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Abstract. Comparing time-series is a frequent task in many scientific fields. In power systems, in particular,

it may be of interest to compare the outputs of a simplified and a detailed model, or to validate the output of a

model with respect to a measured time response. The classical Euclidean distance, involving pairs of points of

the two data series aligned in time, is not suited to the practical time evolutions met in power systems, which

often involve variable time delays and jumps at discrete times. In this paper, an alternative measure of proximity,

stemming from other scientific fields, is proposed for power system applications. It consists in warping the time

axis to guarantee the best match between the two time-series, i.e. it maps points on two curves that are not aligned

in time so as to minimize the sum of squared differences of their ordinates. Modifications and adaptations of the

classical algorithm to better fit power system problems are discussed. The method is illustrated through three

representative curve comparison problems. A multi-dimensional extension allowing system-wide measures of

similarity is also proposed.

Keywords. Time-series, curve matching, proximity measure, Euclidean distance, dynamic time warping, dynamic

programming, system-wide validation.
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1 Introduction

Comparison of time-series occurs in numerous scientific disciplines. The problem is to assess how close a dynamic

evolution characterized by a time-series q = [q1, q2, . . . , qn] is to a reference characterized by a time-series

r = [r1, r2, . . . , rn]. The former is referred to as the query and the latter as the reference time-series.

In the power system literature, the accuracy of query with respect to reference is often depicted by qualitative,

and admittedly subjective, evaluation terms such as “we see a good overall match between q1 and r”, “q2 and r

have nearly the same degree of accuracy” or “q3 is almost undistinguishable from r”, etc. The objective of this

paper is to promote the use of a less subjective measure of proximity.

Assuming that both time-series span the same time interval and are uniformly sampled at the same n time

instants, a simple measure of proximity is the Euclidean distance between q and r defined as:

E(q, r) =

√√√√ n∑
i=1

(qi − ri)2 (1)

In many cases, this distance is not an effective measure of similarity. For instance, for the two time-series depicted

in Fig. 1, a mere visual inspection shows that the two curves are merely shifted in time, which is not significant in

usual power system applications. While both curves should be considered quite close to each other, the Euclidean

distance does not recognize the pattern similarity and takes on a large value.

t

Figure 1: Two shifted damped sinusoids

More complex validation metrics that can overcome this problem are used in the field of computational me-

chanics: the metrics reviewed in [1] give a measure in terms of magnitude and phase differences. This would

correctly identify the similarity between the curves in Fig. 1. However, the measure of magnitude and phase

differences correctly identifies a time shift only if (i) the latter is constant throughout the whole time interval, and

(ii) the initial and final values coincide. Unfortunately, both assumptions are seldom valid for power system time

responses, where: (i) discrete events can take place at slightly different time instants, (ii) the time-shift may vary

in time, and (iii) the system may settle to a different state or even collapse after a disturbance. A typical voltage
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collapse case, where neither Euclidean distance nor magnitude and phase difference measures would perform

well, will be assessed later on in Section. 5.1. Thus, the above quoted measures of proximity are not suited to

compare time-series involving events and phenomena typical of power system dynamics.

An interesting alternative is Dynamic Time Warping (DTW), an algorithm originally developed some decades

ago for speech recognition [2, 3] and now used in various fields such as medicine [4], data mining [5], signature

verification [6], and others.

DTW warps the time axis to guarantee the best match between both time-series. More precisely, it maps the

points of both curves so that the sum of their squared ordinate differences is minimum, under some constraints.

This is equivalent to determining the deformation of the time axes which brings the two time-series as close

as possible in the Euclidean-norm sense. The minimization is performed with the help of an efficient dynamic

programming algorithm.

The so obtained, more rigorous measure of proximity has several potential applications in power system dy-

namics. For instance, in the context of simplified simulations, it can be used to evaluate the relative accuracy of

one simulation with respect to another. In the context of model validation, DTW yields an objective measure of

proximity between a simulated response and a measured reference. It can be also used to classify power quality

events [7] or to detect instability modes [8].

