (figure 3) and varies from about
4% dilatation inside the band to about 1.5%
contraction outside it. This is atllowing the necessary
dilation inside the shear bands, and explains why they
are appearing as in the drained case.

According to these variations of the void ratio the
water storage and the pore pressure are also varying.
It results in pressure gradients and in water flows.
These Darcy’s velocities are showing that the two
shear bands are not always active together.

Figure 3 : Case 3 : volumetric strains in the deformed
nitesh afler 15 % of axial strain.

6.2 Square sample

The initial stress state is o'y = 100 kPa. The sample is
discretised by 30 x 30 8-nodes finite elements. The
soil is modelled by an elastic - perfectly plastic Van
Eekelen model whose parameters are given in (able
2. The secpage parameters are indicated in the same
table. Globally undrained states are considered.
Therefore the total pore fluid mass remains constant.
An initial back-pressure po = 30 kPa is applied. The
rate of displacement of the upper boundary is 10°
%.s™! (of the initial height).

table 2: Square sample: mechanical and seepage
parameters,

parameter symbol | value
Young modulus E {35MPa
Poisson's ratio v |04
compression friction angle d.  [41°
extension friction angle $.  |41°
dilatancy angle wo[10°
permeability K [10%m/s
water compressibility 2w |3 GPa
porosity n |03

No strain localisation is apparent from the
deformed mesh. However the water pore pressure
map shows clearly a localisation band where the pore
pressure has highly decreased (from 130 kPa initially
to -120 kPa after 9% of axial deformation -figure 4).
The water pore pressure has decreased because of
the band ditatancy. A little later (10% compression)
the localisation scheme has changed (figure 5) and
two localised band have appeared. The water
pressure is a little lower (-160 kPa). These negative
pore pressures are associated with a partial saturation
(cf. retention curve). At the band centre the
saturation degree has decreased to 95%.

The sample shearing concentrates in the band and
it is associated with a local volume increase. Water
accommodates this by decreasing its pressure. Due to
the resulting pressure gradient water flow from
outside the band to inside it {figure 6).

Figure 4. Contours of water pressure after 9 %
compression.

Figure 5. Contours of water pressure after 10 %
corpression.

7. CONCLUSIONS

A hydromechanical large strains finite element code
has been developed for soils and rocks modelling, It
has been applied to the modelling of biaxial
compressions on various soil samples.
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Figure 6. Water flow - Darcy’s velocities afier 10%
compression.

Pure mechanical analysis {on drained samples)
shows clearly a strain localisation. The modelling is
possible up to very large strains,

In a saturated soil sample, if the permeability is
small enough compared to the loading velocity,
water has not enough time to move during any strain
tocalisation process. Then the unsaturated state is a
global and a focal one. No strain localisation can
appear.

In & dilatant sample the pore pressure is
continuously decreasing during the stress deviator
increase {uniaxial compression phase). When that
pressure becomes small enough, gas bubbles are
appearing due to cavitation in pure water or to the
end of air dissolution in other cases. Then the pore
fluid becomes a biphasic one with a high
compressibility, and a drained like localisation is
possible,

If the permeability is larger, then water moves and
allows a strain localisation in a dilatant medium, The
undrained condition is a global one. This means that
the total volume remains constant due to the low
fluid compressibility. However at a local level,
difatancy as weli as contractancy are appearing. The
volumetric strain integral over the whole sample
volume is quite null (with respect to the fluid
compressibility).
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