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Motivations.

Suite à une demande importante du monde patrimonial, de nombreux
laboratoires de recherche en sciences exactes, appliquées ou naturelles ont
développé ces dernières années des outils dédiés à l’étude, à la conservation,
à la restauration, à l’archivage ou à la valorisation des oeuvres d’art. Les
outils développés enthousiasment généralement le monde patrimonial par leur
rapidité, leur objectivité et par leur caractère non destructif 1. Ils sont par
conséquent de plus en plus employés :

– Les restaurateurs et conservateurs de musées employent la spectrosco-
pie pour attribuer une oeuvre à un artiste ou à un atelier, déterminer
son origine géographique, comprendre les techniques de fabrication de
l’artiste ou encore investiguer l’altération de l’oeuvre dans son environ-
nement de conservation. Dans ce but, depuis 1989, les Musées de France
disposent pour leurs analyses de l’accélérateur de particule AGLAE2 si-
tué dans les locaux du Musée du Louvres de Paris [1].

– Pour acquérir un relevé 3D d’une oeuvre, les conservateurs peuvent uti-
liser, par exemple, la projection de franges [2]. La numérisation résul-
tante permettra maintes applications telles que l’analyse quantitative
du relief, l’archivage numérique, la reproduction de l’oeuvre originale,
ou encore la création de bornes interactives.

– La radiométrie photothermique permet la détection des décollements de
couches picturales ou des poches d’air existantes entre les différentes
couches d’une peinture murale. L’utilisation de la technique permet
donc une restauration préventive de l’oeuvre. Une étude récente sur
la peinture murale florentine du Saint-Christophe montre que la radio-
métrie photothermique est apte à la détection des altérations situées
dans de telles oeuvres [3]. Les résultats obtenus sont en excellente cor-
rélation avec ceux du sondage acoustique, technique traditionnelement

1Les techniques sont généralement entièrement automatisées, sont de champ, sans
contact et ne recourent pas à des prélèvements de matière.

2Accélérateur Grand Louvre d’Analyse Elémentaire
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MOTIVATIONS. 8

employée par les restaurateurs.
– A l’aide de nombreux domaines d’expertise tels que la radiométrie aux

rayons X, la fluorescence aux ultraviolets, la photographie, la chimie, la
minéralogie, la bactériologie, le scan-laser et la mécanique, le fabuleux
Michelangelo Project a permis l’étude des conditions environmentales
de conservation, l’étude du marbre et la numérisation 3D du célèbre
David de Michelangelo [4].

Retenons des exemples précédents que les archéologues, les historiens de
l’art, les conservateurs de musées et les restaurateurs disposent à ce jour
d’une panoplie importante de technologies de pointe pour améliorer leur tra-
vail qu’il soit dans le domaine de la sauvegarde, de la valorisation ou de
la restauration du patrimoine culturel. Ce croisement entre technologie et
patrimoine a donné naissance à l’archéométrie .

Sensibilisé par le Centre Européen d’Archéométrie (CEA) de l’Université
de Liège aux besoins en nouvelles technologies pour l’archéométrie, le labora-
toire Hololab3 a développé une installation de relevé 3D utilisant la projection
de franges [2] et dédié initialement au secteur patrimonial. La technologie
développée présente une résolution, aussi bien latérale qu’en profondeur, de
l’ordre du dixième de millimètre. Elle permet le relevé 3D de nombreuses
pièces et ce pour des applications on ne peut plus diverses : sauvegarde du
patrimoine, interactivité et valorisation des musées, "reverse-engineering",
biomédicales,...

Hololab souhaite maintenant développer de nouveaux outils dédiés à l’ar-
chéométrie mais aussi à d’autres domaines, notamment insustriels. L’expé-
rience du Hololab conduit à penser que l’interférométrie de speckle est une des
techniques les plus intéressantes à investiguer. En interférométrie de speckle,
il existe une configuration particulière dite différentielle ou encore shearo-
graphie, qui présente l’avantage d’être moins sensible aux perturbations ex-
térieures. Ces caractéristiques étant essentielles pour une utilisation in situ,
la configuration différentielle sera adoptée pour le développement du nouvel
outil.

La shearographie peut être employée pour la mesure de micro-pentes ou
pour la caractérisation de micro-déformations. Dans le cadre de l’étude de
tableaux, le premier champ d’application permettrait une étude des coups de
pinceau de l’artiste et par conséquent, d’étudier ses techniques ou d’identifier

3Service de Physique Générale de l’Université de Liège.
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l’artiste. Le second champ d’application permettrait principalement l’analyse
des défauts les plus importants proches de la surface de l’oeuvre. Elle permet-
trait par conséquent la prédiction de chutes de matière et donc d’anticiper
la restauration de l’oeuvre. De même, la carte des défauts de l’oeuvre pourra
servir de "carte d’identité" afin de distinguer les oeuvres originales des copies
ou encore pour déterminer les responsables de la déterioration d’une oeuvre
lors d’un prêt ou d’un déplacement de cette dernière. L’étude des défauts
répondant plus aux besoins de l’archéométrie, le Hololab a décidé de privilé-
gier à court terme la détection des défauts. Ce rapport a pour ambition de
décrire les recherches effectuées dans ce cadre. Nous qualifierons de défaut
toute région d’un objet qui, suite à l’application d’une contrainte homogène,
induit des déplacements de la surface inattendus, c’est-à-dire de valeur en
désaccord avec une étude mécanique théorique qui serait réalisée.

La première partie de ce document introduit les bases théoriques utiles à
la compréhension de notre travail.

Dans la seconde partie, nous décrirons l’installation de shearographie
mise au point au laboratoire pour la mesure de micro-déformations. Nous
adapterons alors cette installation pour la détection de défauts et réaliserons
quelques essais afin de nous familiariser avec la technique mais aussi pour
mettre en évidence les développements à apporter au dispositif pour amé-
liorer ses performances. Nous étudierons ensuite si, en plus de détecter les
défauts, la shearographie permet d’estimer leur position et leur taille à partir
des cartes de phase obtenues. Pour ce faire, un outil numérique original basé
sur la transformée en ondeletttes sera développé.

Après avoir démontré que la shearographie est apte à la détection et dans
une large mesure à la quantification de défauts nous remplacerons l’élément
clé du dispositif, à savoir un prisme séparateur4 des états de polarisation
linéaire s et p, par un cristal biréfringent et plus précisément par une lame
de Savart. Cette optimisation permettra de détecter et d’analyser les défauts
dans au moins deux directions du plan. Le remplacement du prisme par la
lame sera également motivé pour diverses raisons optiques qui seront préci-
sées en temps voulu. La substitution du prisme par la lame de Savart sera
décrite dans la troisième partie de ce document.
Dans cette troisème partie, nous décrirons également une deuxième optimi-

4Nous verrons au chapitre 2 que le cisaillement du faisceau objet est réalisé par sé-
paration des états de polarisation linéaire grâce à un composant multicouche déposé sur
l’hypothénuse d’un prisme de verre.
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sation importante de l’installation : la mise au point d’un algorithme adapté
à la mesure de phase dynamique. Les premiers essais de détection de défauts
ont été réalisés par décalage de phase temporel. L’objet se déformant lors
de l’enregistrement des images nécessaires au calcul des cartes de phase, le
décalage de phase temporel n’est pas l’algorithme le plus mieux pour mesu-
rer la phase. Pour améliorer ce point, nous développerons un algorithme de
mesure de phase par transformée de Hilbert.

L’installation de shearographie initialement développée au laboratoire est
constituée des mêmes composants optiques que le projecteur de franges inter-
férométriques du Hololab. Il est donc apparu normal d’extrapoler les résultats
obtenus en shearographie à la projection de franges :

- Le prisme séparateur des états de polarisation du projecteur de franges
a donc été substitué par une lame de Savart. Cette adaptation a été
motivée par le fait que l’utilisation de la lame permettra de disposer
d’une gamme continue d’interfranges ;

- L’algorithme de mesure de phase par transformée de Hilbert a été
adapté pour la projection de franges de manière à réduire d’un fac-
teur deux le nombre d’images à enregistrer pour le calcul des cartes de
phase.

Cette extrapolation des résultats obtenus en shearographie à la projection de
franges est détaillée dans la quatrième partie de ce document.

Après avoir optimisé l’installation de shearographie pour le contrôle non
destructif et extrapolé les développements à la projection de franges, nous
adapterons et validerons le dispositif de shearographie pour la caractérisation
de fronts d’onde. Cette dernière partie de notre travail permettra d’entrevoir
de nouvelles applications de l’installation, par exemple, dans le domaine de la
fabrication optique et/ou dans le domaine de l’optique active. La cinquième
partie de ce rapport introduit la caractérisation de fronts d’onde par shearo-
graphie.



Première partie

Bases théoriques
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La première partie de ce rapport consiste à résumer la théorie propre à
la shearographie. Les détails théoriques sont disponibles dans la littérature
spécialisée et principalement dans la référence [7]. En partant de la notion
de speckle, nous discuterons la méthode permettant l’obtention de la phase
de chacune des tavelures, information clef en shearographie. Cette discussion
mènera aux techniques d’interférométrie de speckle et de shearographie, à la
notion de shearogramme, aux algorithmes de décalage de phase temporel et
de déroulage de phase.

La méthode traditionnellement utilisée pour obtenir la distribution de
phase d’une figure de speckle sera d’abord décrite. Nous rappellerons ensuite
la notion de vecteur déplacement d’un objet soumis à une contrainte. De là,
nous introduirons le lien entre la shearographie et la mesure de la dérivée
première du champ vectoriel des déplacements. Ce lien permettra l’interpré-
tation physique des résultats obtenus et ce en fonction de la géométrie du
montage, ou plus précisément en fonction de l’orientation du vecteur sensi-
bilité de l’interféromètre.

Les avantages de la technique de shearographie, par rapport aux autres
techniques optiques, seront également établis en temps voulu.





Chapitre 1

De la granularité laser à la

shearographie.

1.1 La granularité laser : l’effet de speckle.

En éclairage cohérent, l’image d’un objet optiquement rugueux, c’est-à-
dire un objet dont les variations du relief de surface sont de l’ordre de quelques
longueurs d’onde de la lumière incidente, présente un aspect granuleux (Fig.
1.1). Les "grains de lumière" de l’image portent le nom de grains de spe-
ckle , speckles ou tavelures, et l’image est appelée figure de speckle1.
Cette figure de speckle résulte de la micro-interférence des ondes cohérentes
diffusées par les différents points de l’objet éclairé ([8]-[11]).

Fig. 1.1 – Photographie, en niveaux de gris, d’une figure de speckle d’une plaque
métallique éclairée par de la lumière cohérente.

En 1970, GABOR classifie les speckles en deux catégories : les speckles
objectifs et subjectifs [12]. Les speckles objectifs correspondent à des spe-

1speckle pattern
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CHAPITRE 1 : SHEAROGRAPHIE. 16

ckles se propageant dans l’espace libre. De tels speckles peuvent être enre-
gistrés sur une plaque photographique. Quant aux speckles subjectifs, ils
correspondent à des speckles visualisés par l’intermédiaire d’un système ima-
geant. Dans ce dernier cas, le diamètre2 ds des grains de speckle, défini par
la distance entre deux zones claires, dépend du système optique utilisé. Par
exemple, dans un système optique élémentaire constitué d’une lentille et d’un
diaphragme circulaire, la taille des grains de speckle est donnée par [7] :

ds = 2.44
λp′

D
(1.1)

où p’ est la distance du plan principal image de la lentille à l’image, λ est
la longueur d’onde de la radiation lumineuse utilisée pour l’éclairement et D
est le diamètre du diaphragme.

Dans le cas d’un diaphragme carré de côté D, on obtient [8] :

ds = 2
λp′

D
(1.2)

La taille d’un speckle subjectif dépendant du dispositif optique imageant
utilisé, plusieurs régimes d’enregistrement sont possibles. Dans le cas où
chaque tavelure recouvre strictement un pixel du détecteur utilisé (CCD,
CMOS,...), on parle de speckle résolu [8].

Remarques.
– Nous avons défini la notion de speckle sur base expérimentale : les spe-

ckles sont les grains de lumière perçus lors de l’éclairement d’une surface
optiquement rugueuse par une lumière cohérente. Signalons toutefois
qu’il existe une "définition mathématique" de la notion de tavelure.
Cette définition est basée sur la fonction de corrélation, entre points
voisins, de l’amplitude et de l’éclairement de l’image de l’objet dif-
fusant, dans le plan d’observation. Cette définition est à la base des
équations 1.1 et 1.2. Le lecteur intéressé par plus de détails est invité à
consulter les références ([8]-[10]). Pour éviter toute redondance avec ces
ouvrages, la fonction de corrélation d’un speckle, et plus généralement,
les propriétés statistiques d’un speckle ne seront pas traitées dans ce
travail.

2Les grains de speckle sont souvent considérés comme des grains circulaires. La notion
de diamètre est dès lors significative et la relation 1.1 permet d’obtenir un ordre de gran-
deur relatif de la taille des grains de speckle. Toutefois, signalons que la forme réelle des
tavelures équivaut à des bâtonnets ([8], [9]).
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– Nous verrons ultérieurement que la shearographie considère individuel-
lement chaque tavelure de la figure de speckle. Il sera dès lors nécessaire
de pouvoir identifier chacune d’entre elles. Pour ce faire, les talevures
seront nommées à l’aide de leurs coordonnées cartésiennes (x,y) dans le
plan image du détecteur, sur base du référentiel décrit par la Fig. 1.2.

Fig. 1.2 – Système de coordonnées bidimensionnel utilisé dans ce rapport pour
identifier les tavelures d’une figure de speckle.

1.2 Le speckle, source d’information.

Il existe deux manières de considérer le speckle. Le premier consiste à
considérer le speckle comme un bruit à réduire voire, idéalement, à éliminer.
Ce point de vue est adopté, par exemple, en imagerie en lumière cohérente :
GABOR qualifie le speckle d’ennemi numéro 1 de l’holographie [12]. Le se-
cond point de vue est de considérer la granularité laser non plus comme un
bruit, mais bien comme une source d’information3. Ce second point de vue est
à la base de l’interférométrie de speckle et de la shearographie. Plus précisé-
ment, en shearographie, la dérivée première des déplacements des particules
matérielles de l’objet diffusant et induits par l’application d’une contrainte
sur cet objet, est codée dans la phase des différentes tavelures.

En shearographie, il convient donc de déterminer la phase de chaque ta-
velure. Cependant, ceci n’est pas chose aisée. La phase d’un grain de speckle
fluctue rapidement dans le temps : pour une illumination avec un laser Nd-
YAG (532nm), la fréquence temporelle des fluctuations de la phase est de

3Dans ce cas, nous retiendrons la citation de LEENDERTZ et BUTTERS, "if we cannot

get rid of speckle, why don’t use it ?" [7].
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l’ordre de 5.6 1014Hz. Dans ces conditions, l’intégration temporelle des dé-
tecteurs ne permet pas de percevoir des fluctuations de l’éclairement des
tavelures mesuré, représentatives de la fluctuation de leur phase. Le strata-
gème utilisé pour palier ce problème consiste à estimer la phase des speckles
non plus de manière absolue mais relative. Ceci est réalisé en utilisant une
deuxième onde, dite onde de référence ou faisceau de référence , de fré-
quence égale à celle des fluctuations temporelles de la phase des speckles.
En faisant interférer la figure de speckle de l’objet étudié, appelée faisceau
objet, avec le faisceau de référence, la phase des différentes tavelures par
rapport à la phase de l’onde de référence peut être estimée. La différence de
phase φ(x, y), qualifiée de phase relative du speckle (x,y), est constante
dans le temps si aucune variation de chemin optique n’est introduite dans
un des deux faisceaux. Dans ces conditions, le problème consiste à estimer
la phase relative φ(x, y) de chaque tavelure à partir de la mesure de leur
éclairement I(x, y), en sachant que ces deux grandeurs physiques sont ma-
thématiquement liées (section 1.3).

Les dispositifs expérimentaux utilisés pour faire interférer les faisceaux
objet et de référence sont classés en deux catégories : ceux basés sur l’inter-
férométrie de speckle et ceux fondés sur la shearographie.

1. En interférométrie de speckle, le faisceau de référence se présente
soit sous la forme d’un faisceau constant en phase et en éclairement
(Fig. 1.3), comme en holographie, soit sous la forme d’une deuxième
figure de speckle de l’objet.
Le dispositif comporte deux ondes d’éclairement et deux ondes d’obser-
vation. Il est appelé interféromètre de speckle et livre un interféro-
gramme dit specklegramme . L’interférométrie de speckle a été étudiée
au sein du laboratoire Hololab ([5], [6]).

2. Une seule onde d’illumination est nécessaire en shearographie4. Le
faisceau objet est autoréférencé . Il interfère avec lui-même. Pour ce
faire, l’interféromètre fournit deux figures de speckle à partir du seul
faisceau objet (Fig. 1.4). Ces deux figures de speckle, décalées dans
l’espace (Fig. 1.5), permettent, après interférence, la détermination de
la phase relative de chaque tavelure : la première figure de speckle joue
le rôle de faisceau de référence pour la deuxième figure de speckle, qui

4Signalons que la shearographie est un cas particulier d’interférométrie de speckle : la
shearographie est parfois qualifiée d’interférométrie différentielle de speckle . Cette
appellation sera justifiée ultérieurement. Cette caractéristique permet l’utilisation de la
plupart des outils numériques traditionnellement employés en "interférométrie de speckle
classique". Dans la suite de ce travail, l’appellation "interférométrie de speckle" concernera
l’interférométrie de speckle "traditionnelle".
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Fig. 1.3 – Exemple d’un interféromètre de speckle dont le faisceau de référence
est constant en phase et en éclairement.

joue le rôle de faisceau objet et inversement. En d’autres termes, la
phase de la tavelure (x,y) de la deuxième figure de speckle est mesurée
par rapport à la phase de la tavelure (x,y) de la première figure de
speckle. Ou encore, plus précisément, si les deux figures de speckle sont
décalées, ou cisaillées, dans la direction X d’une grandeur δx dans le
plan image du détecteur, la phase du speckle (x,y) du faisceau objet,
et relatif au point (xobj,yobj) de l’objet, est mesurée par rapport à la
phase du speckle (x,y) du faisceau de référence, et relatif au point (xobj+
δxobj,yobj) de l’objet ; où δxobj est l’équivalent dans le plan de l’objet du
cisaillement δx. Les grandeurs δx et δxobj sont proportionnelles entre
elles. Pour un système imageant présentant un grandissement M [7] :

δx = Mδxobj (1.3)

Le cisaillement réalisé par le dispositif justifie l’appellation de shearo-
graphie5 : en anglais, "to shear" signifiant cisailler. L’interférogramme
fourni par l’interféromètre est quant à lui appelé shearogramme (Fig.
1.5). La région d’intersection entre les deux figures de speckle cisaillées
est qualifiée dans ce rapport de zone de recouvrement .

5shearography
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Fig. 1.4 – Exemple d’un montage de shearographie : interféromètre de Michelson
modifié. Dans un tel dispositif, le cisaillement du faisceau objet est obtenu en incli-
nant un des deux miroirs, généralement à l’aide d’un transducteur piézoélectrique.

Fig. 1.5 – Shearogramme d’une pièce de monnaie enregistré au Hololab [31].

1.3 Détermination de la distribution de phase.

L’éclairement I(x,y) du speckle (x,y) d’un shearogramme résulte de l’in-
terférence entre les faisceaux objet et de référence. Il est par conséquent décrit
par la relation ([7], [15]) :
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I(x, y) = Iobj(x, y) + Iref (x, y) + 2
√

Iobj(x, y)Iref (x, y) cos (φ(x, y)) (1.4)

où Iobj(x, y) et Iref (x, y) correspondent aux éclairements du speckle (x,y)
respectivement des faisceaux objet et de référence ; φ(x, y) représente la dif-
férence de phase entre les ondes objet et de référence au point (x,y) du
détecteur.

En introduisant l’éclairement moyen I0(x, y) des speckles (x,y) relatifs
respectivement aux faisceaux objet et de référence, ainsi que le facteur de
visibilité γ(x, y) de l’interférence entre ces speckles (x,y), la relation 1.4
s’écrit ([7], [11]) :

I0(x, y) =
Iobj(x, y) + Iref (x, y)

2
(1.5)

γ(x, y) =
2 [Iobj(x, y).Iref (x, y)]1/2

Iref (x, y) + Iobj(x, y)
(1.6)

I(x, y) = 2I0(x, y) [1 + γ(x, y). cos (φ(x, y))] (1.7)

Dans la distribution d’éclairement 1.7, l’argument φ(x, y) du cosinus est
de haute fréquence spatiale suite au caractère aléatoire des figures de speckle
[15]. Par conséquent, l’interférogramme enregistré ne présente pas de franges
d’interférence (Fig. 1.5).

Dans la relation 1.7, le paramètre pertinent est la distribution de la phase
φ(x, y), clef de voûte de la shearographie. En pratique, le shearogramme est
enregistré sur un détecteur photosensible (plaque photographique, détecteur
CCD,...). Seule la distribution spatiale de l’éclairement I(x,y) du shearo-
gramme est obtenue, codée sur 256 niveaux de gris dans le cadre d’un en-
registrement numérique d’images monochromes sous 8 bits, et l’information
φ(x, y) recherchée n’est pas directement accessible. Dès lors, à partir de la
distribution I(x,y) il faut déduire la distribution φ(x, y). Pour ce faire, il
existe de nombreux stratagèmes. Citons, entre autres, le décalage de phase
temporel [15] ou spatial [16], par transformée de Fourier [17], de Hilbert
[18] ou encore en ondelettes [19]. Dans un premier temps, le décalage de
phase temporel (TPS6) a été implémenté au laboratoire. Cette technique

6temporal phase-shifting
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est particulièrement bien adaptée pour l’analyse des déformations statiques,
premier champ d’application de la shearographie développé au Hololab. Nous
discuterons d’un algorithme de mesure de phase de phase par transformée de
Hilbert au chapitre 5. Cet algorithme sera performant pour la caractérisation
et/ou le suivi de déformations dynamiques.