The paper is organized as follows. Section 2 describes the principle and determination of the DTW distance.

In Section 3 some algorithmic improvements and adaptations to typical power system evolutions are proposed,

while additional aspects are discussed in Section 4. Examples of application to solver and model validation are

provided in Section 5. The paper ends with the Conclusion in Section 6.

2 Principle and determination of DTW distance

2.1 Definition of DTW distance

For the sake of simplicity, the query and reference time-series are supposed to cover the same time span, have

the same number n of points, and be uniformly sampled. Note that the method can be adapted to the case of

non-uniform samplings or different time spans. Alternatively, the time-series could be cropped and uniformly

re-sampled before applying the method. Further discussions on sampling can be found in Section 4.
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Let us define the squared distance between one point of q and one point of r as :

ℓ(i,j) = (qi − rj)
2 i, j = 1, . . . , n (2)

The Euclidean distance in between the two time-series is given by:

E(q, r) =

√√√√ n∑
i=1

ℓ(i,i) (3)

Relaxing the constraint that the associated points of q and r relate to the same time instants, we define a warping

path as an N -dimensional array of pairs

w = [w1 w2 . . . wN ] = [(i1, j1) (i2, j2) . . . (iN , jN )] (4)

where the first element of each pair is an index referring to a point of q and the second element to a point of r. In

addition, a warping path obeys the following three constraints:

1. Boundary condition. The path starts at the initial point of both time-series, i.e. w1 = (1, 1), and ends at

the final point of both time-series, i.e. wN = (n, n). In Section 3 the requirement on the final point will be

somewhat relaxed to cope with evolutions not ending at the same time.

2. Continuity. Given wk = (i, j) and wk+1 = (i′, j′), the following inequalities hold true: i′ ≤ i + 1 and

j′ ≤ j + 1. Thus, the path does not “skip” any point of either time-series.

3. Monotonicity. Given wk = (i, j) and wk+1 = (i′, j′), the following inequalities hold true: i′ ≥ i and

j′ ≥ j and (i′ − i) + (j′ − j) ≥ 1. Thus, the path neither “goes back in time” nor “stalls”.

For a given warping path w, one can define the distance D between q and r along that path as:

D(q, r,w) =

√√√√ N∑
k=1

ℓwk
(5)

where ℓwk
is the quantity defined by (2) for the pair (i, j) present in wk, the k-th component of w.

As an illustrative example, consider the two time evolutions shown in Fig. 2.c. A warping path is shown with

dotted lines. This path can be better visualized on the local distance matrix L defined as follows:

(L)ij = ℓ(i,j) i, j = 1, . . . , n (6)

This matrix is shown in Fig. 2.a for the two time-series of concern. Starting from the upper left and ending in

the lower right corners, the sequence of cells marked with heavy lines corresponds to the warping path shown
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in Fig. 2.c. It is easily checked that this path obeys the continuity and monotonicity constraints. The latter

allow passing from cell (i, j) to cell (i′, j′) through forward-forward (i′ = i + 1, j′ = j + 1), delay-forward

(i′ = i, j′ = j + 1), and forward-delay (i′ = i + 1, j′ = j) moves. The corresponding distance D is the sum of

the L matrix entries visited by the warping path.

t
01625362525161616

r

q

10

5

0
5 6 7 8 9 104321

1 2 3 3 3 4 4 5 30 111

2 2 3 3 3 4 4 5 30 111

6 6 6 4 4 3 4

4

8

8

41

44

130

1415 5 3

4

10 10 10

19 19 19 9 9 7 13

13 23

13

8

8

8

8

8

9

9

24

2424

9

9

1818

19 19

1919

20 20

35 35 35

39 39 39

40 40

404040 13

34

40

494545565656

34

49

57

77

165

201

149

115

88

11

1 1 1

111

1 1 1

1 0 25 811010

1 0 0 0 25 811

4

4 4

4 4

4 4

40

0

36

36

100

100

9 9 9

9 9 9

94 4

4

41

16 16 16 16

49 121

64 144

4 4 4

1 1 1

1 1

0 0 1

10

0

4

1

36

25 81

100

0 0 0 1 1 4 1 0 16 64

16

(a) (b) (c)

Figure 2: Classical DTW distance: local distance matrix L (a), accumulated distance matrix ∆ (b), query and

reference plots with warped pairs (c)

To determine “how close” the time-series q and r are from each other, it is appropriate to consider the warping

path which minimizes Dd(q, r,w), i.e. to determine the w⋆ solution of:

min
w

D(q, r,w) = min
w

√√√√ N∑
k=1

ℓwk
(7)

and use the corresponding distance D(q, r,w⋆) as the sought measure. The latter will be referred to as the DTW

distance.

Note that if one imposes N = n, the unique warping path is w = [(1, 1) (2, 2) . . . (n, n)], which lies along the

diagonal of L, and D(q, r,w) coincides with the Euclidean distance E(q, r), which is also the square root of the

trace of the L matrix.

Coming back to the example, the path emphasized in Fig. 2.a turns out to be the optimal warping path w⋆.

One could check that no other association between the points of q and r (satisfying constraints 1 to 3) than the

one shown with dotted lines in Fig. 2.c yields a smaller value of D(q, r,w). The corresponding DTW distance is:

D(q, r,w⋆) =
√
(3× 1) + (4× 0) + 1 + 4 + (4× 0) + 16 =

√
24 = 4.899

while the Euclidean distance is E(q, r) =
√
49 = 7.

5



With reference to Fig. 2.c, it can be said that the optimal warping path defines the deformation of the time axes

of q and r which brings the two time-series as close as possible to each other (in the Euclidean-norm sense) [4].

2.2 Determination of the optimum warping path

Finding the optimal warping path is a combinatorial optimization problem. In spite of the large search space, this

problem can be solved with remarkable efficiency through Dynamic Programming (DP) [2, 3].

DP exploits the fact that each portion of the optimal warping path is itself an optimal warping path. More

precisely the DP-based algorithm relies on the recursive formula:

D(q, r,w⋆
1→k) = ℓwk

+D(q, r,w⋆
1→k−1) (8)

with D(q, r,w⋆
1→1) = ℓw1 = ℓ(1,1) (9)

where w⋆
1→k denotes the first k components of w⋆.

In practice, it is convenient to consider the accumulated distance matrix ∆ defined recursively as:

[∆]1j =

j∑
k=1

[L]1k j = 1, . . . , n (10)

[∆]i1 =

i∑
k=1

[L]k1 i = 2, . . . , n (11)

[∆]ij = [L]ij +min{[∆]i−1,j−1 , [∆]i,j−1 , [∆]i−1,j} i, j = 2, . . . , n (12)

This matrix is built starting from the upper left corner. From (5, 7, 8, 9) is is easily shown that:

D(q, r,w⋆) =
√
[∆]nn (13)

Coming back again to the example, Fig. 2.b shows the ∆ matrix computed by (10-12) from the L matrix

shown in Fig. 2.a. Furthermore, the optimal warping path is identified by backtracking from the (n, n) entry of

∆, taking as predecessor of the (i, j) cell, the one among {(i − 1, j − 1), (i, j − 1), (i − 1, j)} with the lowest

value, and repeating the procedure until the (1, 1) cell is reached. It is easily checked that this simple procedure

yields the path emphasized in Fig. 2.b.

Even if the computational cost of the DTW algorithm is not an issue for the off-line accuracy studies considered

here, it may be of interest to reduce the computational burden of the DTW algorithm by using the technique

proposed in [3]. The idea is to restrain the warping path from regions of the local distance matrix L which are
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far from its diagonal. Thus, the warping path is searched in what has been eponymously called the Sakoe-Chiba

band. In speech recognition some heuristics are used to choose the width of the band, which it would probably

not make sense to transpose to power systems.