1.3.1 Décalage de phase temporel.

L’algorithme de décalage de phase temporel (TPS) propose d’effectuer
l’enregistrement d’au moins trois shearogrammes en introduisant pour cha-
cun, un déphasage α supplémentaire connu, entre les ondes objet et de réfé-
rence7. On obtient ainsi un système d’au moins trois équations (les distribu-
tions spatiales des éclairements des divers shearogrammes enregistrés) à trois
inconnues (I0(x, y), γ(x, y), φ(x, y)) ([15], [7]) :







I1(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φ(x, y))]
I2(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φ(x, y) + α)]
I3(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φ(x, y)− α)]

(1.8)

où Ii représente la distribution d’éclairement du iieme shearogramme enregis-
tré.

L’incrément de phase α peut être quelconque. Cependant, l’erreur com-
mise sur la détermination de φ(x, y) est minimale pour un angle α particulier,
l’incrément de phase optimal. Dans le cas d’un décalage de phase tem-
porel à 3 incréments, l’incrément de phase optimal vaut 2π/3 [14].

La résolution du système 1.8 livre, entre autre, la distribution spatiale
φ(x, y) recherchée. Pour l’incrément de phase optimal, la distribution de la
phase est donnée par la relation [7] :

φ(x, y) = arctan

√
3 (I3(x, y)− I2(x, y))

2I1(x, y)− I2(x, y)− I3(x, y)
(1.9)

L’algorithme TPS à 3 incréments de phase permet la détermination de la
distribution de phase φ(x, y). Signalons toutefois qu’en pratique, et ce malgré
une augmentation du temps d’acquisition et du volume des informations à

7En pratique, dans un interféromètre de Michelson modifié, l’incrément de phase est
introduit en translatant un des deux miroirs de l’interféromètre, le plus souvent à l’aide
d’un transducteur piézoélectrique. Dans notre cas, l’incrément de phase sera introduit à
l’aide d’une cellule à cristaux liquides (section 2.1).
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stocker et à traiter, certains chercheurs préfèrent l’emploi d’un algorithme à
plus de 3 incréments de phase pour limiter les erreurs sur la détermination
de φ(x, y). Des algorithmes notamment à 4 ([7], [15], [21]) ou 5 incréments α
([14]) sont courrament utilisés.

Dans le cas d’un décalage de phase temporel à quatre incréments de phase,
le système à résoudre devient [7] :















I1(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φ(x, y))]
I2(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φ(x, y) + α)]
I3(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φ(x, y) + 2α)]
I4(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φ(x, y) + 3α)]

(1.10)

L’incrément de phase optimal vaut dans ce cas π/2. Pour cet incrément de
phase, la solution recherchée φ(x, y) du système d’équations 1.10 satisfait la
relation [7] :

φ(x, y) = arctan
I4(x, y)− I2(x, y)

I1(x, y)− I3(x, y)
(1.11)

Dans le cas d’un algorithme TPS à cinq incréments de phase, le système
à résoudre est [14] :























I1(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φ(x, y)− 2α)]
I2(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φ(x, y)− α)]
I3(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φ(x, y))]
I4(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φ(x, y) + α)]
I5(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φ(x, y) + 2α)]

(1.12)

L’incrément de phase optimal vaut π/2 et la distribution de phase peut être
déterminée par la formule de Hariharan ([14]) :

φ(x, y) = arctan
2 [I2(x, y)− I4(x, y)]

2I3(x, y)− I1(x, y)− I5(x, y)
(1.13)

Remarque.
Les valeurs de l’angle φ calculées par décalage de phase sont limitées, en
conséquence du théorème de la fonction inverse [22], à l’intervalle ]−π/2, +π/2[.
Dans le but d’accéder à des valeurs incluses entre −π et +π, il est nécessaire
d’analyser les signes du numérateur et du dénominateur de la relation (1.9,
1.11 ou 1.13) utilisée selon le nombre d’incréments de phase, et ce à condi-
tion que les numérateur et dénominateur coïncident respectivement à des
fonctions sinus et cosinus ([7], [14], [15]).
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1.4 Shearographie et mesure.

Nous venons de décrire la manière d’obtenir la distribution de phase re-
lative d’une figure de speckle. Cette distribution permet d’analyser la déri-
vée première du champ vectoriel des déplacements d’un objet soumis à une
contrainte. Pour introduire la relation entre la phase relative et la dérivée
première des déplacements, nous commencerons par rappeler la notion de
déplacement (sous-section 1.4.1). Cette notion introduite, nous analyserons
la manière d’obtenir à partir de la distribution de phase φ(x, y) et en fonc-
tion de la géométrie du montage, les différentes composantes de la dérivée
première du vecteur déplacement de chaque particule matérielle de l’objet
analysé (sous-section 1.4.2).

1.4.1 Vecteur déplacement et carte de phase enroulée.

Considérons un objet dans une configuration de référence A. Dans
cette disposition, chaque particule matérielle8 du corps solide peut être éti-

quetée par ses coordonnées cartésiennes
−−→
xobj

A = (xobj
A , yobj

A , zobj
A ). Si une contrainte

est appliquée, le corps solide analysé se retrouve dans une nouvelle configu-
ration, une configuration B dite déformée et les particules matérielles

sont maintenant repérées par de nouvelles coordonnées cartésiennes
−−→
xobj

B =
(xobj

B , yobj
B , zobj

B ) (Fig. 1.6). Ce changement de position dans l’espace corres-

pond, en mécanique des milieux continus, à la notion de déplacement
−−→
uobj =

(uobj, vobj, wobj) définie, pour chaque particule matérielle, par la relation [23] :

−−→
uobj =

−−→
xobj

B −
−−→
xobj

A (1.14)

La shearographie permet d’obtenir la dérivée première spatiale du dépla-
cement de chaque tavelure, lorsque l’objet a été déformé par rapport à sa
configuration de référence.

En shearographie, un objet dans sa configuration de référence, ou plus
généralement dans un état A, livre un shearogramme dont la distribution
spatiale de l’éclairement dans le plan image du détecteur est :

IA(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φA(x, y))] (1.15)

8La particule matérielle
−−→
xobj

A équivaut à la matière contenue dans un volume infini-

tésimal dV entourant le point
−−→
xobj

A du corps solide [23]. En shearographie, les particules
matérielles considérées coïncident avec les différentes tavelures des figures de speckle de
l’objet analysé.
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Fig. 1.6 – Schématisation de la notion de déplacement. En bleu : l’objet dans son
état A de référence. En rouge : l’objet dans une configuration B déformée.

où l’indice "A" caractérise l’état A de référence de l’objet.

Le même corps dans une configuration B déformée fournit un shearo-
gramme dont la distribution de l’éclairement dans le plan image du détecteur
est maintenant :

IB(x, y) = 2I0(x, y) [1 + γ(x, y).cos (φB(x, y))] (1.16)

où l’indice "B" est relatif à l’état B déformé de l’objet.

La phase relative de la tavelure (x,y), suite à la contrainte, n’est plus
définie par la distribution φA(x, y), mais par φB(x, y) : la contrainte induit
une modification du chemin optique des faisceaux donnant naissance aux
speckles. En pratique, les distributions de phase relative φA(x, y) et φB(x, y)
sont obtenues par application du décalage de phase temporel aux shearo-
grammes de l’objet dans ses états A et B. Une fois les distributions φA(x, y)
et φB(x, y) déterminées, il est coutume de considérer la variation de phase
relative ∆(x, y), dite aussi carte de phase enroulée ou modulo 2π ([7],
[20], [24]) :

∆(x, y) = φB(x, y)− φA(x, y) (1.17)

Cette carte de phase enroulée se présente en pratique sous forme de courbes
d’iso-phase ou franges (Fig. 1.7). Ces dernières peuvent être discontinues.
Elles présentent des sauts de phase : lors du passage d’une frange claire
(niveau de gris = 255) à une frange sombre (niveau de gris = 0), la valeur
de la variation de phase relative enroulée passe de π à −π + ǫ, au lieu de π
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à π + ǫ. La distribution ∆(x, y) est dite enroulée modulo 2π.
La technique de déroulage de phase spatial9 est traditionnellement utilisée
pour obtenir la valeur π + ǫ lors d’un saut de phase. Ce stratagème fournit,
"en comptant les franges" de la distribution ∆(x, y), une nouvelle distribution
angulaire ∆d(x, y) dite carte de phase déroulée. Cette dernière ne présente
aucune restriction sur les valeurs angulaires permises de la variation de phase
relative. La philosophie du déroulage de phase sera explicitée à la section
1.4.3.

Pour un petit cisaillement entre les images relatives aux faisceaux objet
et de référence, la littérature ([7], [20], [24]) signale que la variation de phase
relative déroulée ∆d(x, y) est étroitement liée, en shearographie, à la dérivée
première des déplacements :

∆d(x, y) =

(

A
∂u

∂xi

+ B
∂v

∂xi

+ C
∂w

∂xi

)

δxi (1.18)

où A, B et C sont des constantes de proportionnalité dépendant de la géomé-
trie du montage et appelées coefficients de sensibilité (section 1.4.2). u,
v et w sont respectivement les composantes selon les axes X, Y et Z dans le
plan image du détecteur, des vecteurs déplacements des particules matérielles
de l’objet et induits par la contrainte exercée. xi représente la coordonnée
cartésienne qui caractérise la direction du cisaillement de l’interféromètre.
δxi caractérise la taille du cisaillement, au niveau du détecteur et dans la
direction Xi, entre les images liées aux faisceaux objet et de référence.

L’équation 1.18 donne la relation entre la variation de phase relative dé-
roulée et la dérivée première des déplacements induits des différentes par-
ticules matérielles de l’objet. Cette équation justifie mathématiquement la
nécessité de cisailler les images relatives aux faisceaux objet et de référence
de l’interféromètre : la direction et la taille du cisaillement sont des para-
mètres pertinents.

La shearographie permet d’obtenir la dérivée première du champ vecto-
riel des déplacements. La technique est différentielle : la shearographie est
parfois appelée interférométrie différentielle de speckle. Cette propriété
induit que les installations de shearographie sont insensibles aux faibles vi-
brations d’ensemble de l’objet étudié. Les dispositifs de shearographie sont
ainsi les plus aptes, parmi les montages interféromériques10, à être utilisés

9spatial phase unwrapping
10Par exemple, les interféromètres holographiques ou de speckle (ESPI/DSPI), ainsi que

les profilomètres, sont fortement sensibles aux vibrations de l’objet.
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dans un environnement industriel.

Les techniques utilisées, ou potentiellement utilisables, par les mécani-
ciens (interférométrie de speckle, stéréocorrélation, jauges de contraintes,...)
fournissent le vecteur déplacement −→u . Il leur est donc nécessaire de dériver
numériquement ce vecteur dans le but de retrouver le tenseur des déforma-
tions infinitésimales ε, lequel apparaît dans les lois de la mécanique (loi de
Hooke,...) et, par conséquent, traduit le comportement du corps étudié11.
La shearographie présente donc l’avantage sur les techniques traditionnelles
de donner directement accès à la dérivée première du vecteur −→u de chaque
particule matérielle, directement liée au tenseur ε d’ordre 2 [23] :

ε =
1

2

[

∇−→u + (∇−→u )T
]

(1.19)

où l’exposant "T" signifie transposé.

Par exemple, la composante εxy du tenseur des déformations infinitésimales
est donnée par :

εxy =
1

2

[

∂v

∂x
+

∂u

∂y

]

(1.20)

ou encore la composante εzz du tenseur ε vaut :

εzz =
∂w

∂z
(1.21)

1.4.2 Géométrie du montage et vecteur sensibilité.

La relation 1.18 liant la carte de phase déroulée à la dérivée du vecteur
déplacement est une fonction de la géométrie du montage par l’intermédiaire
des coefficients de sensibilité A, B et C. En caractérisant cette dernière par
le vecteur sensibilité

−→
Ks de l’interféromètre, vecteur défini comme étant la

différence entre le vecteur d’onde
−→
kobs caractérisant la direction d’observation

et le vecteur d’onde
−→
kinc des ondes éclairant l’objet [7] :

−→
Ks =

−→
kobs −

−→
kinc (1.22)

la relation 1.18 peut se réécrire [7] :

∆d(x, y) =

[

(−→
Ks.−→ex

) ∂u

∂xi

+
(−→
Ks.−→ey

) ∂v

∂xi

+
(−→
Ks.−→ez

) ∂w

∂xi

]

δxi (1.23)

11Une interprétation physique des composantes du tenseur des déformations infinitési-
males est disponible dans la référence [23].
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où le symbole "." qualifie un produit scalaire et les vecteurs −→ei sont les
vecteurs de base unitaires du système de coordonnées (x,y,z).

L’orientation du vecteur sensibilité est un paramètre pertinent. Elle per-
met de corréler la dérivée première, par rapport à xi, de la composante u, v
et/ou w du vecteur de déplacement −→u à la carte de phase déroulée12. Ainsi,
par exemple, pour un vecteur sensibilité parallèle à l’axe Z13 la relation de-
vient :

∆d(x, y) =
(−→
Ks.−→ez

) ∂w

∂xi

δxi (1.24)

et seule la dérivée de la composante w, dite composante hors-plan, peut
être analysée. Le montage est qualifié de hors-plan.

L’équation 1.24 permet de lier la carte de phase déroulée à la dérivée
de la composante hors-plan du vecteur déplacement. Elle permet donc une
étude quantitative de cette dérivée. De même, la relation 1.24 permet une
interprétation qualitative des franges de la carte de phase enroulée. Celles-ci
peuvent être "vues" comme des "courbes d’iso-déformation hors-plan" 14,15.

1.4.3 Introduction au déroulage de phase spatial.

La carte de phase enroulée permet une interprétation qualitative de la
dérivée première des déplacements. Pour une mesure quantitative, basée sur
la relation 1.23, de cette même dérivée, il est nécessaire de dérouler la phase,
c’est-à-dire de restituer le multiple de 2π à ajouter à la valeur obtenue au
terme du décalage de phase, afin de retrouver la valeur réelle ∆d(x, y) de la
phase ∆(x, y). Pour ce faire, il existe de nombreux algorithmes ([7], [26], [27]).
En pratique, nous n’aurons pas besoin de développer notre propre programme
de déroulage de phase. Nous utiliserons celui mis au point par la spin-off
DEIOS s.a. Par conséquent, l’algorithme de déroulage de phase ne sera pas

12Par analogie, en optique diffractive, le vecteur d’onde d’un réseau, défini par la diffé-
rence entre le vecteur d’onde du mieme ordre diffracté et le vecteur d’onde incident, est
un paramètre pertinent qui, à la fois, caractérise la géométrie du réseau et régit l’équation
des réseaux [25].

13Traditionnellement, les axes X et Y sont définis par le meilleur plan de l’objet (Fig.
1.6). L’axe Z est perpendiculaire à ce plan et pointe dans la direction du vecteur d’onde
des ondes réfléchies par l’objet.

14Signalons toutefois que le terme "iso-dérivée, par rapport à la direction du cisaillement,
de la composante hors-plan du vecteur déplacement" serait plus adéquat.

15En interférométrie de speckle ([5],[9]) et en interférométrie holographique [13], les
franges de la carte de phase enroulée correspondent à des "courbes d’iso-déplacements".
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détaillé dans ce rapport. Seule la philosophie du déroulage de phase spatial
est introduite ci-après.

Le théorème d’échantillonnage de Shannon implique que pour avoir une
carte de phase enroulée bien échantillonnée, c’est-à-dire qui traduit bien la
réalité physique du problème, l’évolution de la variation de phase relative sur
une rangée de pixels ne peut jamais être supérieure à π [14]. Par conséquent,
toute modification de cette variation de phase relative supérieure (resp. infé-
rieure) à +π (resp. −π) dans la carte de phase enroulée correspond à un saut
de phase induit par la fonction arctan. A chaque saut de phase détecté par
ce critère, il suffit d’augmenter (resp. de diminuer) d’une unité le multiple m
de 2π à ajouter à la valeur ∆(x, y) [14] :

∆d(x, y) = ∆(x, y) + 2mπ (1.25)

En comparant la variation de phase relative ∆(x, y) d’un pixel avec celle
de son voisin, il est donc possible de détecter les sauts de phase dans la
distribution ∆(x, y). A ces sauts de phase, la variation de phase relative est
augmentée ou diminuée de 2π. La distribution corrigée est appelée carte de
phase déroulée ∆d(x, y).

La Fig. 1.7 présente une carte de phase enroulée, la carte de phase déroulée
qui lui est associée, en niveaux de gris et sous forme de graphique 3D.

Fig. 1.7 – A gauche : une carte de phase enroulée. Au centre : carte de phase
déroulée, en niveaux de gris, relative à l’image de gauche. A droite : la même carte
de phase déroulée sous forme d’un graphique 3D [7].
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La première partie de ce rapport a présenté la théorie relative à la shea-
rographie à décalage de phase temporel. Cette seconde partie a pour but de
décrire l’interféromètre développé au Hololab et de discuter le potentiel de la
technique pour la détection et la quantification de défauts.

Le chapitre 2 présente l’installation à chemins optiques quasi-communs
mis au point au laboratoire, ainsi qu’un exemple de mesure de la dérivée pre-
mière de déplacements hors-plan. Riche de l’expérience acquise dans ce type
d’application, nous décrirons ensuite le lien entre détection de défauts et me-
sure de la dérivée première de déplacements. Ce lien établi, nous présenterons
quelques essais de détection de défauts.

L’idée que la shearographie est adpatée à la détection des défauts est une
idée largement répandue dans le monde du contrôle non destructif. Toutefois,
nous n’avons pas trouvé dans la littérature de publication pertinente sur la
quantification de défauts. Par conséquent, au chapitre 3, nous étudierons si la
shearographie est également adaptée à la quantification de la taille des défauts.
Pour ce faire, une méthodologie de quantification sera décrite et une mise en
oeuvre originale de cette méthodologie, basée sur la transformée en ondelettes,
sera réalisée. La méthodologie tiendra compte de la taille et de la direction
du cisaillement, sera indépendante de la manière dont le défaut a été mis
évidence et de la forme de la phase dans sa région d’impact, et surtout sera
objective et livrera des résultats reproductibles. Cet apport personnel aboutira
à la conclusion que la shearographie est adaptée pour la quantification des
défauts dans le direction du cisaillement.





Chapitre 2

Détection de défauts par

shearographie à décalage de phase

temporel.

Ce chapitre a pour but la description de l’interféromètre mis au point au
Hololab, ainsi que son application en mesure de gradient de déplacements
hors-plan et en détection de défauts. Les tests réalisés en contrôle non des-
tructif ne sont pas originaux mais permettent une familiarisation avec la tech-
nique et de montrer le bon fonctionnement de l’interféromètre. Ils permettent
aussi d’évaluer les développements à réaliser pour augmenter le potentiel de
la technique en contrôle non destructif (NDT1).

2.1 La shearograpie au Hololab.

Sur base des concepts décrits précédemment, le Hololab a développé une
installation originale de shearographie. La Fig. 2.1 schématise l’interféro-
mètre du laboratoire. Dans cette installation, le faisceau laser guidé, élargi
et nettoyé de ses défauts de phase à l’aide de la fibre optique, éclaire de
manière quasi-uniforme l’objet à étudier. Après rétro-diffusion sur celui-ci,
les ondes électromagnétiques traversent le prisme séparateur des états de
polarisation, l’élément de cisaillement. Le passage du faisceau objet dans le
prisme induit deux figures de speckle cisaillées : une polarisée "Transverse
Electric" (TE ou s) et une polarisée "Transverse Magnetic" (TM ou p). Ces
deux faisceaux images traversent la cellule à cristaux liquides, le modulateur
de phase de l’installation, et interfèrent à l’aide du polariseur linéaire. Les
shearogrammes sont enregistrés par l’intermédiaire de la caméra CMOS.

1Non-Destructive Testing.
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Fig. 2.1 – Schéma du montage de shearographie du Hololab.

Le prisme séparateur des états de polarisation2 est l’élément de
cisaillement de l’interféromètre. Grâce à un composant multicouche déposé
sur son hypothénuse, ce prisme de verre sépare une onde électromagnétique
incidente en deux ondes polarisées linéairement et perpendiculairement l’une
par rapport à l’autre : une onde polarisée TE et une polarisée TM. Le com-
posant multicouche réfléchit le mode TE et transmet le mode TM par effet
Brewster. La Fig. 2.2 montre les degrés de polarisation en réflexion, PR, et
en transmission, PT , du composant diffractif en fonction de l’incidence des
rayons lumineux sur le prisme et pour la longueur d’onde opérationnelle du
composant (532 nm). Ces degrés de polarisation sont respectivement défi-
nis par les équations 2.1 et 2.2. Ils caractérisent la séparation des modes de
polarisation TE et TM par réflexion et par transmission.

PR = |RTM −RTE

RTM + RTE

| (2.1)

PT = |TTM − TTE

TTM + TTE

| (2.2)

2Ce prisme a été livré par la société Edmund Optics.
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où R., représente la réflectance et T., la transmittance du mode de polarisa-
tion . renseigné en indice.

Fig. 2.2 – Réponse angulaire du prisme séparateur des états de polarisation à 532
nm dans sa plage angulaire d’utilisation recommandée.

Nous constatons que pour une longueur d’onde de 532 nm, le cisaillement
de l’onde est optimal pour les incidences supérieures à 0◦. Cependant, le degré
de polarisation n’étant pas unitaire en réflexion en incidence normale, il existe
une réflexion résiduelle en mode TM qui peut interférer avec le faisceau TM
transmis par le composant multicouche. Cette interférence parasite est une
source de bruit dans les cartes de phase.

Chacun des faisceaux obtenus par cisaillement correspondra à une figure
de speckle de l’objet étudié. Pour diriger ces faisceaux dans une même di-
rection, une lame de verre à faces parallèles est accolée au composant multi-
couche à l’aide d’une huile d’indice adéquate (n=1.522). Cette lame réoriente,
par réflexion totale, le faisceau polarisé TM transmis par le composant dif-
fractif dans la direction du faisceau TE réfléchi par le composant (Fig. 2.3).
Pour faire interférer ces deux faisceaux, un polariseur linéaire est introduit
sur le chemin des faisceaux TE et TM réorienté. L’orientation de ce polari-
seur est telle que les éclairements des deux faisceaux soient dans un rapport
unitaire au niveau du détecteur. L’interférence donne lieu au shearogramme,
lequel est enregistré par l’intermédiaire de la caméra CMOS.
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Fig. 2.3 – Représentation schématique de l’élément de cisaillement. Le système
(prisme - composant multicouche - lame) permet l’obtention de deux points images
distincts à partir d’un seul point source et dans la même direction de propagation
de la lumière.

La taille du cisaillement résultant de la séparation des états de polarisa-
tion est proportionnelle à l’épaisseur de la lame de verre accolée au prisme.
Plus précisément, la taille du shearing δx′ à la sortie du prisme est liée à
l’épaisseur d de la lame de verre par la relation :

δx′ =
√

2d cos(θi)

[

1 +
n sin(θi)

n2 − sin2(θi)

]

(2.3)

avec n, l’indice de réfraction du prisme et θi, l’angle d’incidence des rayons
lumineux sur la face d’entrée du prisme.

En pratique, l’épaisseur de la lame de verre n’est pas parfaitement uni-
forme. La taille du cisaillement varie par conséquent d’un point à l’autre du
shearogramme. Les deux lentilles présentes dans le dispositif expérimental
ont pour rôle de limiter cet effet. La lentille à l’entrée du prisme est placée de
manière à focaliser la figure de speckle polarisée TM sur l’interface verre/air
de la lame de verre. Cette focalisation réduit la surface utile de l’interface
qui est éclairée. Elle diminue la probabilité de balayer des épaisseurs relative-
ment différentes. La lentille à la sortie du prisme permet la défocalisation des
ondes lumineuses. Cette seconde lentille augmente également la taille du ci-
saillement et ce en fonction de son grandissement transversal Mlent. Derrière
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la lentille, la taille du cisaillement δxlent devient :

δxlent = Mlent.δx
′ (2.4)

La taille du cisaillement au niveau du détecteur est également modulée
par le grandissement transversal Mobj de l’objectif du détecteur. Cependant,
la taille de l’image de l’objet est affectée de la même manière par cet objec-
tif. Par conséquent, le rapport entre la taille du cisaillement et la taille de
l’image est indépendant du grandissement Mobj. En accord avec l’interpréta-
tion physique3 du cisaillement, il est donc inutile d’introduire le facteur de
modulation Mobj dans la relation 2.4. En définitive, au niveau du détecteur,
la taille du cisaillement δx est donnée par :

δx = δxlent = Mlent.
√

2d cos(θi)

[

1 +
n sin(θi)

n2 − sin2(θi)

]

(2.5)

La Fig. 2.4 montre la linéarité entre l’épaisseur de la lame de verre accolée
au prisme et la taille du cisaillement au niveau du détecteur CMOS4. Le
coefficient de corrélation linéaire r2 est de l’ordre de 97%.

L’utilisation d’un élément de cisaillement par séparation des états de pola-
risation induit que dans le dispositif les deux figures de speckle qui interférent
parcourent des chemins optiques, ou géométriques, quasi-communs. Les deux
bras de l’interféromètre sont confondus sur la presque totalité du montage et
sont donc influencés simultanément en cas de perturbation. L’interféromètre
reste par conséquent opérationnel en présence de perturbations extérieures
telles que les vibrations, les turbulences athmosphériques, un gradient de
température... Cette insensibilité implique que le dispositif sera apte à des
applications in situ.

Dans le but de pouvoir implémenter un algorithme de décalage de phase
temporel, un modulateur de phase doit être introduit dans le dispositif. En
accord avec l’élément de cisaillement employé dans l’installation, le modu-
lateur de phase doit pouvoir déphaser le mode de polarisation TM par rap-
port au mode TE. Le modulateur de phase le plus apte à répondre à ces
contraintes est une cellule à cristaux liquides (LCD). Deux ondes élec-
tromagnétiques polarisées linéairement et respectivement parallèlement aux

3Cf. page 19.
4Une estimation simple de la taille du cisaillement consiste à imager un objet pointu

à l’aide de l’interféromètre et d’évaluer la distance entre les deux images cisaillées de la
pointe de cet objet. Cette distance est équivalente à la taille du cisaillement.
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Fig. 2.4 – Taille du cisaillement en fonction de l’épaisseur de la lame de verre
accolée au prisme séparateur des états de polarisation. Pour l’expérience réalisée,
1 pixel du détecteur équivaut à 0.289 mm dans le plan objet.

axes rapide et lent de la cellule (ou inversement) seront déphasées l’une par
rapport à l’autre après leur passage à traves la cellule et ce tout en conservant
leur état de polarisation. Le déphasage introduit sera fonction de la tension
appliquée aux bornes du modulateur de phase. Ainsi, dans l’interferomètre,
la cellule à cristaux liquides est placée entre l’élément de cisaillement et la
seconde lentille. Ses axes lent et rapide sont respectivement orientés parallè-
lement aux directions de polarisation TE et TM5. Les shearogrammes sont
successivement enregistrés sous des tensions aux bornes de la cellule à cris-
taux liquides égales à 1300mV, 1530mV, 1689mV et 1927mV afin d’introduire
les incréments de phase utiles au décalage de phase temporel à quatre incré-
ments [30].

Plus de détails sur le comportement des différents composants de l’inter-
féromètre peuvent être obtenus en consultant les références [30] à [33]. Nous
avons limité dans ce rapport la description du dispositif afin d’éviter toute
redondance avec ces références.

5Notons que nous pourrions aussi travailler avec l’axe rapide de la cellule orienté pa-
rallèlement, non par rapport à la direction de polarisation TM, mais par rapport à la
direction de la polarisation TE. Le choix est purement arbitraire.
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Le dispositif, tel que décrit ci-avant, a été employé et validé dans le cadre
de la mesure de la dérivée première de déplacements hors-plan. La mesure
de la dérivée première de déplacements hors-plan d’une plaque d’acier plane
(282 mm x 282 mm x 1 mm) et induits par la charge, appliquée en son centre,
successivement d’une masse de 12 g et de 19 g (Fig. 2.5) a été réalisée avec
succès ([30], [31], [34]). Les cartes de phase enroulées obtenues lors de cette
expérience sont présentées à la Fig. 2.6. Ces cartes de phase ont permis, après
filtrage6 et déroulage de phase7, la détermination de la distribution spatiale
de la dérivée première des déplacements hors-plan dus à la charge de la masse
sur la plaque (Fig. 2.7).

Fig. 2.5 – Photographie du système objet/contrainte étudié. Le miroir incliné à
45◦ évite de devoir positionner verticalement le système imageant. La configuration
du système objet/contrainte permet d’assurer la stabilité et la reproductibilité de
l’expérience.

2.2 Détection de défauts par shearographie à

décalage de phase temporel.

Un objet fragilisé par un défaut et soumis à une contrainte homogène
se déforme différemment dans le voisinage de son défaut, car ce dernier in-
duit une concentration de contraintes dans sa région. Cette concentration de
contraintes affecte la réponse mécanique de l’objet vis-à-vis de la contrainte

6Dans cette expérience, le filtre employé est un masque moyen de dimension 3 appliqué
une fois au niveau sinus-cosinus de la carte de phase enroulée [30].

7Le déroulage de phase est basé sur un algorithme par croissance de régions [26].
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Fig. 2.6 – Cartes de phase enroulées (non filtrées) relatives à la charge de la
masse m sur la plaque d’acier plane. A gauche : m = 12 g. A droite : m = 19 g. Le
cisaillement est effectué parallèlement à l’axe X et vaut 8 mm. Zone étudiée : 124
mm x 124 mm (430 pxl x 430 pxl).

Fig. 2.7 – Cartes de la dérivée première des déplacements hors-plan induits par la
charge de la masse m sur la plaque d’acier plane. A gauche : m = 12 g. A droite :

m = 19 g.

appliquée. Si le défaut affecte les déplacements de la surface de l’objet in-
duits par la contrainte, alors la carte de phase enroulée présentera des franges
singulières dans le voisinage du défaut et ce qu’elle soit obtenue par interfé-
rométrie holographique [35], par interférométrie de speckle [36] ou par shea-
rographie8 ([7], [28], [37]). Dans la carte de phase déroulée, ces franges singu-

8Précisons toutefois que la détection des franges singulières est plus aisée dans les cartes
de phase enroulées obtenues en shearographie que dans celles obtenues par interféromé-
trie holographique ou de speckle [28]. La différence est liée au caractère différentiel de la
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lières se traduiront par une zone où l’amplitude de la phase est inattendue.
Cette région d’impact9 du défaut sera qualifiée dans ce rapport de zone de

"haute-phase" . En définitive, la détection de défauts par voie interféromé-
trique consiste en la détection d’une zone de franges singulières dans la carte
de phase enroulée ou en la détection d’une région de phase, ou de dérivée
première de déplacements, d’amplitude inattendue dans la carte de phase
déroulée.

La détection de défauts par shearographie consiste donc en une mesure de
la dérivée première de déplacements. L’interféromètre du laboratoire étant
adapté pour une telle mesure, il est opérationnel tel quel pour réaliser des
premiers tests de faisabilité de détection de défauts. Ainsi, l’installation a été
employée pour l’analyse d’une plaque d’acier plane évidée sur un volume de
10.1 x 10.1 x 5.0 mm3 et sur sa face invisible par la caméra (Fig. 2.8).

Fig. 2.8 – Faces avant et arrière, et profil de la plaque d’acier évidée. La face
avant est celle vue par la caméra de l’interféromètre. Le carré noir sur la face avant
représente la zone d’intérêt étudiée.

technique.
9Les techniques interférométriques détectent la zone affectée par le défaut et non la zone

"géométrique" du défaut. Ceci n’est pas un inconvénient, car c’est cette zone d’impact qui
consistue la zone fragilisée de l’objet.
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La Fig. 2.9 représente la carte de phase enroulée filtrée de cette plaque
d’acier et dont l’état de référence est son état sans déformation, tandis que
son état déformé est celui pour lequel une force statique et quasi-ponctuelle
est appliquée au centre de la zone évidée. Dans ces conditions, la distribu-
tion spatiale de la contrainte étant inhomogène, le défaut n’est pas mis en
évidence.

Fig. 2.9 – Carte de phase enroulée filtrée, une fois au niveau sinus-cosinus par
un masque moyen de dimension 3, de la plaque d’acier évidée et relative à une
contrainte quasi-ponctuelle appliquée au centre du défaut.

Pour mettre en évidence le défaut, une contrainte homogène doit être
appliquée. La contrainte que nous employons sera une contrainte thermique
créée à l’aide d’une ampoule infrarouge (IR)10. Une telle contrainte sera facile-
ment transposable in situ, pilotable par un ordinateur et est particulièrement
peu onéreuse. L’état de référence de l’objet sera son état avant irradiation IR,
tandis que son état déformé sera son état à un instant trelax de la relaxation
thermique, c’est-à-dire au moment trelax après extinction de la lampe.
Les Fig. 2.10 représentent des cartes de phases enroulées filtrées et déroulées
relatives à la plaque d’acier évidée, à divers instants trelax. L’irradiation IR
est réalisée durant tIR = 10 s à l’aide d’une ampoule de 250 W située à une
dizaine de centimètres de l’objet11. Dans ces cartes de phase, le défaut est

10Signalons que les ondes émises par la lampe IR présentent des fronts d’onde sphériques.
La plaque d’acier étant plane, la contrainte thermique n’est pas parfaitement homogène.
Celle sera d’autant plus homogène que la source IR sera éloignée de l’objet étudié, c’est-
à-dire que les fronts d’onde des ondes IR pourront être assimilées à un front d’onde plan.

11Précisons que les temps trelax et tIR ont été fixés par essai-erreur pour ajuster le
rapport signal sur bruit des cartes de phase.
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clairement mis en évidence. La mesure de la phase à divers instants de la
relaxation thermique facilite d’avantage la détection du défaut, car la dyna-
mique de la déformation de la zone de "haute-phase" est différente de celle
des régions non affectées par le défaut.

Fig. 2.10 – Cartes de phase enroulées (haut) et déroulées (milieu), filtrées une
fois au niveau sinus-cosinus par un masque moyen de dimension 3, de la plaque
d’acier évidée, relatives à une même contrainte thermique (tIR = 10 s) et des
temps de relaxation trelax différents. Distribution spatiale de la dérivée première
des déplacements hors-plan relative à trelax = 63s (bas). δx = 6.2 mm.

Parallèlement au test de faisabilité décrit ci-avant, des tests de détection
de défauts sur des échantillons représentatifs du monde de la restauration
de tableaux ont été réalisés. Le premier échantillon étudié dans ce cadre si-
mule des fissurations de la couche externe d’une peinture (acrylique) sur un
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support en toile de lin. La Fig. 2.11 représente des cartes de phase enroulées
relatives à divers temps d’irradiation IR et de relaxation. Dans ces cartes de
phase, les fissures verticales les plus importantes présentes dans l’échantillon
sont détectées. Aucune fissure horizontale n’est mise en évidence car la di-
rection du cisaillement employée est parallèle à l’axe horizontal OX [37]. La
shearographie semble par conséquent adaptée pour la détection de ce type
de défaut si l’interféromètre dispose d’un cisaillement dont la direction peut
être modifiée. Précisons toutefois que dans ce type de détection, les cartes
de phase deviennent rapidement complexes. Leur interprétation peut alors
s’avérer difficile.

Fig. 2.11 – Mise en évidence de fissures d’une peinture acrylique sur un support
en toile de lin. Le cisaillement est parallèle à l’axe horizontal. L’ampoule IR de
250 W est située à environ un mètre de l’échantillon. Le couple (tIR, trelax) vaut
respectivement de gauche à droite (<0.5 s, 7s), (10 s, 35 s) et (20 s, 28 s).

Le deuxième échantillon étudié et relatif au monde de la restauration
consiste en une peinture acrylique sur un support en toile. Le défaut si-
mulé représente un décollement de la couche picturale, c’est-à-dire une perte
d’adhésion entre la peinture et son support. Ce type de défaut est un des
défauts les plus importants dans les tableaux car, contrairement aux fissura-
tions, il n’est pas détectable à l’oeil nu et surtout il peut engendrer à long
terme une perte de matière et donc une altération importante de l’oeuvre.
La Fig. 2.12 présente la carte de phase déroulée relative à une irradiation
IR de 1 s et à un temps de relaxation de 217 s. La source IR de 250 W est
située à environ un mètre de l’oeuvre. Dans cette carte de phase, la zone
de décollement de la couche picturale est clairement mise en évidence. La
shearograhie est adaptée pour la détection de ce type de défauts.
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Fig. 2.12 – Carte de phase déroulée mettant en évidence le décollement d’une
couche de peinture acrylique sur un support en toile de lin. L’axe vertical Z repré-
sente la phase déroulée ∆d.

Le quatrième exemple présenté dans ce chapitre consiste en la détection
d’une lacune de matière sur un support en bois. Plus précisément, l’échan-
tillon correspond à une planche de contreplaqué évidée sur un volume de
15 x 15 x 1 mm3 (Fig. 2.13). Le tout est recouvert d’une toile dans le but
de rendre le défaut indétectable à l’oeil nu. Cet échantillon jouera un rôle
important dans nos recherches et plus précisément dans nos travaux relatifs
à la quantification de défauts (chapitre 3), car sur cet échantillon, on peut
penser qu’il est très probable que la zone d’impact du défaut et le défaut
physique correspondent si la toile de lin est collée correctement. Ce défaut
sera qualifié dans ce rapport de "Trou 1.5 - Bois".

Fig. 2.13 – Défaut "Trou 1.5 - Bois".

Les Figs. 2.14 correspondent aux cartes de phase enroulée et déroulée de
ce défaut "Trou 1.5 - Bois". La différence de comportement du bois et de l’air
par rapport à l’échauffement IR induit une mise en évidence incontestable
du défaut.
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Fig. 2.14 – Cartes de phase enroulée et déroulée, filtrées une fois au niveau sinus-
cosinus par un masque moyen de dimension 3, et relatives au défaut "Trou 1.5 -
Bois". Les temps d’irradiation IR et de relaxation valent respectivement 2 s et 15
s.

Les échantillons en support toile et bois présentés dans cette section ont
été réalisés avec l’aide de Séverine PADIOLLEAU, que nous remercions, de
l’Ecole d’Art d’Avignon (France).

2.3 Conclusion.

Sur base des principes théoriques décrits à la partie I de ce rapport, le
Hololab a développé une installation de shearographie à décalage de phase
temporel. Cet interféromètre a été employé et validé dans le cadre de la me-
sure de la dérivée première des déplacements hors-plan. Ce type de mesures
étant à la base du contrôle non-destructif, des tests de détection de défauts
ont été effectués sur différents supports (acier, toile de lin et bois). Les dé-
fauts simulés sont mis en évidence. Les cartes de phase présentées dans ces
exemples sont encourageantes et nous incitent à poursuivre nos travaux en
détection de défauts par shearographie.

Les essais réalisés avaient pour objectif principal de nous familiariser avec
le contrôle non destructif par shearographie et d’évaluer les développements
à effectuer pour améliorer la technique dans ce domaine. Suite aux essais
réalisés, les développements suivants seront considérés :

1. la shearographie étant apte à la détection de défauts, nous analyserons
son potentiel pour quantifier la taille des défauts détectés (chapitre 3) ;
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2. la direction du cisaillement devra pouvoir être facilement modifiée de
90◦ pour permettre la détection de fissures dans au moins deux direc-
tions orthogonales (chapitre 4) ;

3. le degré de polarisation en réflexion de l’élément de cisaillement de-
vra être amélioré pour réduire l’interférence parasite induite par les
faisceaux polarisés TM transmis et réfléchi par le composant diffractif
du prisme. Idéalement, le degré de polarisation devra être unitaire en
transmission et en réflexion (chapitre 4) ;

4. les cartes de phase sont établies en enregistrant des shearogrammes
durant la relaxation thermique de l’objet étudié. Nous développerons
un algorithme de mesure de phase dynamique à priori mieux adapté à
ce type de problème que le décalage de phase temporel (chapitre 5).





Chapitre 3

Quantification de défauts par

transformée en ondelettes.

La littérature et les tests de faisabilité décrits précédemment enseignent
que la shearographie est une technique adaptée à la détection des défauts
qui, suite à l’application d’une contrainte homogène, induisent un déplace-
ment de la surface de l’objet de quelques dizaines à quelques centaines de
nanomètres. Toutefois, la référence [28] signale que la technique est inadap-
tée à l’analyse quantitative des défauts et plus précisément à l’estimation de
leur taille car la taille estimée est dépendante de la taille du cisaillement.
Ce chapitre a pour but le développement d’une méthodologie et d’un outil
numérique de quantification des défauts, et d’étudier si la shearographie per-
met ou non l’analyse quantitative de ces derniers. La méthodologie décrite
est effective pour un cisaillement dans la direction parallèle à l’axe X. Elle est
toutefois transposable à un cisaillement dans la direction Y. Nous arriverons
à la conclusion que la méthodologie développée sera adaptée, dans la direc-
tion du cisaillement, pour la quantification de la surface des défauts détectés.
Elle pourra par conséquent être employée, par exemple, pour étudier l’évo-
lution temporelle de la surface de ces derniers. Elle devrait donc pemettre
de déduire des informations sur l’impact des conditions de conservation, de
transport ou de manipulation des oeuvres d’art. Nous montrerons également
que la méthodologie peut être employée pour la quantification de défauts dé-
tectés par interférométrie holographique. Cette extension devrait également
être valable pour l’interférométrie de speckle.

51
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3.1 Méthodologie de quantification de défauts.

La première étape dans la quantification consiste en la calibration du
dispositif optique, c’est-à-dire en la détermination du grandissement trans-
versal1 de l’optique, et en la mesure de la taille du cisaillement employée.
Cette calibration est effectuée en enregistrant l’image d’un étalon. Ce der-
nier peut être, par exemple, une grille régulière de carrés de longueur connue
et placée devant l’objet étudié.Dans ce cas, le grandissement transversal du
dispositif est déterminé, pour un cisaillement parallèle à l’axe X, en mesurant
la distance entre deux lignes horizontales consécutives, tandis que la taille
du cisaillement est estimée en mesurant la distance entre les deux images
cisaillées de l’étalon.