Instead, that width can be related to the largest acceptable time difference τmax between any two associated

points (i.e. the largest acceptable time warping). When the query and reference curves span the same time

interval T and have n uniformly distributed sampling points, separated by the time step h = T/(n− 1), this leads

to computing only a band of m points on both sides of the diagonal of L, where m = τmax/h.

Figure 3 shows the case where m has been set to 5 in the example of Fig. 2. Since the unconstrained optimal

warping path was not visiting the black cells of L, this path is identical to that in Fig. 2. So is the DTW distance

D(q, r,w⋆).
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Figure 3: DTW with Sakoe-Chiba band: local distance matrix L (a), accumulated distance matrix ∆ (b), query

and reference plots with warped pairs (c)

In this work, the Sakoe-Chiba band was not used to bound the maximum time difference between any two

associated points, but only to avoid useless computations in regions of L that are not likely to be visited by

any optimal path. For instance, for long curves spanning a time interval T of a few minutes, τmax was set to

30 seconds. Clearly, this choice is problem dependent and some tuning is required if computational effort is an

issue.
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2.3 Practical uses of DTW distance and optimal warping path

Although it makes sense to minimize D(q, r,w) to identify the optimal warping path between two time-series,

the value of D(q, r,w⋆) by itself may not be a meaningful measure of their proximity. For instance, if a larger

number of points is used for the comparison, the value of D(q, r,w⋆) will increase accordingly. To deal with this

situation, it sounds more appropriate to consider the normalized DTW distance:

δ =

√∑N
k=1 ℓwk

N
=

D(q, r,w⋆)√
N

(14)

If the two curves are smooth enough compared to the sampling period, a higher sampling will lead to a higher

value of N but one can expect δ to be few affected.

Further practical information can be obtained from the optimal warping path. With the pairs of indices in w⋆

denoted as in (4), we define the vector of curve offsets as:

y = [qi1 − rj1 , qi2 − rj2 , . . . , qiN − rjN ] (15)

and the vector of time shifts as:

x = [ti1 − tj1 , ti2 − tj2 , . . . , tiN − tjN ] (16)

The differences between the two curves can be measured by:

• the average curve offset:

µ =

∑N
k=1[y]k
N

=
1

N

N∑
k=1

(qik − rjk) (17)

• the standard deviation of the curve offsets:

σ =

√∑N
k=1([y]k − µ)2

N
(18)

• the average time shift:

τ =

∑N
k=1[x]k
N

=
1

N

N∑
k=1

(tik − tjk) (19)

For instance, when comparing two time-series, a small value of µ indicates that, with a proper deformation

of the time axes, the curves coincide on the average. τ characterizes the average delay corresponding to that

deformation. When comparing several queries to a reference, a larger value of σ denotes more “volatility” with

respect to that reference. In case of oscillatory responses, for instance, a small σ indicates that both curves have

similar damping.
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3 Improvements of the DTW distance

3.1 Extending the method to open-end DTW

The DTW method was initially developed for speech recognition applications where the signals to be compared

start and end at zero values. In power system applications where simulations (or simulations and measurements)

have to be compared, it is reasonable to assume that the two curves start from steady-state values. However, they

may eventually evolve into system instability, in which case they will end in the middle of transients caused by

either a monotonic collapse or by growing oscillations.

In such situations, it may not be meaningful to impose the optimal warping path to involve all the n points of

each curve. Indeed, under the effect of the above mentioned transients, D(q, r,w⋆), µ or σ may be significantly

and falsely influenced by the last points of the curves. This is even more true in a collapse simulation where

the model accuracy is questionable in those degraded operating conditions and, hence, less importance should be

given to the final values.

This motivates a modification of the method referred to as open-end DTW, which gives better performances

than the standard DTW algorithm [4], allowing only a partial alignment of the time-series thanks to a softening

of the Boundary condition defined in Section 2.1.