La seconde étape dans la quantification est l’acquisition et le traitement de
cartes de phase enroulées mettant en évidence le défaut. L’acquisition consiste
à enregistrer, pour un même défaut, différentes cartes de phase enroulées
et relatives à des temps d’excitation IR et/ou de relaxation différents. Ces
diverses cartes constitueront un échantillon statistique pour nos mesures de
quantification (section 3.3). Quant au traitement, il consiste principalement
à filtrer les cartes de phase enroulées, à les réduire à la zone de recouvrement
des deux images cisaillées, à les dérouler et à représenter en 3D le résultat de
ce déroulage de phase.

Les cartes de phase traitées permettent une estimation de la position et
de la taille du défaut dans la zone de recouvrement des images cisaillées. Sur
le profil ∆yd

d (x) de la carte de phase déroulée le long de la droite y = yd

de la zone de recouvrement, le défaut sera confiné entre les frontières x1(yd)
et x2(yd) de la zone de "haute-phase" (Fig. 3.1). Ces frontières définissent
l’abscisse des bords du défaut dans la zone de recouvrement en y = yd et
permettent une estimation locale de la longueur2 de ce dernier sur le profil
y = yd de la zone de recouvrement, L(yd) :

L(yd) = x2(yd)− x1(yd); x2(yd) > x1(yd) (3.1)

Par analogie, le profil ∆xd

d (y) de la carte de phase déroulée le long de la
droite d’abscisse x = xd de la zone de recouvrement permet une estimation
de l’ordonnée des frontières du défaut, y1(xd) et y2(xd), (Fig. 3.1) et de la

1Il s’agit de savoir à combien de millimètres dans le plan objet correspond un pixel du
détecteur.

2Dans ce rapport, la longueur du défaut est définie parallèlement à la direction du
cisaillement, tandis que sa largeur est définie perpendiculairement à cette même direction.
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largeur de ce dernier en x = xd, l(xd) :

l(xd) = y2(xd)− y1(xd); y2(xd) > y1(xd) (3.2)

Fig. 3.1 – Exemples de signaux ∆yd

d (x) et ∆xd

d (y). En vert : les frontières x1(y =
83), x2(y = 83), y1(x = 207) et y2(x = 207). Ces dernières ont été estimées
grossièrement uniquement pour aider la compréhension du lecteur. La carte de
phase déroulée est relative au défaut "Trou 1.5 - Bois" présenté au chapitre 2. Sa
longueur vaut 15 mm. 1 pixel = 0.29 mm.

Les estimations précédentes sont réalisées dans la zone de recouvrement.
En pratique, il est nécessaire d’effectuer la correspondance entre ces estima-
tions dans cette zone et leur valeur dans une image non cisaillée de l’objet.
Cette correspondace permettra, par calibration de l’installation, de remonter
à la position et à la taille du défaut dans un référentiel associé au plan de l’ob-
jet. Pour les mesures effectuées parallèlement à la direction du cisaillement,
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les correspondances sont (Fig. 3.2) :

xobj
1 (yd) = x1(yd) + δx (3.3)

xobj
2 (yd) = x2(yd)− δx + δx = x2(yd) (3.4)

où l’exposant obj caractérise l’estimation dans une image non cisaillée de
l’objet.

La correction apportée à x1(yd) se répercute naturellement sur l’Eq. 3.1 :

Lobj(yd) = L(yd)− δx (3.5)

Fig. 3.2 – Schéma permettant la compréhension des relations de correspondance
entre les systèmes de référence relatifs aux images non cisaillée et cisaillée d’un objet
présentant un défaut. A gauche : image non cisaillée de l’objet. Le grand rectangle
représente la partie de l’objet étudiée, tandis que le petit rectangle schématise un
défaut présent dans cet objet. A droite : image cisaillée du même objet.

S’il est possible de caractériser la zone de "haute-phase" dans la zone de
recouvrement et dans la direction perpendiculaire au cisaillement, il paraît
par contre difficile d’établir la correspondance entre ses propriétés y1(xd),
y2(xd) et l(xd) dans la zone de recouvrement et leur équivalent dans une
image non cisaillée de l’objet. Suite au cisaillement δx du faisceau objet,
une ambiguité importante existe sur l’abscisse xd où sont effectuées les me-
sures perpendiculaires à la direction du cisaillement. La variable xd prend
dans l’image non cisaillée une valeur xobj

d dépendante de la forme du défaut,
ceci lié au fait que le pseudo-défaut mis en évidence par les cartes de phase
correspond à l’union des défauts élémentaires cisaillés.

Dans le cas supérieur de la Fig. 3.3, la largeur l(xd) mesurée en l’abs-
cisse xd de la zone de recouvrement est celle du triangle rouge. Le référentiel
du plan objet à considérer est donc celui du rectangle rouge. Ce référentiel
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est confondu avec celui de la zone de recouvrement. Nous obtenons donc la
correspondance suivante entre l’abscisse xd dans la zone de recouvrement et
l’abscisse xobj

d dans le référentiel objet : xobj
d = xd.

Dans le cas inférieur de la Fig. 3.3, la largeur mesurée en xd est celle du tri-
angle bleu. Le référentiel du plan objet à prendre en compte est donc celui du
rectangle bleu. Les référentiels du plan objet et de la zone de recouvrement
étant distants de la taille du cisaillement dans le direction X du cisaillement,
la correspondance entre l’abscisse xd dans la zone de recouvrement et l’abs-
cisse xobj

d dans le référentiel objet devient : xobj = xd + δx.

Les estimations réalisées en x = xd dans la zone de recouvrement corres-
pondent donc aux propriétés du défaut en xobj

d = xd ou en xobj
d = xd + δx,

dans l’image non cisaillée, selon respectivement que le défaut est plus large
en xobj = xd ou en xobj

d = xd + δx. Nous pouvons par conséquent estimer la
taille du défaut, mais nous ne pouvons prédire ni aisément, ni précisément
en quel endroit du défaut correspond la largeur estimée si la forme du défaut
n’est pas connue préalablement.

Fig. 3.3 – Mise en évidence de l’ambiguité relative à la variable xd. A gauche :

images non cisaillées d’objets. Le grand rectangle schématise un objet tandis que
le triangle schématise un défaut. A droite : images cisaillées des objets. Dans le
cas supérieur, les référentiels du plan objet et de la zone de recouvrement sont
confondus : xobj

d = xd ; tandis que dans le cas inférieur, ces référentiels sont décalés

de δx dans la direction X du cisaillement : xobj
d = xd +δx. La correspondance entre

xobj
d et xd dépend de la forme de l’objet.
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Les termes correctifs δx présents dans les équations 3.3 et 3.5, et l’am-
biguité portant sur xd sont liés au fait que la carte de phase ne révèle pas
le défaut mais plutôt un pseudo-défaut correspondant à l’union des défauts
cisaillés.

En définitive, nous avons établi ci-dessus une méthodologie pour quanti-
fier les défauts dans la zone de recouvrement des deux images cisaillées de
l’objet. Nous avons également décrit, pour les mesures dans la direction paral-
lèle au cisaillement, la correspondance entre les propriétés du défaut estimées
dans la zone de recouvrement et ses caractéristiques dans le plan de l’image
non cisaillée de l’objet. Quant aux mesures réalisées dans la direction per-
pendiculaire au cisaillement, des ambiguités importantes apparaissent dans
la correspondance entre xd et xobj

d . Ceci amène à penser que la shearogra-
phie ne pourra être une technique performante en termes de quantification
des défauts que dans la direction du cisaillement. Dans ces conditions, nous
travaillerons toujours dans ce rapport dans cette direction.

3.2 Quantification de défauts par transformée

en ondelettes.

Pour quantifier un défaut au niveau y = yd, la méthodologie décrite à
la section 3.1 nécessite de déterminer de manière objective et reproductible
les frontières x1(yd) et x2(yd) du signal ∆yd

d (x), et ce pour toute forme du
signal. Un outil mathématique particulièrement bien adapté à la résolution
de ce type de problème est la transformée en ondelettes. Cette transformée
est couramment employée pour la détection des singularités et des variations
importantes d’un signal ([38]-[41]). Dans les lignes qui suivent, nous introdui-
rons brièvement cette transformée3 d’un point de vue traitement du signal.
Nous verrons comment appliquer celle-ci à la détection des frontières de la
zone de "haute-phase" du signal et l’employerons à la quantification d’un
défaut de taille connue pour tester expérimentalement ses performances.

3.2.1 Introduction à la transformée en ondelettes.

Une ondelette Ψ(x) est une fonction appartenant à L2(ℜ), normalisée,
centrée au voisinage de x=0 et de moyenne nulle [38] :

∫ +∞

−∞

Ψ(x)dx = 0 (3.6)

3Plus de détails théoriques sont disponibles dans les références [38] et [39].
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Cette ondelette, dite ondelelette mère, est dilatée par un paramètre s
et translatée de u pour donner naissance à un ensemble de fonctions Ψu,s(x),
dites ondelettes filles , définies par la relation [38] :

Ψu,s(x) =
1√
s
Ψ

(

x− u

s

)

(3.7)

La transformée en ondelettes d’une fonction f(x) à l’échelle s et à la posi-
tion u, Wf(u,s), correspond à la corrélation entre f(x) et l’ondelette Ψu,s(x)
[38] :

Wf(u, s) =

∫ +∞

−∞

f(x)Ψ∗u,s(x)dx (3.8)

où * représente le complexe conjugué.

Les ondelettes filles constituent ainsi une base fonctionnelle pour le signal
f(x) analysé. Les coefficients Wf(u,s) sont les "composantes" de ce signal dans
cette base.

Contrairement à la transformée de Fourier, la base fonctionnelle employée
en transformée en ondelettes est à support compact : l’énergie des ondelettes
filles est confinée dans l’espace autour de u et sur une distance finie propor-
tionnelle à s. Cette propriété de la base fonctionnelle induit que la transfor-
mée en ondelettes conserve l’information spatiale du signal : la transformée
en ondelettes informe sur les fréquences spatiales 1/s constituant f(x), mais
aussi sur la position u de ces fréquences. Cette localisation dans l’espace sera
employée pour la détection des frontières du défaut. Elle sera effectuée, dans
l’espace, avec une résolution proportionnelle à s, tandis que la résolution en
fréquence sera proportionnelle à 1/s. L’échelle s joue le rôle de "zoom". La
transformée en ondelettes est un outil multirésolution .

La transformée en ondelettes est aujourd’hui de plus en plus utilisée.
Elle trouve ses lettres de noblesse principalement en traitement d’images
et en traitement du signal : la transformée est employée en compression
d’images, en détection de contours, mais aussi en débruitage, en détection de
singularités ou de variations importantes d’un signal unidimensionnel. Dans
le cadre de notre étude, les ondelettes sont employées pour la détermination
des abscisses x1(yd) et x2(yd) nécessaires à l’estimation de la longueur et de la
position du défaut au niveau y = yd. Il s’agit donc d’employer la transformée
en ondelettes pour détecter les variations importantes du signal ∆yd

d (x).

Pour analyser ces variations importantes, la littérature ([38]-[41]) enseigne
qu’il faut :
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1. déterminer, pour toutes les échelles s, les modules maxima locaux de
la transformée en ondelettes, soient les coefficients |Wf(u0, s0)| vérifiant
|Wf(u0, s0)| > |Wf(u0 ± 1, s0)| ;

2. construire la trajectoire des modules maxima locaux dans le plan (u,s)
en reliant les modules maxima les plus proches qui appartiennent à deux
valeurs consécutives de s ;

3. analyser la convergence des diverses trajectoires aux échelles fines. La
convergence de ces lignes des modules maxima livre la position des
singularités et des variations importantes du signal analysé.

Pour ce type d’applications, les ondelettes employées sont réelles. Les onde-
lettes complexes, telle celle de MORLET, sont plutôt considérées pour étudier
l’évolution des fréquences d’un signal.

Les lignes des modules maxima dans le plan (u,s) sont toujours conti-
nues le long des échelles si l’ondelette mère est une des dérivées de la fonc-
tion gaussienne (proposition de HUMMEL, POGGIO et YUILLE [38]). Par
conséquent, dans le but de faciliter l’analyse de la convergence de ces lignes
des modules maxima, nous employerons dans ce rapport une des dérivées de
la gaussienne comme ondelette mère.

Les ondelettes dérivées de la gaussienne peuvent être interprétées comme
des opérateurs différentiels multiéchelles : Wf(u,s) est la dérivée d’ordre n
d’une moyenne de f sur un domaine proportionnel à s si l’ondelette mère est
la dérivée d’ordre n de la gaussienne [38]. Ainsi, l’ondelette dérivée seconde de
la gaussienne, qualifiée traditionnelement de chapeau mexicain4, permet
une analyse de la courbure du signal, tandis que l’ondelette dérivée première
de la gaussienne analyse les pentes. En accord avec cette interprétation, le
"chapeau mexicain" sera adopté pour déduire les frontières de la zone de
"haute-phase" du signal ∆yd

d (x). Les frontières estimées seront des points de
courbure importante.

L’ondelette mère Ψ(x) "chapeau mexicain" normalisée est définie par
l’Eq. 3.9 et est représentée à la Fig. 3.4 :

Ψ(x) =
2 4
√

π√
3

(x2 − 1)exp

(−x2

2

)

(3.9)

Les ondelettes filles découlant de cette ondelette mère sont, en accord

4Mexican hat
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avec l’Eq. 3.7 :

Ψu,s(x) =
2 4
√

π√
3

1√
s

(

(

x− u

s

)2

− 1

)

exp

(

−(x− u)2

2s2

)

(3.10)

Fig. 3.4 – Ondelette "chapeau mexicain".

En définitive pour trouver les frontières x1(yd) et x2(yd) du signal ∆yd

d (x),
il s’agira de calculer, à l’aide du chapeau mexicain, sa transformée en onde-
lettes, de déterminer ses modules maxima locaux, d’analyser leur trajectoire
dans le plan (u,s) et de déterminer la convergence de ces lignes des modules
maxima aux fines échelles s.

3.2.2 Quantification de défauts par transformée en on-

delettes.

Appliquons concrètement la transformée en ondelettes à la détection des
frontières de la zone de "haute-phase" du signal ∆y=83

d (x) représenté à la Fig.
3.1.

Souhaitant travailler avec le "chapeau mexicain" comme ondelette mère,
la transformée en ondelettes du signal W∆y=83

d (u, s) se calcule, pour tout
couple (u,s)5, en accord avec l’Eq. 3.8 :

W∆y=83
d (u, s) =

2 4
√

π√
3s

∫ xmax

0

∆y=83
d (x)

(

(

x− u

s

)2

− 1

)

exp

(

−(x− u)2

2s2

)

dx

(3.11)

5En pratique, nous limiterons les valeurs de u et de s à la taille du signal.
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avec xmax, la borne supérieure du domaine de définition du signal, soit dans
notre exemple 265 pixels.

Le module normalisé6 des coefficients W∆y=83
d (u, s) est représenté en

fausses couleurs à la Fig. 3.5. Cette carte des coefficients des ondelettes pré-
sente une région particulière7 constituée de quatre cônes convergant. Ces
cônes sont liés à la zone de "haute-phase" du signal. En accord avec l’inter-
prétation du "chapeau mexicain", le premier cône correspond à la courbure
de la zone de "haute-phase" au voisinage de sa frontière x1, tandis que le
dernier caractérise la courbure du signal dans le voisinage de la frontière x2.
Les second et troisième cônes informent sur la courbure du signal au voisi-
nage des extrema de la zone de "haute-phase".
La transformée présente également des cônes grisâtres aux fines échelles
(s < 25 pxl), c’est-à-dire des coefficients de faible amplitude. Ces cônes carac-
térisent le bruit du signal. Les fines échelles représentant les hautes fréquences
spatiales du signal, signal et bruit sont dissociés dans le plan (u,v).

La transformée en ondelettes calculée, l’étape suivante consiste à construire
les lignes des modules maxima du plan espace-échelle. Pour ce faire, les mo-
dules maxima locaux de chaque droite s = s0 (s0 ∈ N0) du plan (u,s) sont
déterminés. Chacun de ces maxima locaux est ensuite relié au maximum lo-
cal de la droite s = s0 − 1 qui lui est le plus proche. Les lignes des modules
maxima sont obtenues en réalisant cette opération pour toutes les échelles
s0 > 1. Cette construction des lignes des modules maxima est réalisable car
les trajectoires sont continues le long des échelles lorsque les ondelettes filles
employées sont dérivées de la gaussienne (Proposition de HUMMEL, POG-
GIO et YUILLE [38]). La Fig. 3.6 représente les trajectoires des modules
maxima de la carte en ondelettes de la Fig. 3.5.

Parmi toutes les trajectoires des modules maxima dans le plan (u,s), seules
les lignes des modules maxima les plus longues qui traversent les premier
et quatrième cônes du rectangle magenta de la Fig. 3.5 nous sont utiles.
Ces deux trajectoires utiles, respectivement notées Tx1

(u, s) et Tx2
(u, s),

sont consécutivement mises en évidence aux Figs. 3.6 et 3.7. La convergence
aux fines échelles de ces lignes des modules maxima utiles correspond aux
abscisses x1 et x2 des frontières de la zone de "haute-phase".

6Les coefficients ont été normalisés par le module maximum global de la transformée afin
de présenter tout au long de ce rapport des plans (u,s) ayant toujours la même dynamique
d’échelle de fausses couleurs.

7Cette région est mise en évidence par le rectangle magenta à la Fig. 3.5.
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Fig. 3.5 – Module normalisé de la transformée en ondelettes du signal ∆y=83
d (x).

Le rectangle magenta regroupe les quatre cônes qui caractérisent la zone de "haute-
phase".

Théoriquement, l’abscisse x1 (resp. x2) est la valeur u où la trajectoire
Tx1

(u, s) (resp. Tx2
(u, s)) aboutit à l’échelle s = 1. Toutefois, en pratique, le

signal étudié étant bruité, les faibles échelles sont difficilement exploitables
car elles caractérisent principalement le bruit. Pour palier ce problème, nous
définissons la convergence des lignes des modules maxima comme étant la
valeur u par laquelle les trajectoires passent à une fréquence de coupure 1/sc.
Dans le but de travailler avec une fréquence de coupure adaptée au rapport
signal sur bruit du signal étudié, la fréquence de coupure est déterminée
à partir du nombre de nouvelles trajectoires qui apparaissent le long des
échelles (Fig. 3.8). Plus précisément, la fréquence de coupure est définie à
partir de l’échelle sc pour laquelle le nombre de lignes des modules maxima
est juste inférieur à 5% du nombre total des trajectoires présentes dans le
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Fig. 3.6 – Lignes des modules maxima de la transformée en ondelettes. Les tra-
jectoires Tx1

(u, s) et Tx2
(u, s) sont celles utiles à la détermination des frontières x1

et x2 de la zone de "haute-phase" du signal ∆y=83
d (x).

plan (u,s). Dans ces conditions, plus le signal présentera un rapport signal sur
bruit élevé, plus la fréquence de coupure sera grande8. Dans notre exemple,
la fréquence de coupure vaut 1/6 pxl−1. Aux échelles inférieures à sc = 6 pxl,
nous constatons qu’au moins une des trajectoires utiles est irrégulière. Cette
irrégularité est liée au bruit présent dans le signal étudié.

Pour la fréquence de coupure 1/6 pxl−1, la convergence des trajectoires
Tx1

(u, s) et Tx2
(u, s) vaut respectivement 149 pxl et 223 pxl (Fig. 3.7). Les

frontières x1 et x2 de la zone de "haute-phase" valent donc 149 pxl et 223
pxl dans la zone de recouvrement. La Fig. 3.9 met en évidence ces frontières
estimées.

Une calibration préalable de l’interféromètre a enseigné qu’un pixel du
détecteur correspond à 0.29 mm dans le plan objet et que la taille du ci-
saillement est de l’ordre de 5.51 mm, la zone de "haute-phase" présente par
conséquent une longueur Lobj de 15.95 mm au niveau y = 83 pxl. La lon-
gueur théorique du défaut étant 15 mm (chapitre 2), l’erreur relative sur la
longueur estimée est donc, dans cet exemple, de l’ordre de 6.3%.

8Les trajectoires relatives au bruit sont d’autant plus longues que le bruit est important.
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Fig. 3.7 – Lignes des modules maxima Tx1
(u, s) et Tx2

(u, s) utiles respectivement
à la détermination des frontières x1 et x2 de la zone de "haute-phase" du signal
∆y=83

d (x).

L’estimation de la taille du défaut est limitée par l’utilisation de la fré-
quence de coupure 1/sc. Dans notre exemple, sc étant égal à 6 pixels, nous
pouvons évaluer l’erreur commise sur x1 et x2 à environ 6 x 0.29 mm, soit
1.74 mm. En réduisant le bruit des cartes de phase, une fréquence de coupure
plus importante pourra être utilisée et l’erreur sur l’estimation des bords sera
réduite.

3.2.3 Indépendance de l’algorithme vis à vis de la forme

du signal.

Aux pages précédentes, nous avons introduit une méthodologie de quan-
tification de défauts fondée sur la transformé en ondelettes. Dans l’exemple
présenté, la zone de "haute-phase" du signal ∆y=83

d (x) analysé présente l’al-
lure de la dérivée première d’une gaussienne unidimensionnelle. Dans cette
section, nous souhaitons préciser que l’algorithme de quantification déve-
loppé précédemment est apte à priori à l’estimation des frontières de la zone
de "haute-phase" quelle que soit la forme de cette dernière. Pour ce faire,
nous présentons les frontières estimées de la zone de "haute-phase" du signal
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Fig. 3.8 – Nombre de nouvelles trajectoires des modules maxima qui apparaissent
le long des échelles s du plan (u,s), et exprimé en pourcents par rapport au nombre
total de lignes de modules maxima présentes dans le plan espace-échelle.

∆x=207
d (y) (Fig. 3.1) et du signal ∆II,y=210

d (x) de la Fig. 3.11. Dans le but de
ne pas alourdir le texe ni le rendre redondant, les détails quant à l’estimation
des frontières de la zone de "haute-phase" de ces signaux sont repris dans
l’annexe A.

Pour le signal ∆x=207
d (y), les frontières y1 et y2 estimées sont respective-

ment 53 pxl et 104 pxl (Fig. 3.10). Le défaut présente une largeur estimée,
dans le plan objet, de 14.79 mm, soit une erreur relative de 1.4% par rapport
à la largeur "théorique" de 15 mm du défaut.

Pour le signal ∆II,y=210
d (x), les frontières xII

1 et xII
2 estimées sont 151 pxl

et 253 pxl. Malgré la forme complexe du signal, l’algorithme semble estimer
les bonnes frontières de la zone de "haute-phase" (Fig. 3.11).

Nous retiendrons de ces nouveaux exemples que la méthodologie de quan-
tification basée sur la transformée en ondelettes et développée dans ce travail
est apte à la quantification de défauts, et ce quelle que soit la forme du
signal étudié. Cette caractéristique rend la quantification des défauts auto-
matique : l’expérimentateur ne doit pas adapter l’algorithme du programme
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Fig. 3.9 – Mise en évidence des frontières x1 et x2 du signal ∆y=83
d (x) estimées

en utilisant l’algorithme de transformée en ondelettes.

Fig. 3.10 – Mise en évidence des frontières y1 et y2 estimées du signal ∆x=207
d (y).
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Fig. 3.11 – Signal ∆II,y=210
d (x) avec mise en évidence des frontières estimées de

sa zone de "haute-phase". Ce signal est relatif à la carte de phase de la Fig. 2.10
pour laquelle trelax = 63 s.

de quantification en fonction de la forme du signal.

3.3 Influence des temps d’irradiation IR et de

relaxation sur la quantification des défauts.

Pour mettre un défaut en évidence, il s’agit d’analyser la dérivée première
des déplacements de l’objet lorsque ce dernier est soumis à une contrainte
extérieure. Comme signalé au chapitre 2, la contrainte employée dans notre
travail est une irradiation IR créée à l’aide d’une ampoule IR de 250 W et
située à quelques centimètres, voire quelques dizaines de centimètres, de la
surface de l’objet à analyser. Dans ces conditions, l’état de référence de l’objet
est son état avant irradiation, tandis que son état déformé est son état à un
moment trelax de sa relaxation thermique. Cet état déformé est dépendant
de la position de la source IR, du temps d’irradiation IR, tIR, et du temps
de relaxation, trelax, considérés. Pour un défaut et une position de la source
donnés, il existe un grand nombre de couples (tIR, trelax) pour lesquels le
défaut est détectable. Le couple employé affecte principalement la carte de
phase au niveau de son amplitude (Fig. 3.12), de son bruit (décorrélation
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des speckles) et de ses erreurs sur la mesure de la phase, lesquelles sont
principalement liées au caractère dynamique de la déformation (relaxation
thermique). Le but de cette section est de démontrer que quel que soit le
couple (tIR, trelax) employé la longueur estimée du défaut est la même, si
évidemment le couple considéré permet l’établissement d’une carte de phase
de rapport signal sur bruit pertinent et d’erreurs de phase faibles.

Fig. 3.12 – Amplitude de la zone de "haute-phase" en fonction du temps de re-
laxation. La taille du cisaillement est égale à 2.56 mm. Les cartes de phase enroulées
présentées ont été filtrées une fois par un masque moyen de dimension 3 au niveau
sinus/cosinus.

Le défaut "Trou 1.5 - Bois" a été mis en évidence, en utilisant une source
IR située à 25 cm de la surface observée de l’objet, à l’aide d’irradiations IR
de 2 s à 6 s et des temps de relaxation variant entre 5 s et 16 s. Pour les
couples (tIR, trelax) observés relatifs à des cartes de phase de "qualité" 9, la
longueur du défaut a été estimée à l’aide de la méthodologie de quantification

9Les couples (tIR, trelax) étudiés sont ceux qui induisent des cartes de phase présentant
un rapport signal sur bruit important et des erreurs de phase faibles. Ainsi, par exemple,
un grand temps d’irradiation (tIR > 10s) et un petit temps de relaxation (trelax = 5.2s) ne
sera pas un couple exploité car la carte de phase résultante présentera un bruit important
(décorrélation) et des erreurs sur la mesure de la phase élevées (déformation dynamique).
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et de l’algorithme de transformée en ondelettes. Nous constatons que la lon-
gueur estimée du défaut est indépendante des couples (tIR, trelax) employés
(Fig. 3.13). Les diverses cartes de phase établies peuvent par conséquent être
considérées comme un échantillon statistique pour l’estimation de la longueur
de la zone de "haute-phase". Il en découle qu’en moyenne la longueur Lobj

estimée est égale à 14.78 mm10 avec un écart-type de 0.46 mm. Cet écart-type
se justifie principalement par la différence de bruit (décorrélation) entre les
diverses cartes de phase analysées : par exemple, la carte de phase relative
au couple (6 s, 10.4 s) est plus bruitée (décorrélation) que celles relatives aux
autres couples.

Fig. 3.13 – Longueur Lobj estimée du défaut "Trou 1.5 - Bois" en fonction du
couple (tIR, trelax) caractérisant l’état déformé de l’objet. Les estimations ont été
réalisées à l’aide de la méthodologie de quantification décrite précédemment.

Nous retiendrons de cette section, que le choix des couples (tIR, trelax)
à considérer pour caractériser les défauts, parmi ceux qui livrent des cartes
de phase de rapport signal sur bruit pertinent et d’erreurs de phase faibles,
peut être arbitraire. Tous les couples peuvent permettre la quantification des
défauts. Les cartes de phase qui leur sont relatives peuvent constituer un

10Soit une erreur de 1.47% par rapport à la longueur "théorique" de 15 mm.
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échantillon statistique dans le but d’augmenter la probabilité d’estimer une
longueur Lobj(yd) proche de la valeur réelle.

3.4 Influence de la taille du cisaillement.

Certains auteurs [28] prétendent que la shearographie est une technique
adaptée à la détection des défauts mais pas à leur quantification. Dans leurs
travaux, la taille estimée des défauts est dépendante de la taille du cisaille-
ment produit par l’interféromètre. Le but de cette section est de démontrer
que cette conclusion est erronée. Notre méthodologie de quantification des
défauts permet d’évaluer leur taille indépendamment de celle du cisaillement.

Le défaut "Trou 1.5 - Bois" a été mis en évidence pour diverses valeurs de
δx et divers couples (tIR, trelax). Pour chaque valeur de la taille du cisaille-
ment, la longueur du défaut a été évaluée sur base de l’échantillon statistique
constitué des cartes de phase relatives aux différents couples (tIR, trelax)
(section 3.3). De cette étude, il ressort que la longueur estimée du défaut est
indépendante de la taille du cisaillement (Fig. 3.14). La shearographie est
donc apte à la quantification des défauts.

Notre conclusion diffère de celle de la publication [28]. Cette divergence
s’explique principalement par la différence des méthodologies de quantifi-
cation employées respectivement par Kim et al. et par nous. En effet, ces
auteurs caractérisent la taille du défaut par la distance Lext(yd) entre les ex-
trema de la zone de "haute-phase", laquelle est dépendante de la taille du
cisaillement (Fig. 3.15). De plus, aucune correction n’est apportée dans [28]
pour tenir compte de cette dépendance, contrairement à ce qui est fait dans
ce rapport (Equivalence entre la zone de recouvrement et le plan de l’objet -
Eq. 3.5).

3.5 ... et en interférométrie holographique ?

La méthodologie de quantification de défauts est transposable à l’inter-
férométrie holographique ou de speckle. Pour quantifier les défauts mis en
évidence par une de ces techniques intérférométriques, il s’agit d’appliquer la
méthodologie décrite précédemment en considérant un cisaillement nul, ou
encore en élimiant le terme correctif δx des équations utiles à la quantifica-
tion. De même, l’ambiguité entre la largeur estimée dans le plan du détecteur
et celle dans le plan objet n’existe pas. Nous obtenons, par analogie avec la
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Fig. 3.14 – Influence de la taille du cisaillement sur la longueur Lobj estimée
du défaut "Trou 1.5 - Bois". Les points de mesure correspondent aux moyennes
des différentes études statistiques, tandis que les barres d’erreur représentent les
écarts-types.

correspondance entre Lobj(yd) et L(yd) : lobj(xd) = l(xd).

La Fig. 3.16 représente une carte de phase enroulée et déroulée obtenues
au Centre Spatial de LiègeSite internet : www.csl.ulg.ac.be par l’équipe du
Dr. Marc GEORGES à l’aide d’une caméra holographique photoréfractive
[29]. L’objet étudié est un panneau en bois mis sous contrainte mécanique de
manière à dévoiler un défaut caché. En appliquant la méthodologie de quan-
tification de défauts, avec un cisaillement nul, sur tous les profils de phase
verticaux et horizontaux présentant une zone de haute-phase caractéristique
du défaut, les frontières de ce dernier sont estimées : les frontières du défauts
sont représentées en bleu dans la Fig. 3.16. La forme du défaut est par consé-
quent clairement mise en évidence dans les cartes de phase. Les frontières
manquantes n’ont pas pu être estimées car, sur les profils correspondants, la
zone de haute-phase présente un rapport signal sur bruit trop faible.

Nous retiendrons de cette section que la méthodologie de quantification
développée est transposable à l’interférométrie holographique et qu’elle de-
vrait l’être tout aussi facilement à l’interférométrie de speckle. Ces techniques
permettent, avec notre méthodologie, une estimation de la forme du défaut à
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Fig. 3.15 – Influence de la taille du cisaillement sur la distance entre les extrema
de la zone de "haute-phase". Les points de mesure représentent les moyennes des
différentes études statistiques. Les barres d’erreur sont les écarts-types.

Fig. 3.16 – Contrôle non destructif par interférométrie holographique et isolement
du défaut (en bleu) à l’aide de la méthodologie de quantification par transformée
en ondelettes. Cartes de phase obtenues au Centre Spatial de Liège par l’équipe du
Dr. Marc GEORGES.

l’aide d’une seule carte de phase car elles ne sont pas tributaires d’une direc-
tion privilégiée comme la direction du cisaillement. En shearographie, il est
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nécessaire d’établir deux cartes de phase, avec des directions de cisaillement
perpendiculaires, afin d’obtenir les informations sur les frontières horizontales
et verticales du défaut.

3.6 Conclusion.

Dans ce chapitre, nous avons développé une méthodologie et des outils
numériques pour l’évaluation de la longueur de la zone de "haute-phase", et
ce quelle que soit la forme de cette dernière. Nous avons également démontré
qu’une analyse de cartes de phase relatives à différents couples (tIR, trelax)
permet une évaluation statistique de la longueur Lobj(yd). Finalement, il a
été montré que la longueur estimée du défaut est indépendante de la taille
du cisaillement employée dans l’interféromètre, contrairement à ce qui est
annoncé par certains auteurs. Notre conclusion contredit la littérature sur ce
dernier point car nous avons introduit la taille du cisaillement comme terme
correctif dans nos equations et car notre méthodologie de quantification dif-
fère de celle utilisées par ces auteurs. Il en découle que la shearographie est
une technique apte à la quantification de la longueur des défauts. Toutefois,
rappelons que la technique ne semble pas adaptée à la quantification de la
largeur des défauts. Une ambiguité importante existe sur la correspondance
entre les variables xd et xobj

d si la forme du défaut n’est pas connue préala-
blement.

La méthodologie présentée est également adaptée à la quantification de
la longueur et à la largeur des défauts détectés par interférométrie holo-
graphique ou de speckle en supprimant le terme correctif δx des équations
proposées.
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La partie II a été consacrée à discuter le potentiel de la shearographie pour
la détection et la quantification de défauts. Nous retiendrons que la technique
est adaptée pour l’analyse qualitative et quantitative des défauts. Dans cette
partie III, nous présentons des développements hardware et software mis en
oeuvre pour optimiser la technologie.

Le contrôle non destructif par shearographie nécessite de pouvoir dispo-
ser d’un cisaillement dans au moins deux directions perpendiculaires, que ce
soit pour détecter ou pour quantifier les défauts. Le chapitre 4 traite du rem-
placement de l’élément de cisaillement actuel, à savoir le prisme séparateur
des états de polarisation, par un cristal biréfringent qui est plus apte à livrer
un cisaillement dans deux directions perpendiculaires. Nous discuterons dans
ce chapitre, les avantages de ce cristal par rapport au prisme séparateur des
états de polarisation. Pour nous familiariser avec le comportement de ce nou-
vel élément de cisaillement, nous caractériserons les faisceaux cisaillés issus
de ce composant en fonction de l’orientation de ce dernier. Cette caractérisa-
tion nous permettra d’utiliser au mieux la lame biréfringente comme élément
de cisaillement. Nous intégrerons alors la lame dans l’interféromètre et dé-
montrerons son efficacité en tant qu’élément de cisaillement. Pour terminer,
nous démontrerons que son utilisation permet l’obtention d’un cisaillement
dans deux directions perpendiculaires uniquement en tournant ce cristal de
90◦.

Le chapitre 5 présente un algorithme de mesure de phase dynamique basé
sur la transformée de Hilbert. Cet algorithme est mieux adpaté à l’analyse
de la relaxation thermique des objets que le décalage de phase temporel, ce
dernier étant théoriquement limité à l’analyse d’objets statiques durant l’ac-
quisition des shearogrammes. Nous présenterons l’algorithme de mesure de
phase dynamique par transformée de Hilbert temporelle, nous analyserons
ses performances par simulations numériques, nous l’implémenterons au la-
boratoire et nous comparerons les résultats obtenus avec ceux du décalage de
phase temporel.





Chapitre 4

Remplacement de l’élément de

cisaillement par une lame de

Savart.

L’élément de cisaillement de l’interféromètre développé au Hololab consiste
en un prisme séparateur des états de polarisation TE et TM1. Ce prisme a
démontré son efficacité dans les diverses applications de l’interféromètre. Tou-
tefois, ce composant présente un inconvénient important pour le contrôle non
destructif : la direction du cisaillement est limitée à une seule direction pour
une configuration d’utilisation donnée. Pour un cisaillement dans la direction
horizontale du référentiel du laboratoire, l’installation ne sera par conséquent
pas apte à la détection des fissures horizontales et à la quantification des dé-
fauts le long de l’axe vertical.

Pour palier ce problème, il convient de modifier l’installation actuelle pour
pouvoir disposer d’un cisaillement dans au moins deux directions perpendicu-
laires2. En pratique, cela est réalisable soit en tournant l’objet de 90◦ autour
de l’axe optique, soit en tournant le prisme et tous les composants situés der-
rière ce dernier. La première solution n’est pas toujours envisageable. Quant
à la deuxième, elle nécessite une mécanique de précision qui augmente la
complexité et le coût de l’interféromètre. Au lieu de nous orienter vers ce dé-
veloppement nous avons préféré modifier l’installation de shearographie. Plus
précisément, nous avons privilégé le remplacement du prisme séparateur des
états de polarisation par un cristal biréfringent. Cet élément de cisaillement
permet de disposer d’une direction de cisaillement modulable tout en conser-

1Cf. section 2.1
2Toute autre direction étant une combinaison linéaire de ces deux directions élémen-

taires.
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vant la "philosophie générale" de l’interféromètre : créer le cisaillement par
séparation des états de polarisation TE et TM.

De nombreux composants birefringents existent sur le marché. Citons par
exemple les prismes de Wollaston ou de Rochon, les lames de Savart ou encore
les polariseurs de Glan-Thompson ou de Glan-Taylor ([42]). Ces composants
biréfringents sont brièvement détaillés à l’annexe B. Les composants biréfrin-
gents les plus employés en tant qu’élément de cisaillement sont les prismes
de Wollaston [7] et les lames de Savart ([43], [44], [45]). Les polariseurs pré-
cités ne livrent pas naturellement des faisceaux ordinaire et extraordinaire
partiellement superposés.

Pour notre part, nous substituerons le prisme séparateur des états de po-
larisation par une lame de Savart au détriment du prisme de Wollaston ou
de Rochon car les lames de Savart fournissent deux faisceaux cisaillées par-
tiellement superposés et colinéaires alors que les autres prismes biréfringents
livrent des faisceaux avec un angle entre eux.

Une lame de Savart consiste en deux cristaux biréfringents uniaxes iden-
tiques. Ces cristaux, généralement de Calcite ou de Quartz, sont taillés à 45◦

par rapport au plan normal et sont accolés de manière telle que leurs axes
optiques soient perpendiculaires entre eux (Fig. 4.1). Dans ces conditions, le
rayon ordinaire du premier cristal coïncide avec le rayon extraordinaire du
second, et vice-versa [63]. Par biréfringence, une lame de Savart cisaillera le
rayon incident en deux rayons décalés transversalement d’une distance pro-
portionnelle à l’épaisseur des cristaux. Signalons enfin que les lames de Savart
ont déjà été employées avec succès en shearographie ([43], [44]).

Dans ce chapitre, nous discuterons des autres avantages du remplacement
du prisme séparateur des états de polarisation par un cristal biréfringent.
Nous caractériserons, en tant qu’élément de cisaillement, la lame de Savart
SPC10 commercialisée par Halbo Optics [63] et utilisée dans nos travaux.
Nous l’intégrerons dans l’interféromètre et démontrerons son efficacité.
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Fig. 4.1 – Schéma d’une lame de Savart "éclatée".

4.1 Avantages des cristaux biréfringents en tant

qu’éléments de cisaillement.

Une lame biréfringente a été préférée au prisme séparateur des états de
polarisation car elle permettra l’obtention d’un cisaillement dans au moins
deux directions perpendiculaires (voir section 4.2). L’emploi de la lame au
détriment du prisme permettra également d’améliorer les performances de
l’installation car :

1. le degré de polarisation des cristaux biréfringents (théoriquement uni-
taire) est supérieur au degré de polarisation en réflexion du prisme.
Les états de polarisation linéaire émergeant de la lame seront "purs"
contrairement au faisceau réfléchi par le composant multicouche du
prisme qui est pollué par une réflexion résiduelle polarisée TM (Fig.
2.2).

2. les lames biréfringentes présentent une efficacité spectrale plus large
que le prisme. Selon le distributeur Halbo Optics, la lame de Savart est
efficace pour les longueurs d’onde de 350 nm à 2500 nm, contrairement
au prisme qui n’est efficace que pour une bande spectrale de quelques
nanomètres centrée sur 532 nm. La longueur d’onde de travail pourra
donc être adaptée en fonction du spectre en réflexion ou en absorption
de l’objet étudié à condition d’adapter également les tensions à appli-
quer au modulateur de phase et de rester dans la courbe de sensibilité
spectrale du détecteur.

3. les cristaux biréfringents présentent une sélectivité angulaire plus large
que le prisme. L’installation pourra être employée avec un champ de
vue plus important.
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Les différences entre le prisme et les cristaux biréfringents énumérées ci-
avant sont liées au principe physique à la base de la séparation des états de
polarisation. Cette séparation est réalisée par effet Brewster dans le cas du
prisme et évidemment par biréfringence dans le cas des cristaux.

En plus d’un degré de polarisation plus important, d’une sélectivité an-
gulaire et d’une sélectivité spectrale plus larges, la lame de Savart apporte
également d’autres avantages plus généraux :

1. sous incidence normale, la différence de chemin optique entre les deux
faisceaux cisaillés est nulle dans le cas de la lame. Nous pourrons donc
employer un laser de faible cohérence temporelle, laser généralement
moins onéreux, voire une diode suffisament cohérente spatialement et
suffisament puissante. Cet avantage de la lame justifie aussi son utili-
sation au détriment d’un autre cirstal biréfringent tel, par exemple, un
prisme de Wollaston.

2. dans le cas de l’utilisation du prisme comme élément de cisaillement, il
convient d’accoler à ce dernier une lame de verre avec un liquide d’in-
dice adéquat. L’accolement de cette lame peut affecter la qualité du
cisaillement du faisceau objet s’il est mal réalisé (couche de liquide in-
homogène, échauffement du liquide du à la focalisation du faisceau,...).
La lame de Savart étant directement prête à l’emploi, nous limitons les
erreurs liées à une mauvaise utilisation.

3. l’utilisation d’un cristal biréfringent permet également de disposer d’une
optique parfaitement en ligne et non plus coudée comme dans le cas
du prisme. Cette caractéristique réduit les erreurs dues à un mauvais
alignement de l’optique.

4. le référence [44] enseigne qu’une rotation β de la lame de Savart autour
d’un axe de rotation perpendiculaire à l’axe optique de l’interféromètre
induit un déphasage entre les rayons qui émergent de la lame, c’est-à-
dire entre les deux faisceaux cisaillés, lié à l’angle β. Sur base de cette
caractéristique, nous pourrions envisager d’introduire les incréments de
phase entre les faisceaux cisaillés non plus en modulant la tension aux
bornes de la cellule à cristaux liquides mais en remplacant la cellule à
cristaux liquides par un dispositif mécanique qui orienterait la lame de
Savart de manière à introduire les déphasages désirés. Nous suggerons
comme perspective d’analyser le potentiel de cette nouvelle solution
afin d’évaluer le modulateur de phase le plus performant.