Thus, instead of requesting the optimal warping path to end up with wN = (iN , jN ) = (n, n), it is allowed to

end up in wN = (iN , jN ) with:

n′ −m′ ≤ iN ≤ n

n′ −m′ ≤ jN ≤ n

(jN − n)(iN − n) = 0

where the equality forces the last point of at least one of the two curves to be involved in the DTW distance.

Figure 4 shows an example of open-end DTW. In this case m′ has been set 5. As a result, the optimal warping

path stops in the (10, 9) entry of L instead of (10, 10) as in Figs. 2 and 3. It is easily seen from Fig. 4.c that from

t = 6 to t = 10, the query curve is delayed with respect to the reference, and therefore does not go as low as the

latter, although the “plunging” evolution is reproduced. The optimal warping path does not involve the last point

of the reference curve. This leads to a the DTW distance D(q, r,w⋆) =
√
8 = 2.828. This value is significantly
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smaller than the DTW distance of 4.899 obtained under strict boundary condition. This smaller distance reflects

the better matching between both curves when ignoring the last point of the reference time-series.
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Figure 4: Open-end DTW: local distance matrix L (a), accumulated distance matrix ∆ (b), query and reference

plots with warped pairs (c)

Similarly to m, and re-using the notation of Section 2.2, m′ can be taken as m′ = τ ′max/h where τ ′max is the

largest acceptable time difference on the last pair of associated points.

3.2 Penalizing large time warps

It has been noticed that on some occasions, the DTW algorithm “over-warps” the time axes during its optimization

process. This happens in the form of a single point of one time-series being mapped to a large number of points

of the other time-series, and was referred to as a singularity in [5]. In Figs. 2, 3 and 4, for instance, the 6th point

of the reference curve is a significant singularity in so far as it is mapped to 5 points of the query curve.

Several methods have been proposed to alleviate this problem [5]. In this work, a modification of the slope-

weighting technique described in [3] was found sufficient to remove or decrease the importance of singularities.

A singularity corresponds to several steps taken successively in the delay-forward (respectively the forward-

delay) direction. Let us denote by kdf the number of steps taken consecutively in the delay-forward direction

and by kfd its counterpart in the forward-delay direction. kdf is reset to zero as soon as a forward-forward or a

forward-delay step is taken, and similarly for kfd. Equations (12-11) used to compute the accumulated distance
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matrix are modified as follows:

[∆]1j =

j∑
k=1

pk−1 [L]1k j = 1, . . . , n (20)

[∆]i1 =

i∑
k=1

pk−1 [L]k1 i = 2, . . . , n (21)

[∆]ij = min{[∆]i−1,j−1 + [L]ij , [∆]i,j−1 + pkdf [L]ij , [∆]i−1,j + pkfd [L]ij} i, j = 2, . . . , n(22)

where p ≥ 1. Thus, the pkdf and pkfd factors penalize successive mappings that involve a single point of the same

curve. The choice of p may require some tuning as it is problem and sampling dependent. As a rule of thumb, in

case of a uniform sampling with time step h, and assuming that a singularity with cumulated delay ∆d is to be

penalized with a factor P ≥ 1, the recommended value is :

p = Ph/∆d

Note that the larger p, the closer the optimal warping path to the diagonal of ∆ and hence, the closer the DTW

distance to the Euclidean one.

Figure 5 shows an example of application of the slope-weighted DTW. In this example, the “large” value p = 2

was chosen to highlight the slope-weighting effect: as expected, it yields a nearly-diagonal warping path. The

mapping of points is shown in Fig. 5. Under the effect of penalties, the singularity of the 6th point of the reference

curve has decreased, since it is now mapped to only two points of the query curve. The corresponding DTW

distance is
√∑N

k=1 ℓwk
= 3.873.
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Figure 5: Slope-weighted DTW: local distance matrix L (a), accumulated distance matrix ∆ (b), query and

reference plots with warped pairs (c)
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4 Discussion

4.1 Metric aspects

A desirable property for a measure of distance is that it is a “metric”, which requires to satisfy the following four

conditions (the dependency on w⋆ is dropped for simplicity of writing):

• Non-negativity: D(q, r) ≥ 0.