En tant qu’élément de cisaillement, les cristaux biréfringents surpassent le
prisme séparateur des états de polarisation. Toutefois, nous verrons que leur
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intégration dans l’interféromètre est complexe car l’anisotropie du composant
entraîne que son orientation affecte considérablement les faisceaux cisaillés
qui en sont issus. Précisons aussi que le coût de la lame de Savart employée
(1700¤) est supérieur à celui du prisme séparateur des états de polarisation
(300¤).

4.2 Caractérisation du comportement de la lame

de Savart.

Le caractère anisotrope de la lame de Savart implique que la direction
de propagation des ondes lumineuses par rapport à l’axe optique de la lame
joue un rôle primordial sur la réfraction de ces ondes. Pratiquement, cette
propriété implique que les caractéristiques optiques (éclairement, polarisa-
tion,...) des rayons émergeant de la lame dépendent de l’orientation dans
l’espace de cette dernière. Dans cette section, nous caractériserons les rayons
émergents en fonction de l’orientation de la lame autour de l’axe optique
de l’interféromètre. Cette caractérisation permettra d’estimer l’orientation
optimale de la lame dans l’installation de shearographie.

La Fig. 4.2 schématise le dispositif optique utilisé pour caractériser les
rayons émergeant de la lame en fonction de sa rotation autour de l’axe op-
tique de l’interféromètre. Dans ce dispositif, le filtre spatial permet l’élargis-
sement du faisceau laser et l’élimination de ses défauts de phase. La lentille
L1 minimise la surface de la lame utile en y focalisant le faisceau laser, tandis
que la deuxième lentille L2 recollimate les faisceaux qui émergent de la lame.
L’écran permet la visualisation des rayons émergents. La lame de Savart est
montée sur un support rotatif gradué dont l’axe de rotation coïncide avec
l’axe optique du montage.

Ce dispositif a permis la visualisation de l’influence de la rotation de la
lame autour de l’axe optique sur le cisaillement du faisceau incident (Fig.
4.3). Une rotation de la lame induit une rotation des deux faisceaux cisaillés
autour de l’axe optique et une modulation de leurs éclairements respectifs.

Dans le but de quantifier la modulation de l’éclairement, l’éclairement
de chaque faisceau a été mesuré à l’aide d’un wattmètre. Pour tenir compte
des fluctuations éventuelles en puissance du laser, les éclairements mesurés
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Fig. 4.2 – Dispositif utilisé pour caractériser les faisceaux émergeant de la lame en
fonction de la rotation de cette dernière autour de l’axe optique de l’interféromètre.

Fig. 4.3 – Evolution en intensité, orientation et position des faisceaux émergeant
de la lame lors d’une rotation de 180◦ de cette dernière autour de l’axe optique et
pour un faisceau incident polarisé linéairement TM.

ont été normalisés par l’éclairement d’un faisceau de référence, lequel corres-
pond au faisceau réfléchi par une lame séparatrice 50/50 placée à la sortie du
filtre spatial. La Fig. 4.4 présente l’évolution des éclairements normalisés des
faisceaux émergeant de la lame en fonction de la rotation de cette dernière
autour de l’axe optique du montage et pour un faisceau incident polarisé
TM3. Ces courbes, en opposition de phase, suivent une loi en cos2(θ). Ce
comportement en cos2(θ) fait évidemment penser à la loi de Malus qui ca-
ractérise l’éclairement transmis d’une onde incidente polarisée linéairement

3Précisons que pour chaque orientation de la lame, 5 mesures ont été réalisées. Les
courbes représentent la moyenne des mesures, tandis que les barres d’erreur correspondent
à leur écart-type. Précisons aussi que l’orientation 0◦ de la lame a été fixée arbitrairement
mais est identique pour toutes les figures de ce chapitre.
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après traversée d’un analyseur linéaire [11].

Fig. 4.4 – Variation des éclairements des faisceaux émergeant de la lame en fonc-
tion de la rotation de cette dernière autour de l’axe optique du montage. Le faisceau
incident est polarisé linéairement TM.

L’éclairement des faisceaux émergents en fonction de la rotation de la
lame se comporte comme la loi de Malus. La lame de Savart se comporte
comme un polariseur/analyseur linéaire. Pour vérifier cette conclusion, la
polarisation linéaire des faisceaux émergents a été analysée en placant un
analyseur linéaire devant l’écran et en déterminant les orientations de cet
analyseur qui éteignent les faisceaux émergents. La Fig. 4.5 présente la direc-
tion des polarisations linéaires des faisceaux émergeant de la lame de Savart.
Les deux faisceaux sont polarisés linéairement et perpendiculairement entre
eux, en accord avec la théorie de la biréfringence, et les directions de leurs
polarisations linéaires varient linéairement avec la rotation du cristal. Ces
observations confirment que le rôle de la lame de Savart peut s’interpréter
comme celui d’un polariseur linéaire dont la direction passante est fonction
de l’orientation de la lame et du rayon cisaillé considéré. Cette conclusion est
également confirmée par la référence [45].

La Fig. 4.3 enseigne qu’une rotation de la lame de Savart induit une ro-
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Fig. 4.5 – Evolution de l’orientation de la polarisation linéaire des faisceaux émer-
geant de la lame en fonction de la rotation de cette dernière autour de l’axe optique
du montage. L’orientation 0◦ correspond à l’état de polarisation linéaire TM.

tation des deux faisceaux cisaillés autour de l’axe optique. En définissant la
direction du cisaillement par l’angle fait entre l’axe horizontal et la droite
joignant les centres des faisceaux, nous constatons que la direction du ci-
saillement varie linéairement avec la rotation de la lame selon une loi f(x) =
x (Fig. 4.6). Une rotation de 90◦ de la lame de Savart entraîne donc une ro-
tation de 90◦ de la direction du cisaillement. En considérant successivement
deux orientations orthoganales de la lame, nous disposerons donc de deux
directions de cisaillement perpendiculaires entre elles. Les défauts seront par
conséquent détectables quelque soit leur direction et pourront être quanti-
fiés aussi bien en largeur qu’en longueur, en accord respectivement avec les
chapitres 2 et 3.

La rotation de la lame induit une modification de la direction du ci-
saillement. Toutefois, la rotation n’affecte pas la distance centre à centre des
faisceaux émergents4, c’est-à-dire la taille du cisaillement (Fig. 4.7). Cette ca-

4Les fluctuations de la courbe de la Fig. 4.7 sont dues à la mauvaise qualité des images
de la Fig. 4.3.
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Fig. 4.6 – Evolution de l’orientation du cisaillement en fonction de la rotation de
la lame de Savart autour de l’axe optique du montage. Pour rappel, la direction du
cisaillement est définie par l’angle fait entre l’axe horizontal et la droite joignant
les centres des faisceaux.

ractéristisque implique que l’interféromètre aura une sensibilité indépendante
de la rotation de la lame.

4.3 Intégration de la lame de Savart dans l’ins-

tallation de shearographie.

La section précédente a permis d’établir le comportement de la lame de
Savart en fonction de son orientation autour de l’axe optique du montage
de la Fig. 4.2. Sur base des résultats de cette section, nous discutons main-
tenant de l’intégration de la lame de Savart comme élément de cisaillement
dans l’installation de shearographie présentée à la section 2.1. Pour pouvoir
exploiter les résultats de la section précédente, la lame sera intégrée perpendi-
culairement à l’axe optique de l’interféromètre et pourra être mise en rotation
autour de cet axe. La Fig. 4.8 schématise l’installation de shearographie avec
la lame de Savart comme élément de cisaillement. La lentille L1 focalise le
faisceau objet au niveau de la lame de Savart, tandis que la lentille L2 colli-
mate les faisceaux qui émergent de la lame. La cellule à cristaux liquides joue
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Fig. 4.7 – Evolution de la taille du cisaillement en fonction de la rotation de la
lame de Savart autour de l’axe optique du montage.

le rôle de modulateur de phase pour le décalage de phase temporel. Le pola-
riseur linéaire permet de créer l’interférence entre les deux faisceaux cisaillés
par la lame, lesquels sont polarisés linéairement et perpendiculairement entre
eux.

Fig. 4.8 – Installation de shearographie avec la lame de Savart.

Les courbes d’éclairement des faisceaux émergeant de la lame en fonction
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de son orientation sont en opposition de phase (Fig. 4.4). Sur une rotation
complète de la lame, quatre orientations de cette dernière induisent par consé-
quent des faisceaux cisaillés d’éclairements identiques et inchangés par une
rotation de 90◦ de la lame. Pour ces orientations, aucun faisceau n’est privilé-
gié par rapport à l’autre et les faisceaux conserveront leur éclairement après
modification de 90◦ de la direction du cisaillement. La lame sera orientée
arbitrairement selon une de ces orientations privilégiées.

Pour une orientation de la lame imposée, les faisceaux émergents pré-
sentent des polarisations linéaires données par la Fig. 4.5 et perpendiculaires
entre elles. Par analogie avec l’utilisation du prisme séparateur des états de
polarisation, les axes lent et rapide de la cellule à cristaux liquides seront
orientés parallèlement aux directions de polarisation linéaire des faisceaux
cisaillés. Une telle configuration permet de conserver des faisceaux cisaillés
polarisés linéairement quelle que soit la tension appliquée aux bornes du mo-
dulateur. Précisons également que la cellule à cristaux liquides ne doit pas
être recalibrée suite au changement d’élément de cisaillement car quel que
soit cet élement, le modulateur de phase est toujours employé avec ses axes
lent et rapide parallèles aux directions de polarisation linéaire des faisceaux
cisaillés.

Les faisceaux cisaillés émergents du modulateur de phase étant polarisés
linéairement et la lame de Savart étant orientée de manière telle que les
faisceaux présentent le même éclairement, le polariseur de l’interféromètre
sera orienté à 45◦ par rapport aux directions des polarisations linéaires des
faisceaux cisaillés. Cette orientation du polariseur permet l’interférence des
deux faisceaux avec une visibilité des franges maximale.

Les lignes précédentes discutent l’intégration de la lame comme élément
de cisaillement de l’interféromètre. Sur base des résultats de cette discus-
sion, la lame a été intégrée dans l’installation et les adaptations nécessaires
consécutives à cette intégration ont été réalisées afin de rendre l’installa-
tion opérationnelle avec la lame de Savart. La Fig. 4.9 présente des cartes de
phase obtenues en utilisant la lame de Savart comme élément de cisaillement.
L’expérience consiste en la détection du défaut de la plaque d’acier évidée
déjà présentée dans ce travail (cf. section 2.2). Ce film de l’évolution de la
déformation en fonction de la relaxation thermique de la plaque après son
excitation IR, montre que la lame de Savart est apte à jouer le rôle d’élément
de cisaillement.
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Fig. 4.9 – Exemples de cartes de phase (non filtrées) obtenues avec la lame de
Savart pour différentes durées de relaxation après l’excitation IR. L’objet étudié
est la plaque d’acier évidée présentée à la section 2.2.

4.4 Interféromètre à deux directions de cisaille-

ment.

L’utilisation de la lame de Savart comme élément de cisaillement a pour
objectif principal de disposer d’un interféromètre dont la direction de cisaille-
ment peut au moins prendre deux directions perpendiculaires. Cette "option"
est essentielle pour le contrôle non destructif (cf. partie II).

En accord avec la Fig. 4.6, pour tourner la direction de cisaillement de
90◦, il s’agit en pratique de réorienter la lame de 90◦ par rapport à son
orientation initiale. Suite à cette rotation de la lame, il ne sera pas nécessaire
de réorienter le modulateur de phase car ses axes ont été imposés parallèles
aux polarisations des faisceaux cisaillés et nous avons montré qu’une rotation
de la lame de Savart de 90◦ induit une rotation de 90◦ de la polarisation
linéaire des faisceaux cisaillés. Au niveau du modulateur de phase, la rotation
de la lame de Savart permute uniquement l’axe du modulateur que perçoivent
ces faisceaux. Par contre, il sera nécessaire de tourner de 90◦ le polariseur
linéaire de l’interféromètre pour garantir une interférence optimale.

L’interféromètre à ce stade présente deux inconvénients :

1. le polariseur doit être réorienté après une rotation de la lame de Savart
de 90◦ ;

2. la visibilité et l’éclairement moyen des franges d’interférence sont sen-
sibles à l’orientation du polariseur linéaire de l’interféromètre, en accord
avec la loi de Malus.
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En analysant la propagation des états de polarisation dans l’installation,
nous constatons que ces inconvénients sont liés au fait que les faisceaux ci-
saillés sont polarisés linéairement avant traversée du polariseur. Pour palier
ces problèmes, nous suggérons d’introduire entre la lentille L2 et le polariseur
de l’interféromètre une lame à retard λ/4 orientée à 45◦ par rapport aux po-
larisations linéaires des faisceaux cisaillés. Cette lame induira des faisceaux
polarisés circulairement qui pourront interférer quelle que soit l’orientation
du polariseur linéaire avec un éclairement moyen et une visibilité indépen-
dants de l’orientation de ce polariseur.

La Fig. 4.10 présente deux cartes de phase expérimentales5 obtenues avec
deux directions de cisaillement orthogonales et avec une lame quart d’onde
orientée correctement, introduite entre la lentille L2 et le polariseur linéaire
de l’interféromètre.

Fig. 4.10 – Cartes de phase obtenues avec deux directions de cisaillement per-
pendiculaires à l’aide d’un lame de Savart et d’une lame λ/4. L’objet étudié est la
plaque évidée présentée à la section 2.2.

Précisons que les cartes de la Fig. 4.10 ne peuvent pas être comparées
car la phase mesurée ne représentent pas la même grandeur physique. Dans
la première carte, la phase est proportionnelle à la dérivée des déplacements
par rapport à la direction α, tandis que dans la seconde carte, la phase est
liée à la dérivée des déplacements par rapport à la direction α + 90◦.

5L’expérience consiste en la détection du défaut de la plaque d’acier évidée présentée
au chapitre 2.
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Fig. 4.11 – Cartes de phase obtenues pour différentes orientations du polariseur
après introduction de la lame quart d’onde dans l’interféromètre. La direction de
polarisation nulle coïncide avec l’état de polarisation linéaire TM.
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La lame quart d’onde introduite permet de ne pas devoir réorienter le po-
lariseur du montage suite à une rotation de la lame de Savart mais aussi de
créer une interférence entre les faisceaux cisaillés indépendante de l’orienta-
tion de ce polariseur. La Fig 4.11 présente des cartes de phase obtenues dans
des conditions expérimentales identiques mais avec différentes orientations
du polariseur. Dans l’expérience, l’amplitude de la phase mesurée est indé-
pendante de l’orientation du polariseur (Fig. 4.12). La phase moyenne des
cartes est constante vis-à-vis de l’orientation du polariseur. L’amplitude PTV
de la phase fluctue de quelques radians entre les différentes cartes à cause
du bruit des cartes de phase et des erreurs dues au post-traitement (filtrage
par masque médian de dimension 3 au niveau sinus-cosinus et déroulage de
phase).

Fig. 4.12 – Influence de l’orientation du polariseur linéaire sur l’amplitude PTV et
moyenne de la phase déroulée. Les courbes "moyenne(.)" représentent la moyenne
de la courbe (.) correspondante et évaluée sur les différentes orientations du pola-
riseur considérées.

Une carte de phase de bonne qualité étant caractérisée par un histo-
gramme quasi-uniformément réparti sur 256 niveaux de gris, la qualité des
cartes de phase enroulées peut donc être quantifiée par l’écart-type σhist de
la différence de l’histogramme des niveaux de gris de la carte et de l’histo-
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gramme idéal uniformement réparti sur 256 niveaux de gris. Plus cet écart-
type est faible, plus la carte de phase est de bonne qualité. Nous exprimerons
cet écart-type en pourcentage par rapport au nombre total de pixels de la
région d’intérêt des cartes de phase. La Fig. 4.13 représente l’écart-type σhist

des cartes de phase obtenues avec différentes orientations du polariseur. Nous
constatons que la qualité de la carte de phase dérive en fonction de l’orien-
tation du polariseur. Cette dégradation est due aux erreurs d’orientation de
la lame quart d’onde par rapport aux directions des états de polarisation
linéaire des faisceaux cisaillés. Ces erreurs d’orientation de la lame induisent
une polarisation élliptique résiduelle qui affecte la visibilité et l’éclairement
moyen de l’interférence et ce en fonction de l’orientation du polariseur li-
néaire.

Fig. 4.13 – Qualité des cartes de phase en fonction de l’orientation du polariseur
linéaire.

4.5 Performances de l’installation.

L’expérience acquise au laboratoire permet d’affirmer que l’installation
actuelle de shearographie présente les performances détaillées à la Tab. 4.1.
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X Y Z
Résolution 0.29 mm 0.29 mm 0.024 rad ou λ/262

Précision (après déroulage de phase) . . 0.25 rad ou λ/25

Tab. 4.1 – Performances de l’installation de shearographie.

4.6 Conclusion.

La détection et la quantification de défauts par shearographie nécessitent
de disposer d’un cisaillement au moins dans deux directions du plan image.
Pour pouvoir modifier la direction du cisaillement, nous avons remplacé le
prisme séparateur des états de polarisation, initalement employé comme élé-
ment de cisaillement, par une lame de Savart. Nous avons opté pour cette
solution pour ne pas intégrer une mécanique de précision dans l’installation,
pour conserver la philosophie de l’installation (cisaillement par séparation des
états de polarisation), mais aussi car la lame de Savart présente de nombreux
avantages par rapport au prisme : degrés de polarisation plus importants, sé-
lectivités spectrale et angulaire plus larges, optique en ligne...

Pour intégrer au mieux la lame de Savart, nous avons dans un premier
temps caractérisé les propriétés optiques (éclairement et polarisation) des
faisceaux cisaillés issus de la lame.

Ces caractérisations ont permis de comprendre le comportement de la
lame. Cette dernière livre deux faisceaux cisaillés polarisés linéairement et
perpendiculairement entre eux, avec une taille de cisaillement constante et
une direction de cisaillement dépendant de l’orientation de la lame. L’éclaire-
ment des faisceaux cisaillés est également modulé en fonction de l’orientation
de la lame, pour une lumière incidente polarisée.

La compréhension de l’influence de la lame de Savart sur les faisceaux
cisaillés a permis son intégration dans l’interféromètre. Suite à cette intégra-
tion et en analysant la propagation de la polarisation dans l’installation, nous
avons également inséré une lame quart d’onde entre le modulateur de phase
et le polariseur linéaire de l’installation initiale, orientée à 45◦ par rapport
aux axes de ce modulateur. Cette lame quart d’onde permet de tourner de
90◦ la direction du cisaillement uniquement en réorientant de 90◦ la lame de
Savart. En effet, les faisceaux cisaillés présentant des polarisations circulaires
après passage dans la lame λ/4, l’intégration de cette lame permet l’obten-
tion de cartes de phase indépendantes de la direction du polariseur linéaire
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placé devant l’objectif de la caméra.

Pour le contrôle non destructif, la lame de Savart répond mieux à nos
attentes que le prisme séparateur des états de polarisation. Précisons toutefois
que son intégration est plus complexe que celle du prisme car les propriétés
optiques des faisceaux cisaillés sont étroitement liées à l’orientation de la
lame : toute erreur liée à une mauvaise orientation de la lame de Savart induit
une perte de qualité des cartes de phase. Précisons également que la taille
du cisaillement n’est pas modulable. Pour palier ce problème, l’amplitude
de la contrainte appliquée est adaptée pour que la dérivée des déplacements
soit comprise dans la gamme de sensibilité de l’interféromètre. En cas de
besoin, une alternative consiste à ajuster la taille du cisaillement en utilisant
une lame de Savart d’épaisseur différente de celle actuellement employée (10
mm).

Pour terminer, signalons que l’expérience acquise lors de ce travail sera
également exploitée au chapitre 6 où la lame de Savart sera utilisée pour
concevoir un projecteur de franges interférométriques pour la mesure tridi-
mensionnelle de formes.



Chapitre 5

Shearographie dynamique par

transformée de Hilbert

temporelle.

Les cartes de phase présentées dans les chapitres précedents ont été éta-
blies à l’aide d’un algorithme "classique" de décalage de phase temporel à
quatre incréments de phase. Le décalage de phase temporel consiste en l’en-
registrement d’au moins trois interférogrammes pour lesquels un incrément
de phase généralement connu est introduit entre le faisceau objet et le fais-
ceau de référence. Le décalage de phase temporel est une technique perfor-
mante pour estimer la phase relative du faisceau objet si cette dernière est
constante lors de l’enregistrement des interférogrammes, c’est-à-dire si l’ob-
jet reste dans un état stable pendant toute la durée de l’acquisition de ces
derniers ou si la dynamique de la déformation peut être considérée constante
durant l’enregistrement des interférogrammes.

Dans nos exemples de NDT, les objets ont été étudiés durant leur relaxa-
tion thermique. Les shearogrammes ont donc été enregistrés alors que l’objet
était toujours en cours de déformation. Pour tenir compte de cet effet, un al-
gorithme de mesure de phase dynamique doit être employé. Dans le cadre de
l’étude de phénomènes dynamiques, la phase peut être estimée, entre autres,
par décalage de phase spatial, par transformée de Fourier, de Hilbert ou en
ondelettes. Le décalage de phase spatial est une technique performante qui
consite à enregistrer simultanément sur un seul détecteur plusieurs interfé-
rogrammes décalés en phase [16]. Une telle méthodologie permet l’analyse
de la phase en temps réel, mais nécessite une optique complexe et généra-
lement coûteuse. Les estimations de la phase dynamique par transformées
analytiques sont obtenues en post-traitement mais permettent de conserver

95
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les installations optiques identiques à celles employées en décalage de phase
temporel. La transformée de Hilbert a été privilégiée dans nos travaux car
elle peut être appliquée dans une large gamme de mesures interferométriques,
elle présente une excellente résolution spatiale (de l’ordre de la taille du spe-
ckle), elle est simple d’implémentation, elle peut être totalement automatisée
et son temps de calcul est fortement réduit par rapport à celui nécessaire,
par exemple, à la transformée en ondelettes [18].

Dans ce chapitre, nous discuterons, sur base de simulations numériques,
d’un algorithme de mesure de phase dynamique par transformée de Hilbert
temporelle. Nous arriverons à la conclusion que l’algorithme permet une esti-
mation précise de la distribution temporelle de la phase à condition d’intro-
duire une phase porteuse dans le dispositif de mesure, c’est-à-dire à condition
d’introduire un incrément de phase connu entre chacun des interférogrammes
enregistrés. L’algorithme sera ensuite implémenté au laboratoire et nous com-
parerons les résultats obtenus avec ceux du décalage de phase temporel. Nous
discuterons enfin du temps de calcul nécessaire pour établir les cartes de phase
par transformée de Hilbert.

L’algorithme introduit a déjà été utilisé avec succès en interférométrie de
speckle par Madjarova et al. pour l’analyse de suivi de déplacements [18],
mais à notre connaissance son emploi en shearographie est une originalité.
Il est toutefois évident que les travaux de Madjarova et al. sont dans nos
raisonnnements une influence et une source d’inspiration importantes.

5.1 Introduction à la transformée de Hilbert.

La transformée de Hilbert TH(.) d’un signal u(t) est définie par la relation
[46] :

TH(u(t)) = U(s) =
−1

π

∫ +∞

−∞

u(t)

s− t
dt;−∞ < t < +∞ (5.1)

La transformée de Hilbert inverse de U(s) est définie par l’équation [46] :

TH−1(U(s)) = u(t) =
−1

π

∫ +∞

−∞

U(s)

t− s
dt;−∞ < t < +∞ (5.2)

Les variables s et t sont de même nature physique : la transformée de Hilbert
d’un signal temporel est un signal temporel.
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La transformée de Hilbert peut également être vue comme la convolution
du signal u(t) avec 1/πt. Ce point de vue permet une interprétation physique
de la transformée. En effet, ayant :

TH(u(t)) = U(t) =
1

πt
∗ u(t) (5.3)

La théorie de la transformée de Fourier TF(.) enseigne que nous pouvons
écrire [46] :

TF (U(t)) = TF (1/πt)TF (u(t)) = −jsigne(ν)TF (u(t)) (5.4)

ν étant la variable conjuguée de t, la fonction signe(ν) est égale à 1 si ν > 0
et -1 sinon, j2 = −1.

La dernière relation est primordiale. Elle est généralement employée pour
calculer numériquement la transformée de Hilbert et elle permet une inter-
prétation de cette dernière : la transformée de Hilbert réalise la quadrature
du signal u(t). Elle déphase de π/2 les composantes spectrales du signal, sans
affecter leur amplitude.

5.2 Mesure de phase dynamique par shearogra-

phie et transformée de Hilbert.

En shearographie, l’éclairement I(x,y) du pixel (x,y) du détecteur est
donné par la relation fondamentale :

I(x, y) = 2I0. (1 + γ(x, y)cos(φ(x, y)) (5.5)

avec I0 l’éclairement moyen des deux speckles interférant en (x,y), γ(x, y) le
facteur de visibilité de l’interférence et φ(x, y) la différence de phase entre les
deux speckles.

En shearographie, la différence de phase φ(x, y) est liée au gradient des
déplacements. Si l’objet subit une déformation dynamique, la différence de
phase devient une fonction du temps t. Dans ces conditions, l’éclairement de
chaque pixel sera également une fonction temporelle I(x,y,t).

La mesure de phase dynamique par transformée de Hilbert consiste à
considérer, pour chaque pixel, le signal temporel I(x,y,t) et estimer la distri-
bution temporelle de sa phase φ(x, y, t), modulo 2π, à l’aide de la relation
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[18] :

tan [φ(x, y, t)] =
TH [I(x, y, t)− 2I0]

I(x, y, t)− 2I0

(5.6)

Le terme constant dans le temps 2I0 est soustrait du signal I(x,y,t) car
la transformée de Hilbert est linéaire et la transformée de Hilbert d’une
constante est une intégrale divergente. Nous verrons ultérieurement comment
nous affranchir de ce problème et éliminer ce terme.

La distribution continue de la phase est obtenue en déroulant la distribu-
tion temporelle φ(x, y, t). L’algorithme nécessite donc un déroulage de phase
unidimensionnel, contrairement au décalage de phase temporel qui nécessite
un déroulage de phase à deux dimensions et donc plus complexe.

En appliquant l’algorithme à tous les pixels de la région d’intérêt du
détecteur, la distribution spatio-temporelle de la phase relative est obtenue :
dans le cadre d’une application en shearographie, l’algorithme fournit un film
du gradient des déplacements où chaque image correspond à un instant de
la déformation.

5.3 Etude des performances de l’algorithme :

simulations numériques.

Dans la but d’analyser les performances de l’algorithme, un signal tem-
porel I(t) a été simulé numériquement (Fig. 5.1) et l’algorithme de mesure
de phase dynamique par transformée de Hilbert a été implémenté afin d’es-
timer la phase du signal, et ce en supposant le terme 2I0 connu. Le signal
simulé présente les caractéristiques suivantes : 2I0 = 125 niv. gris, γ = 95%
et φ(t) = φth(t) = 30.exp (−t/200).

Les simulations enseignent que la phase simulée φth(t) et la phase estimée
φest(t) ramenées à l’origine coïncident au signe près (Fig. 5.2) : l’écart moyen
entre la valeur absolue des distributions de phase est de l’ordre de 0.01 rad
avec un écart-type de 0.04 rad. L’incertitude sur le signe de la phase est liée
à la parité de la fonction cosinus de l’Eq. 5.5.

L’algorithme est performant pour estimer, au signe près, la phase du si-
gnal I(t) simulé. Toutefois, précisons que ses performances sont dépendantes
de la taille de la fenêtre de troncature du signal. En effet, si au lieu de
considérer le signal I(t) sur l’intervalle temporel [0 u.a., 200 u.a.], nous le
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Fig. 5.1 – Signal I(t) simulé.

Fig. 5.2 – Distributions temporelles des phases théorique et estimée pour le signal
I(t), et ramenées à l’origine. La distribution φest(t) a été calculée par transformée
de Hilbert sur l’intervalle temporel [0 u.a., 200 u.a.].

considérons sur l’intervalle [0 u.a., 130 u.a.], nous constatons que les perfor-
mances de l’algorithme sont réduites, et ce principalement en raison d’une
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mauvaise estimation de la phase aux bornes de l’intervalle temporel (Fig.
5.3).

Fig. 5.3 – Distributions temporelles des phases théorique et estimée pour le signal
I(t) avec une taille de fenêtre de troncature de 130 u.a.

Pour étudier de manière plus générale, l’influence de la taille de la fenêtre
de troncature du signal sur les performances de l’algorithme, une fonction
de fidélité F entre les phases simulée φth(t) et estimée φest(t) est définie.
Cette fonction F caractérise la correspondance entre les deux distributions
temporelles de phase et est définie par :

F = 1−
∑

i

[

φest(ti)− φth(ti)
]2

∑

i [φ
th(ti)]

2 (5.7)

L’étude de la fidélité en fonction de la taille de la fenêtre de troncature du
signal enseigne que les performances de l’algorithme dépendent fortement de
la taille de cette fenêtre (Fig. 5.4). Nous constatons également que la fidélité
des minima locaux augmente avec la taille de la fenêtre : pour les tailles de
fenêtre de troncature les plus défavorables (60 u.a., 130 u.a.,...), l’algorithme
est d’autant plus performant que la taille de la fenêtre est importante.
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Fig. 5.4 – Fidélité F des distributions temporelles φth(t) et −φest(t), ramenées à
l’origine, en fonction de la taille de la fenêtre de troncature du signal I(t).

En introduisant une fréquence porteuse α(t)/2π dans le signal I(t) avant
l’estimation de la phase et en soustrayant α(t) de la phase estimée, l’algo-
rithme devient performant quelle que soit la taille de la fenêtre de troncature
du signal. Pour une modulation de phase α(t) linéaire avec une pente de
π/4, la fonction de fidélité préalablement définie est maintenant supérieure
à 99.9% quelle que soit la taille de la fenêtre de troncature (Fig. 5.5).

Pour une fenêtre présentant une taille de 130 u.a., taille initialement dé-
favorable, l’écart moyen entre les phases estimée φth(t) et théorique φest(t),
et ramenées à l’origine, devient de l’ordre de 0.03 rad avec un écart-type de
0.01 rad (Fig. 5.6).

L’introduction de la fréquence porteuse permet une estimation correcte
de la phase du signal simulé, et ce quelle que soit la taille de sa fenêtre de
troncature. L’introduction de la fréquence porteuse permet également :

– la détermination du signe de la phase. La modulation de la phase induit
que la fonction cosinus de l’Eq. 5.5 n’est plus symétrique (paire) par
rapport à la phase nulle mais bien par rapport à la phase porteuse α.

– le traitement des pixels d’éclairement non modulé par la déformation.
En effet, sans fréquence porteuse, l’éclairement I(t) de ces pixels ne
peut pas être traité par transformée de Hilbert : cet éclairement est
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Fig. 5.5 – fidélité F des distributions temporelles φth(t) et φest(t), ramenées à
l’origine, en fonction de la taille de la fenêtre de troncature du signal I(t) modulé
en fréquence.

Fig. 5.6 – Distributions temporelles des phases théorique et estimée du signal I(t)
modulé en fréquence et défini sur l’intervalle temporel [0 u.a., 130 u.a.].

constant dans le temps et la transformée de Hilbert d’une constante
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est une intégrale divergente [46]. Grâce à la fréquence porteuse, l’éclai-
rement devient modulé et présente donc une distribution temporelle
non uniforme. La transformée de Hilbert peut dès lors être appliquée
avec succès.

– l’élimination du terme 2I0 du signal I(t), étape primordiale pour une
bonne application de la transformée de Hilbert. Nous verrons ultérieu-
rement comment éliminer ce terme des signaux I(t) expérimentaux.

5.4 Des simulations au laboratoire...

Les sections précédentes ont introduit et discuté, sur base de simula-
tions numériques, l’intérêt de l’algorithme de mesure de phase dynamique
par transformée de Hilbert temporelle. Les simulations réalisées ont démon-
tré la nécessité d’introduire une fréquence porteuse lors de l’acquisition des
shearogrammes. Cette section décrit les étapes réalisées pour intégrer l’algo-
rithme au laboratoire et propose une première application en contrôle non
destructif réalisée à l’aide d’une irradiation IR.

5.4.1 Introduction de la fréquence porteuse.

En pratique, la fréquence porteuse sera introduite, par analogie au déca-
lage de phase temporel, en ajoutant un incrément de phase connu entre les
deux bras de l’interféromètre à l’aide d’un modulateure de phase (dans notre
cas, une cellule à cristaux liquides). Dans notre expérience, l’incrément de
phase introduit entre chaque enregistrement sera de π/4 pour être en accord
avec nos simulations numériques et pour garantir un bon échantillonage des
signaux temporels.

La fréquence porteuse est déterminée sur base de la courbe de calibration
de la cellule à cristaux liquides, le modulateur de phase de l’interféromètre.
La calibration du LCD a été effectuée en enregistrant, pour chaque tension
voulue, un interférogramme obtenu à l’aide d’un montage tel celui schématisé
par la Fig. 5.7. Dans ce dernier, le filtre spatial sert à l’élargissement et au
nettoyage des défauts de phase du faisceau laser. Le polariseur linéaire P1
permet l’obtention d’un faisceau polarisé linairement à 45◦ par rapport aux
axes rapide et lent de la cellule à cristaux liquides. La cellule déphase, en
fonction de la tension qui lui est appliquée, les composantes TE et TM du
faisceau laser. L’orientation de la cellule est identique à celle qu’elle devra
avoir dans l’interféromètre : ses axes lent et rapide sont respectivement pa-
rallèles aux directions de polarisation TE et TM. Le polariseur P2 permet



CHAPITRE 5 : SHEAROGRAPHIE DYNAMIQUE. 104

l’interférence des deux composantes de polarisation élémentaires. La caméra
permet une mesure en niveaux de gris de l’éclairement moyen des interféro-
grammes, calculé sur l’ensemble des pixels utiles du détecteur.

Fig. 5.7 – Schéma du banc de calibration du modulateur de phase.

Le déphasage introduit par la cellule à cristaux liquides entre les états de
polarisation TE et TM est lié à la phase de la courbe Im(V ) de l’éclairement
moyen des interférogrammes en fonction de la tension appliquée (Fig. 5.8).
La phase enroulée φwrap(V ) de la courbe Im(V ) est donnée, au signe près,
par la relation :

φwrap(V ) =
d [asin (Im(V ))]

dV
+

π

2
.signe

[

d [asin (Im(V ))]

dV

]

(5.8)

La Fig. 5.9 représente la phase déroulée φ(V ) de la courbe Im(V ). La
fonction φ(V ) enseigne le déphasage introduit entre les deux états de polari-
sation TE et TM lorsque la tension appliquée à la cellule à cristaux liquides
passe d’une valeur V1 à une valeur V2.

La courbe de calibration établie, il s’agit maintenant d’estimer les tensions
à appliquer pour introduire la fréquence porteuse souhaitée. Pour plus de
facilté, la fréquence porteuse introduite sera une fonction temporelle linéaire :
l’incrément de phase introduit entre l’enregistrement de deux shearogrammes
sera constant dans le temps et sera fixé égal à π/4.
Dans le but de travailler dans la haute dynamique de la cellule, la première
tension a été imposée égale à 1420 mV. Pour introduire un incrément de
phase de π/4 entre les divers enregistrements, la tension appliquée prendra
alors successivement et de manière cyclique les valeurs 1420 mV, 1505 mV,
1601 mV, 1697 mV, 1819 mV, 1965 mV, 2148 mV et 2343 mV. Dans le but de
réduire des problèmes d’hystérésis et pour diminuer le temps de réponse de
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Fig. 5.8 – Eclairement moyen des interférogrammes en fonction de la tension
appliquée aux bornes du modulateur de phase.

Fig. 5.9 – Réponse en déphasage et en mode TNE de la cellule à cristaux liquides
employée et mises en évidence des tensions appliquées au laboratoire.
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la cellule, ces tensions seront appliquées en mode TNE, Transient Nematic
Effect. Ce mode consiste à d’abord envoyer un pulse de haute tension (resp.
basse tension) avant de passer d’une tension V1 à une tension supérieure
(resp. inférieure) V2.

5.4.2 Contrôle non destructif par shearographie et trans-

formée de Hilbert temporelle.

Connaissant les tensions à appliquer à la cellule à cristaux liquides afin
d’introduire la fréquence porteuse désirée et l’interféromètre de shearographie
à décalage de phase temporel ne devant pas subir de modification optique
pour pouvoir être employé en shearographie dynamique par transformée de
Hilbert, appliquons maintenant l’algorithme dans le cadre de mesures de
phase dynamique.

L’expérience discutée consiste en la détection du défaut de la plaque
d’acier évidée présentée au chapitre 2. La détection du défaut est réalisée
en irradiant la plaque durant 9.25 s à l’aide d’une lampe IR de 250 W située
à 10 cm de la face arrière de l’objet. L’état de référence φ(x, y, t0) correspond
au 18ieme shearogramme enregistré (t0 = 4.50 s). La source IR est allumée
après l’enregistrement du 24ieme shearogramme (t = 6.00 s). Les différents
états déformés φ(x, y, t) considérés sont les temps t > 6.00 s. L’enregistre-
ment des interférogrammes est effectué à la fréquence de 4 Hz. Le cisaillement
est réalisé à l’aide de la lame de Savart.

Distribution temporelle de la phase.

La Fig. 5.10 représente la distribution temporelle de l’éclairement de deux
pixels du détecteur. Plus précisément, le signal Iext(t) correspond à un pixel
extérieur à la zone du défaut, tandis que le signal temporel I int(t) est relatif
à un pixel intérieur à la région d’impact du défaut.

L’algorithme de mesure de phase par transformée de Hilbert exige l’éli-
mination du terme constant 2I0 des signaux I(t) avant d’estimer leur phase.
Ce terme correspondant à la fréquence nulle des signaux, son élimination
est réalisée en appliquant, dans l’espace de Fourier, un filtre passe-haut de
fréquence de coupure adaptée. La fréquence de coupure νc a été imposée
égale à 0.07 Hz pour le signal Iext(t), valeur choisie sur base du module de
la transformée de Fourier du signal, |TF (Iext(t)) | (Fig. 5.11). L’élimination
du terme 2I0 par l’application du filtre passe-haut est d’autant plus efficace
qu’une fréquence porteuse a été introduite : l’introduction de cette dernière
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Fig. 5.10 – Distributions temporelles de l’éclairement de deux pixels du détecteur.
L’allumage et l’extinction de la lampe IR sont représentés sur l’axe du temps par
les étiquettes "ON" et "OFF". L’étiquette t0 caractéristie l’instant de référence
considéré.

décale les fréquences relatives à la déformation vers les hautes fréquences
temporelles. Les fréquences caractéristiques de la déformation et celles du
terme 2I0 ne se recouvrent plus.

Le terme 2I0 éliminé des signaux I(t), la distribution temporelle de la
phase de ces signaux peut être estimée par transformée de Hilbert. La Fig.
5.12 présente la phase déroulée des signaux Iext(t) et I int(t), après soustrac-
tion de la fréquence porteuse linéaire.

Distribution spatiale de la phase.

En procédant de manière analogue pour tous les pixels de la zone d’in-
térêt de la caméra et en recombinant spatialement les phases estimées, la
distribution spatiale de la phase déroulée est obtenue pour chaque instant t
de mesure. La Fig. 5.13 présente quelques cartes de phase obtenues. Pour fa-
ciliter leur interprétation et pour présenter une dynamique indépendante de
l’instant t, ces cartes de phase ont été enroulées modulo 2π. Dans les premiers
instants de l’expérience (t < 15 s), aucune information de phase n’est dis-
ponible dans le coin supérieur gauche des cartes de phase, car à ces instants
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Fig. 5.11 – Module de la transformée de Fourier du signal Iext(t).

Fig. 5.12 – Distributions temporelles de la phase déroulée des signaux Iext(t) et
Iint(t), et corrigées de la modulation de phase linéaire introduite.
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cette région présente un rapport signal sur bruit très faible probablement lié
à une décorrélation des tavelures.

Fig. 5.13 – Cartes de phase (réenroulées modulo 2π) obtenues par transformée
de Hilbert temporelle. Les instants t0, ON et OFF schématisent respectivement les
instants de référence, d’allumage et d’extinction de la lampe IR.
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Pour faciliter le post-traitement des shearogrammes, la fréquence de cou-
pure du filtre passe-haut n’a pas été estimée pour chaque signal temporel
mais a été imposée identique pour chaque signal Ii(t) et ce sur base de la
somme des spectres en fréquences temporelles des signaux Ii(t) (Fig. 5.14).
En accord avec ce pseudo-spectre, la fréquence de coupure νc a été imposée
égale à 0.07 Hz, comme précédemment.

Fig. 5.14 – Somme du module de la transformée de Fourier des signaux Ii(t).

Précisons que les pixels saturés ou d’amplitude d’éclairement "peak-to-
valley" inférieure à 13 niv. gris, soit environ 5% de la dynamique du capteur,
n’ont pas été traités. Cette dernière condition a été imposée car la transformée
de Hilbert d’une constante est une intégrale divergente. Aucune information
de phase n’est disponible aux pixels non traités. Ces pixels représentent 3%
des pixels de la zone d’intérêt considérée du détecteur (Fig. 5.15). La distribu-
tion spatiale de ces pixels sur le capteur de la caméra est liée à la distribution
d’éclairement du faisceau.

Signalons enfin que le calcul des cartes de phase par TH peut prendre
quelques dizaines de secondes en fonction du nombre de pixels des shearo-
grammes, c’est-à-dire en fonction du nombre de signaux temporels à traiter
et en fonction du nombre n de shearogrammes à analyser, c’est-à-dire en
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Fig. 5.15 – En rouge, les pixels non traités de la zone d’intérêt du détecteur.

fonction de la longueur des signaux temporels (Fig. 5.16). Le temps de calcul
estimé est évidemment fonction de l’informatique utilisée (performances de
l’ordinateur, langage de programmation utilisé, optimisation du code,...).

Fig. 5.16 – Temps de calcul de la TH.
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5.4.3 Comparaisons avec le décalage de phase temporel.

La Fig. 5.17 montre quelques cartes de phase obtenues par TPS à partir
des même shearogrammes que ceux traités par transformée de Hilbert. En
comparant ces cartes avec celles de la Fig. 5.13, nous constatons que :

- durant l’irradiation IR, la phase ne peut pas être mesurée par TH dans
le coin supérieur gauche des images probablement du à une décorré-
lation des tavelures. La phase dans cette zone peut être évaluée par
TPS grâce à l’effet de moyennage des données mais avec un rapport
signal sur bruit très faible. Par contre, où la phase peut être mesurée
par TH, les cartes de phase ont un rapport signal sur bruit beaucoup
plus important et un meilleur contraste que lorsqu’elles sont évaluées
par TPS. Le décalage de phase est moins bien adapté que la TH pour
la mesure de la phase car à ces instants la dynamique de la déformation
est trop importante (Fig. 5.12) ;

- après l’extinction de la lampe, les deux algorithmes sont adaptés pour
la mesure de la phase car la dynamique de la déformation est moindre
que pendant l’irradiation. Les deux algorithmes livrent des cartes de
phase similaires en terme de nombre et de forme des franges. Toutefois,
on peut constater que le signe de la phase varie parfois d’un algorithme
à l’autre (voir les cartes de phase relatives aux instants t = 15.25 s et t
= 26.25 s). A l’heure actuelle, nous n’expliquons pas cette divergence.