• Symmetry: D(q, r) = D(r,q).

• Identity of indiscernibles: D(q, r) = 0 ⇐⇒ q = r.

• Triangle inequality: D(q,q′) +D(q′, r) ≥ D(q, r).

It is easily checked that the first two properties hold true for the DTW distance. On the other hand, it is easily

verified with counterexamples that it does not satisfy the last two properties.

In the speech recognition problem, the task is to compare the query (a spoken word) with many references (all

word prototypes in a dictionary) to identify the closest to the query (the most likely spoken word). In that problem

and, in general, in search algorithms, a measure with metric properties would allow finding the sought reference

without computing the DTW distances between the query and all references, which could be computationally

demanding, especially with a large number of references.

For the power system applications reported in this paper, however, the absence of a metric structure is not prob-

lematic at all, since our purpose is somewhat opposite: determine which of the queries is the closest approximation

of a single reference.

While no study has been carried on about loose satisfaction of metric properties in the power system case,

empirical evidence of quasi-metric properties was given in a speech recognition problem [10].

4.2 Sampling effects

A possible weakness of the DTW distance is its dependence on the curve sampling. Different samplings may lead

to quite different results. For instance, consider the following continuous-time evolutions:

q(t) = floor(t) (i.e. the largest integer ≤ t)
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r(t) = t

sampled to get the time-series q and r. Clearly, with an integer sampling period, starting at t = 0, D(q, r,w⋆) = 0

while with any other sampling D(q, r,w⋆) ̸= 0.

Algorithms for continuous dynamic time warping have been proposed [6] to deal with this problem, at the cost

of increased complexity and computational effort. This paper sticks with the classical, discrete formulation to

preserve the intuitiveness and simplicity of the DTW algorithm. The impact of sampling can be reduced by using

a small enough sampling period. The resulting computational burden is compensated by storing and processing

only the Sakoe-Chiba band in L and ∆.

4.3 Multidimensional DTW

So far it has been considered that the curve comparison involves a set of queries and a single reference. How-

ever, since power systems are multi-dimensional systems, it might be of interest to compute a global distance

measure between several sets of queries and their corresponding references. To this purpose the concept of multi-

dimensional DTW is introduced.

Let S be a set of variables of interest. Note that S should not be too large mainly because involving too many

curves exposes to masking effects. For instance, when analyzing the impact of a disturbance on a large power

system, it is likely that components far way from its location will respond comparatively less. Involving them in

the comparison may “dilute” significant discrepancies on the most affected variables, and potentially give a false

impression of accuracy.

For the sake of simplicity, we still suppose that the query qk and reference rk time-series of the same k-th

variable in S span the same time interval and have the same number n of uniformly sampled points.

The squared distance between two points of respectively qk and rk is defined, analogously to (2), as:

ℓ(k,i,j) = (qki − rkj )
2 i, j = 1, . . . , n (23)

The local distance matrix L is redefined as follows:

(L)ij =
∑
k∈S

wkℓ(k,i,j) i, j = 1, . . . , n (24)

where wk is the weight associated to the k-th variable. This weight may account for a conversion between different

units (e.g. kV and MW) and/or different importance given to different variables (higher wk corresponding to
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higher importance). From there on, the remaining of the procedure detailed in Sections 2.2 and 3, is identical.

Therefore, the additional computational effort with respect to the single-dimensional case is very limited, since it

has to do with the construction of the L matrix only.

5 Simulation results

This section illustrates the DTW method (and its extension) in two typical applications.

5.1 Solver accuracy comparison

In the first application, the DTW method is used to measure the accuracy of fast, simplified simulation methods.

The case has been obtained with the Nordic32 test system documented in [13]. In the scenario of concern,

following a line outage, the system undergoes long-term voltage instability under the effect of overexcitation

limiters reducing the field currents of generators and load tap changers attempting to restore the distribution

voltage (and hence load powers).

The benchmark evolution has been obtained with the 2nd-order Backward Differentiation Formula (BDF)

integration formula, using a step size of 0.05 s. Two simplified simulations have been considered:

• fast solver: following the ideas in [11], the backward Euler method has been used to simulate the same

detailed model as in the benchmark but with a large step size of 0.5 s and an appropriate handling of

discrete events as explained in [12]. This approach is denoted by BE in the sequel;

• model simplification: the quasi steady-state approximation of the long-term dynamics has been considered

[9], which consists of decomposing the model into fast and slow dynamics, replacing the former by their

equilibrium conditions and integrating the latter with a large step size of 1 s. This yields the fastest but also

the more approximate time simulation. This approach is denoted by QSS in the sequel.

Figure 6.a shows the time evolution of a representative bus voltage obtained by the benchmark (solid lines)

and the two simplified (dashed and dotted, respectively) simulation methods. A zoom on the first 10 s is provided

in Fig. 6.b. As can be seen, BE overlooks some of the oscillations but matches the benchmark once the large

transients have died out. QSS reproduces the same pattern but with a delay that increases towards the end.
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Figure 6: Voltage instability scenario: long-term evolution of voltage (a) and zoom over the first 10 s (b)

To compute the DTW distance, all curves have been sampled every 0.05 s, which is the smallest integration

step size (used to obtain the reference curve). Linear interpolation has been used to sample the BE and QSS

curves. For easier comparisons with DTW, we consider the normalized Euclidean distance:

ϵ =
E(q, r)√

(n)
(25)

This distance is found to be ϵ = 3.499× 10−3 pu for BE and ϵ = 24.45× 10−3 pu for QSS, which would suggest

that QSS is nearly one order of magnitude less accurate than BE.

The DTW distances show that in fact the QSS simulation is not so inaccurate, but just suffers from a growing

delay, as can be concluded from a visual inspection of the curves. The DTW measures have been computed with

τmax = τ ′max = 30 s (which corresponds to m = m′ = 600) and p = 1.5. The results are summarized in Table 1.

Table 1: solver accuracy comparison; collapse scenario (all values in pu of voltage)

solver δ µ σ τ

BE 1.876× 10−3 0.132× 10−3 1.872× 10−3 0.769

QSS 3.537× 10−3 0.495× 10−3 3.503× 10−3 11.19

The values of δ show that QSS is only twice as inaccurate as BE. µ indicates that QSS suffers from a positive

offset larger than BE. The BE curve is characterized by a smaller value of σ because it reproduces part of the
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initial voltage dip while the QSS curve goes directly to the underlying equilibrium, as can be seen in Fig. 6.b. τ

confirms that QSS suffers from a large average delay.

The simplified solvers considered here are not aimed at reproducing the electromechanical oscillations [11].

However, a slightly more accurate simulation can be obtained - with little additional computational effort - by

resorting to the second-order BDF integration scheme instead of Backward Euler (which is first-order BDF),

while still keeping the large step size of 0.5 s. This approach is denoted by BDF2 in the sequel.

The respective accuracies of BE and BDF2 with respect to the benchmark have been determined for the curves

in Fig. 7, showing the short-term evolution of the active power produced by a generator, in response to another line

outage in the Nordic32 system. As can be seen, BDF2 partly reproduces the oscillations while BE just sketches

the first swing.
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Figure 7: Oscillatory responses to be compared

The normalized Euclidean distances defined by (25) are ϵ = 47.23 MW for BDF2 and ϵ = 43.65 MW for BE

which would suggest that both solvers are quite inaccurate, and paradoxically, BDF2 is the least accurate.

The DTW measures have been computed with τmax = τ ′max = 5 s (which corresponds to m = m′ = 100)

and p = 1.5. The results, in MW, are given in Table 2. Unlike the Euclidean distances, the δ values indicate that

BDF2 is more accurate, which confirms the observation that, in spite of its high damping, BDF2 still reproduces

an oscillation, which is overlooked in the BE response. The µ values indicate that both solvers suffer from a

negative offset, while the σ values show that BDF2 has damping closer to the reference than BE. The τ values

indicate that BE suffers from an average delay twice as large as BDF2.
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Table 2: Solver accuracy comparison; oscillatory scenario (all values in MW)

solver δ µ σ τ

BDF2 27.94 −1.085 27.99 1.077

BE 34.09 −0.547 34.17 2.043

5.2 Model accuracy comparison

We now illustrate how the DTW method can be used to validate the outputs of models with respect to time

responses measured on the real system.

The case relates to a three-phase fault that occurred in 2010 on the 315-kV network of Hydro-Québec, when

energizing a transformer. The fault was cleared in 6 cycles, while some load spontaneously tripped after 3 cycles.

The recorded voltage evolution at a 735-kV bus is shown with solid line in Fig. 8. The sampling period is 1 cycle

at 60 Hz (≃ 0.0167 s).

Two models were considered when reproducing the event with an industrial software:

• loads wholly represented by a static, exponential model. This model is referred to as CS in the sequel

• part of the load represented by an equivalent induction motor. This model is referred to as CM in the sequel.

The simulated response obtained with each model, using a time step size of 0.25 cycle (≃ 0.0042 s) is shown in

Fig. 8.a with dashed and dotted lines, respectively. Figure 8.b provides a zoom on the first 3 s.
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Figure 8: Analysis of a real incident: evolution of voltage at a 735-kV bus (a) and zoom over the first 3 s (b)
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Clearly, the CS model yields a large voltage spike after fault clearing while the CM model gives results closer

to the measurements. Both simulations join the benchmark once the large transients have died out.

To further measure the accuracy of the two models, all curves have been sampled with a period of 0.25 cycle

and with linear interpolation. The normalized Euclidean distances in kV are ϵ = 17.59 kV for CM and ϵ =

26.89 kV for CS.

The DTW distances have been computed with τmax = τ ′max = 2.5 s (which corresponds to m = m′ = 600)

and p = 1.035. The results are given in Table 3.

Table 3: Model accuracy comparison (all values in kV)

Model δ µ σ τ

CM 9.134 6.806 6.093 1.877

CS 18.17 5.931 17.18 1.976

The respective values of δ show that CM is twice as accurate as CS. µ indicates that both models suffer from

a positive offset. σ shows that CM has a damping closer to the reference than CS. τ indicates that both models

have a delay around 2 s.

6 Conclusion

A measure of proximity of time-series stemming from power system simulations and/or measurements has been

proposed in this paper. This measure is based on Dynamic Time Warping, an algorithm originally developed

for speech recognition and now used in several fields. This algorithm warps the time axis and maps the points

of both curves to minimize the sum of their squared ordinate differences. This is equivalent to determining

the deformation of the time axes which brings the two time-series as close as possible in the Euclidean-norm

sense. An efficient dynamic programming algorithm is used for the minimization. Extensions and adaptations of

the classical method, to deal with typical power system responses have been presented, together with statistics

allowing to characterize the proximity of two time evolutions with as few as 3 parameters: µ, τ and σ. A key point
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of any proposed metric is how well it correlates with expert opinion. A further validation of the DTW approach

could be obtained by comparing the DTW-based ranking of a set of queries with the ranking made by a power

system expert. Depending on the application, the most significant ranking would be based on µ, τ or σ. A multi-

dimensional extension allowing system-wide measures of similarity has been also discussed. The effectiveness

and usefulness of the method has been demonstrated on several power system applications. The relative accuracy

of a set of simplified simulations with respect to a reference was computed on a small system. In the context of

model validation, two simulated responses were compared to a recorded measurement of a real incident.
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