5.5 Conclusion.

Sur base des travaux de Madjarova et al., nous avons implémenté un algo-
rithme de mesure de phase par transformée de Hilbert. Nous avons validé cet
algorithme par simulations numériques et avons démontré qu’une fréquence
porteuse doit être introduite dans les signaux à traiter afin que l’algorithme
soit performant. En pratique, la fréquence porteuse est introduite en intro-
duisant un incrément de phase entre chaque shearogramme enregistré et de
manière analogue au décalage de phase temporel.

L’algorithme a ensuite été implémenté au laboratoire et utilisé dans un
cas test. Il en résulte que la transformée de Hilbert est mieux adaptée que le
décalage de phase temporel lorsque la déformation présente une dynamique
importante. Dans ce cas, les cartes de phase calculées par TH présente un
rapport signal sur bruit et un contraste supérieurs à ceux des cartes de phase
établie par TPS. Lorsque la dynamique de la déformation diminue, la TH et
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Fig. 5.17 – Cartes de phase enroulées obtenues par TPS. Les instants t0, ON et
OFF schématisent respectivement les instants de référence, d’allumage et d’extinc-
tion de la lampe IR.

le décalage de phase présentent des résultats équivalents pour la mesure de
la phase et permettent l’obtention de cartes de phase identiques en termes
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de nombre et de forme des franges d’iso-phase. Toutefois, une divergence
inexpliquée et relative au signe de la phase peut apparaître à certains instants.

Sur base de l’expérience acquise dans ce chapitre, nous verrons au chapitre
6 comment l’algorithme de mesure de phase par TH peut être adapté afin de
permettre le traitement de données acquises pour la mesure 3D par projection
de franges.



Quatrième partie

Extrapolation des

développements en projection de

franges interférométriques

115





117

Au chapitre 4, une lame de Savart a été intégrée dans l’installation de
shearographie pour jouer le rôle d’élément de cisaillement, et ce en rempla-
cement du prisme séparateur d’états de polarisation. La lame a été préférée
au prisme principalement afin de pouvoir disposer d’une direction de cisaille-
ment dans au moins deux directions orthogonales du plan image.

L’installation de shearographie initialement développée a été inspirée de
l’installation de projection de franges développée ces dernièes années au la-
boratoire. L’élément clef de cette installation de relevé 3D étant un prisme
séparateur des états de polarisation analogue à celui de l’installation initiale
de shearographie, il paraît maintenant logique de remplacer le prisme du pro-
jecteur de franges par une lame de Savart. En plus des avantages intrinsèques
à la lame (larges sélectivités spectrale et angulaire, degrés de polarisation im-
portants,...), cette substitution permettra de disposer d’une gamme d’inter-
franges continue au lieu de trois valeurs d’interfranges discrètes comme cela
est le cas actuellement. L’interfrange effectif de l’installation sera modulé en
faisant tourner la lame de Savart autour de l’axe optique du projecteur de
franges. Cette partie discute de l’intérêt de remplacer le prisme du projecteur
par une lame de Savart.

De même, dans un second temps, nous adapterons et testerons notre algo-
rithme de mesure de phase par transformée de Hilbert en projection de franges
dans le but de réduire d’un facteur deux le nombre d’images nécessaires au
calcul du relief. Cette adaptation profitera évidemment de l’expérience aquise
au chapitre 5.





Chapitre 6

Projecteur de franges, à lame de

Savart et transformée de Hilbert

spatiale.

Au cours de ce chapitre, nous rappellerons brièvement la théorie relative à
la mesure de formes par projection de franges, nous décrirons le projecteur de
franges initial du laboratoire. Nous présenterons les modifications apportées
à ce projecteur et inspirées par l’expérience acquise au chapitre 4. Nous utili-
serons la nouvelle installation pour mesurer la forme d’un bas-relief égyptien.
Nous discuterons enfin deux développements pour réduire le nombre d’images
à acquérir pour évaluer la forme des objets scannés. Le premier développe-
ment consistera à modéliser les franges de référence du projecteur pour une
configuration donnée, comme il est courant de le faire ; tandis que le second
développement sera une adaptation "spatiale" de l’algorithme de mesure de
phase par transformée de Hilbert temporelle développé en shearographie.

6.1 Introduction à la projection de franges.

La projection de franges est une technique optique de champ permettant
la mesure de formes sans contact avec une précision de l’ordre du dixième de
millimètre, en fonction de l’optique de projection. Dans cette section, nous
résumons brièvement la théorie relative à cette technique en partant de la
notion de moiré dont elle est dérivée. Le lecteur interressé par davantage de
détails théoriques est invité à consulter les références [2], [14], [47] à [49].

Le moiré est la figure géométrique résultant de la superposition d’au
moins deux structures périodiques, généralement qualifiées de trames ou ré-
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seaux (Fig. 6.1). De nombreuses techniques dérivées du concept de moiré per-
mettent l’analyse de reliefs. Les plus courantes sont celles du moiré d’ombre
et du moiré de projection, aussi intitulée projection de franges. Le moiré
d’ombre consiste à observer à travers une grille de référence une trame pro-
jetée sur l’objet à analyser. Quant à la projection de franges, elle consiste
à enregistrer séparement, à l’aide d’une caméra matricielle, l’image d’un ré-
seau projeté sur une surface plane et l’image du même réseau projeté sur
l’objet à étudier. Le moiré est alors reconstitué numériquement et le relief
de l’objet peut en être déduit. La projection de franges répondant le mieux
aux attentes du laboratoire, cette technique est à la base de l’installation de
relevé 3D développée au sein du Hololab [14].

Fig. 6.1 – Exemple de moirés [64].

Nous verrons à la section suivante que la trame projetée par l’installa-
tion de relevé 3D du laboratoire est constituée de franges d’interférence. La
distribution de l’éclairement, Iref (x, y), de la trame projetée sur une surface
optiquement plane et celle de la trame projetée sur l’objet, Iobj(x, y), peuvent
par conséquent être modélisées, pour un système optique "parfait", par les
relations suivantes1 :

Iref (x, y) = 2I0(x, y) [1 + γ(x, y)cos (2πx/τ)] (6.1)

1Ces relations sont valables pour un système d’axe dont l’axe Y est parallèle aux franges

projetées. Dans ces conditions, la distribution d’éclairement Iref (x, y) est indépendante de

la coordonnée y.
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Iobj(x, y) = 2I0(x, y)

[

1 + γ(x, y)cos

(

2πx

τ
+ φB(x, y)

)]

(6.2)

avec 2I0, l’éclairement moyen des franges ; γ(x, y), leur contraste local ; τ ,
leur interfrange ou période spatiale sur le plan de référence le long de l’axe
X et φB(x, y), le déphasage introduit par le relief de l’objet.

Comme pour la shearographie, et plus généralement comme pour toute
technique interférométrique, l’information recherchée est codée dans le terme
de phase φB(x, y). Ce terme de phase peut être estimé à partir de Iobj(x, y)
par décalage de phase spatial ou temporel2, ou encore par transformées analy-
tiques (Fourier, Hilbert, Ondelettes,...) et une carte de phase enroulée ∆(x, y)
est alors établie en projection de franges à l’aide de la relation suivante :

∆(x, y) = φB(x, y)− 2πx

τ
(6.3)

où la phase de référence φA(x, y) = 2πx/τ est évaluée à partir de la distri-
bution Iref (x, y) ou est modélisée numériquement en évaluant préalablement
l’interfrange de la trame au voisinage du point (x,y).

Comme pour les techniques interférométriques, la carte de phase enrou-
lée ∆(x, y) est alors déroulée. L’information de relief au point (x,y) en est
déduite. La corrélation entre la phase déroulée et les coordonées du point
observé est donnée par triangulation. La référence [14] démontre les relations
de corrélation entre la phase déroulée, ∆d et les coordonées cartésiennes du
point recherchées sur base de la Fig.6.2. P y symbolise le centre de la pu-
pille de sortie du projecteur, tandis que C représente le centre de la pupille
d’entrée de la caméra. Le point M est le point de l’objet dont les coordonées
(x,y,z) sont recherchées.

Pour établir les équations reliant (x,y,z) et la carte de phase déroulée, il
s’agit principalement de considérer M comme étant l’intersection des droites
CA et PB. Ces droites représentent respectivement le rayon lumineux issu
du projecteur et atteignant le point M, et le rayon réfléchi par M atteignant
la pupille d’entrée de la caméra. Quant aux points A et B, ils correspondent
aux points de percée de ces rayons dans le plan de référence z = 0. Les Eq.6.4
à 6.6 relient la phase déroulée aux coordonées du point M avec τx, la période
spatiale des franges le long de l’axe X [14] :

x = −Ax

lc
z + Ax (6.4)

2Cf. section 1.3.1
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Fig. 6.2 – Système de triangulation pour la projection de franges [14].

y = −Ay

lc
z + Ay (6.5)

z =
lccosθ [τx∆d (lp + Axsinθ)− 2πlpAx]

τxcosθ∆d (lccosθ + Axsinθ) + 2πlp (lcsinθ − Axcosθ)
(6.6)

Les paramètres Ax et Ay sont reliés au pixel (i,j) de la caméra qui enre-
gistre l’image de M [14] :

Ax = (j −Nc/2) .FOVx/Nc (6.7)

Ay = (Nl/2− i) .FOVy/Nl (6.8)

avec Nc et Nl, le nombre de colonnes et de lignes de la caméra ; FOVx (resp.
FOVy), la distance (en mm) que couvre une ligne (resp. colonne) de pixels
au niveau de la surface de référence.

La démonstration des relations précédentes est reprise dans la référence
[14]. Précisons que cette démonstration repose sur les hypothèses suivantes :



CHAPITRE 6 : PROJECTION DE FRANGES. 123

1. l’axe optique de la caméra se confond avec l’axe Z de référence ;

2. le projecteur et la caméra sont considérés dans le même plan y = 0 ;

3. la courbure du front de l’image projetée est négligée ;

4. les franges sont considérées parallèles à l’axe Y ;

5. les lignes et colonnes de la caméra sont parallèles aux axes X et Y.

6.2 La projection de franges au Hololab.

Sur base des concepts théoriques décrits à la section précédente, le labo-
ratoire a concentré ces dernières années une grande partie de ses recherches
sur le développement d’une installation de projection de franges interféromé-
triques. Ces travaux ont été historiquement initiés dans le but de répondre
aux demandes de l’archéométrie et plus précisément aux demandes relatives
à la numérisation des bas-reliefs d’un mur de Karnak situé en Haute-Egypte
(Fig. 6.3).

Fig. 6.3 – Le mur d’enceinte du temple d’Amon-Rê à Karnak [65].

Le projecteur mis au point est schématisé à la Fig. 6.4 [2]. L’élement clé
de cet instrument est un prisme en verre analogue à celui employé initiale-
ment en shearographie : un composant optique multicouche a été déposé sur
l’hypothènuse du prisme. Ce multicouche réfléchit le mode de polarisation
linéaire TE et transmet le mode de polarisation TM par effet Brewster. Le



CHAPITRE 6 : PROJECTION DE FRANGES. 124

faisceau issus du laser (@ 532 nm) est polarisé linéairement à 45◦ par rap-
port aux directions de polarisation linéaire TE et TM. Le faisceau est alors
focalisé sur le composant multicouche, lequel sépare les composantes TE et
TM du faisceau incident. La composante TM est alors redirigée par réflexion
totale à l’aide d’une lame de verre accolée au multicouche, dans la même
direction que le faisceau TE réfléchi. Les deux faisceaux traversent ensuite
un modulateur de phase à cellules à cristaux liquides dans le but de pouvoir
implémenter des incréments de phase entre les faisceaux utiles au décalage
de phase temporel ou aux algorithmes à base de transformée de Fourier ou
de Hilbert. Les axes lent et rapide de la cellule sont orientés parallèlement
aux directions TE et TM. Les faisceaux interfèrent alors avec une visibilité
maximale grâce au second polariseur orienté à 45◦. Une lentille de projection
permet finalement de projeter la figure d’interférence sur l’objet à étudier.
La caméra enregistre la trame déformée par le relief de l’objet avec un champ
de vue suffisant.

Dans le but de pouvoir moduler l’interfrange des franges projetées, trois
lames de verre d’épaisseurs d différentes sont accolées au prisme. L’écart
entre les deux faisceaux est alors

√
2d. Les différentes lames sont adressées

en déplacant verticalement le système prisme-lame. Pour diminuer considé-
rablement la sensibilité du système à la lumière ambiante, un filtre spectral
centré sur la longueur d’onde du laser et de faible largeur de bande passante
(1 nm) peut être monté sur l’objectif de la caméra. Un analyseur peut éga-
lement être placé devant la caméra afin d’éliminer les réflexions spéculaires
qui ont tendance à saturer le détecteur et donc à perturber fortement les
acquisistions.

Les franges projetées sont obtenues par interférence à séparation d’am-
plitude. Grâce à ce concept, l’installation présente de nombreux avantages :

1. les franges présentent une distribution d’éclairement continue (sinusoï-
dale) et modélisable pour permettre une soustraction numérique de la
phase de référence (section 6.5) ;

2. la trame projetée a un contraste et un éclairement moyen importants ;

3. la profondeur de champ de l’installation n’est pas limitée par la netteté
des franges car ces dernières ne sont pas localisées dans l’espace ;

4. l’installation est peu sensible à l’éclairage ambiant ainsi qu’aux ré-
flexions directes de l’objet ;

5. le projecteur peut être employé en mode multi-résolution : l’interfrange
de la trame peut prendre trois valeurs discrètes. Une trame de haute
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Fig. 6.4 – Système de projection de franges interférométriques initialement déve-
loppé au Hololab [2]. 1 : laser DPSS ; 2 : polariseur linéaire ; 3 : prisme de verre ;
4 et 5 : lames de verre d’épaisseur différente ; 6 : composant multicouche ; 7 : mo-
dulateur de phase ; 8 : polariseur linéaire ; 9 : lentille de projection ; 10 : figures
d’interférence décalées en phase ; 11 : objet ; 12 : filtre spectral et/ou analyseur ;
13 : caméra et objectif.

fréquence spatiale peut donc être projetée pour augmenter la précision
des résultats, tandis qu’une trame de plus basse fréquence peut être
utilisée pour permettre l’analyse d’objets présentant un relief discon-
tinu. Les résultats obtenus avec les différentes fréquences peuvent aussi
être combinés pour obtenir l’information de relief sur tout le champ de
vue et ce avec une précision maximale.

Le projecteur du Hololab a démontré son efficacité dans de nombreuses
applications académiques et industrielles. Citons par exemple, la numéri-
sation d’objets archéologiques [2] (Fig. 6.5), l’analyse dermatologique d’ul-
cères [50] (Fig. 6.6) et l’étude métrologique de pièces industrielles destinée
au reverse-engineering (Fig. 6.7).
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Fig. 6.5 – Exemple de la numérisation d’une statuette (sans texture).

Fig. 6.6 – Exemple de la numérisation d’un ulcère. A gauche : photographie. A

droite : mesure 3D. Cette étude a permis l’analyse de l’évolution temporelle de la
surface et du volume de la plaie en fonction du traitement appliqué au patient.

6.3 Projecteur de franges à lame de Savart.

En dépit de ses performances, le projecteur du Hololab présente différents
inconvénients et peut être amélioré. L’interfrange de la trame ne peut prendre
que trois valeurs discrètes liées à l’épaisseur des lames de verre accolées au
prisme. Augmenter ce nombre aurait des conséquences optomécaniques sus-
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Fig. 6.7 – Exemple de numérisation dédiée au reverse-engineering. A gauche :

nuage de points mesurés. A droite : reconstruction 3D et analyse du parallisme de
deux faces.

ceptibles de dégrader rapidement la qualité des résultats. De plus, les franges
peuvent être déteriorées en fonction de la qualité de la découpe des lames
accolées. Pour palier ces problèmes, le prisme séparateur des états de polari-
sation est remplacé par une lame de Savart, en nous basant évidemment sur
l’expérience acquise au cours du chapitre 4. Le remplacement du prisme est
également justifié par les avantages intrinsèques de la lame de Savart détaillés
à la section 4.1 (sélectivités angulaire et spectrale...). L’utilisation de la lame
de Savart devrait également permettre l’emploi de lasers moins cohérents
temporellement et donc moins couteux. Une perpsective interressante de ce
travail consisterait au développement d’un projecteur "low-cost" destinés à
des utilisateurs occasionnels.

La Fig. 6.8 schématise le projecteur de franges à lame de Savart déve-
loppé dans ce travail. Le filtre spatial élargit le faisceau laser et le nettoie
de ses défauts de phase. Le polariseur linéaire P1 fixe la polarisation linéaire
du faisceau laser et permet donc une analyse fiable de la propagation de la
polarisation dans le projecteur. L’orientation de P1 est telle que la perte
d’éclairement du laser due à son introduction soit minimale. La lentille L1
focalise le faisceau au niveau de la lame de Savart pour minimiser la sur-
face utile de la lame. En accord avec les résultats du chapitre 4, la lame
de Savart livre deux faisceaux réfractés et décentrés par rapport à l’axe op-
tique de l’installation. Ces faisceaux sont également polarisés linérairement
et orthogonalement entre eux. Afin que l’éclairement de ces faisceaux soient
indépendants de l’orientation de la lame de Savart, une lame de retard de
phase λ/4 est intégrée dans l’installation avec ses axes orientés à 45◦ par rap-
port à la direction de polarisation définie par P1. La lentille de projection L2
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élargit les faisceaux réfractés, c’est-à-dire le champ du projecteur. La cellule
à cristaux liquides est introduite pour jouer le rôle de modulateur de phase.
Les axes de cette cellule sont imposés parallèles à la direction de polarisation
linéaire des faisceaux réfractés. Une seconde lame de retard λ/4 est introduite
à 45◦ par rapport aux axes du modulateur de phase pour rendre la qualité des
franges indépendante de la direction du polariseur linéaire P2, lequel permet
l’interférence des deux faisceaux. Les franges projetées sont enregistrées par
la caméra CCD pour permettre leur traitement numérique.

Fig. 6.8 – Schéma du projecteur de franges interférométriques à lame de Savart.

La Fig. 6.9 montre une trame projetée à l’aide de l’installation à lame
de Savart. La distortion en coussinet de ces franges est principalement due à
l’objectif de la caméra et non aux aberrations du projecteur.

Il convient à ce stade de noter la similitude importante entre les installa-
tions de shearographie et de projection de franges. Cette similitude est due au
fait que l’installation initiale de shearographie a été pensée à partir du pro-
jecteur de franges. Une perspective importante du travail réalisé au sein du
Hololab depuis ces dernières années consisterait à développer une installation
unique dans laquelle une permutation de la caméra et du laser permettrait de
passer d’une installation de shearographie à une installation de projection de
franges, et inversement. Les deux outils métrologiques seront alors regroupés
en une seule installation.

Le projecteur à lame de Savart a été developpé sur base de l’experience ac-
quise en shearographie lors du remplacement du prisme séparateur des états
de polarisation par une lame de Savart (chapitre 4). La Tab. 6.1 résume la
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Fig. 6.9 – Exemple de trame obtenue à l’aide du projecteur de franges à lame
de Savart. La distortion des franges est principalement induite par l’objectif de la
caméra.

correspondance considérée entre la shearographie et la projection de franges
lors du développement du projecteur. Ainsi, par exemple, le comportement
de la direction du cisaillement en fonction de l’orientation de la lame de Sa-
vart est analogue au comportement de l’inclinaison de la trame en projection
de franges.

6.3.1 Projecteur à interfrange effectif modulable.

En projection de franges, l’interfrange est un paramètre pertinent. Un
interfrange important permet l’analyse d’objets dont la discontinuité du relief

Projection de franges Shearographie
inclinaison de la trame direction du cisaillement
interfrange de la trame taille du cisaillement
contraste des franges visibilité de l’interférence

éclairement moyen de la trame éclairement moyen de l’interférence

Tab. 6.1 – Correspondances entre shearographie et projection de franges.



CHAPITRE 6 : PROJECTION DE FRANGES. 130

induit des sauts de phase importants tandis qu’un interfrange plus petit
permet d’augmenter la sensibilité3 de l’installation et donc la précision des
mesures. Dans le projecteur de franges à lame de Savart, l’interfrange est
indépendant de l’orientation de la lame (Fig. 6.10), un interfrange effectif
est dès lors considéré pour pouvoir moduler la sensibilité de l’installation.
L’interfrange effectif est défini comme l’interfrange de la trame le long de
l’axe horizontal X du détecteur. L’interfrange effectif τeff (z) du projecteur
est alors donné par la relation 6.9 et peut prendre toutes les valeurs comprises
dans un large intervalle, obtenu en faisant tourner la lame de Savart autour
de l’axe optique du projecteur (Fig. 6.10).

τeff (z) = τ(z)/cos(α) (6.9)

avec τ , la période spatiale des franges et α, leur inclinaison par rapport à
l’axe vertical du détecteur (α ∈ ]−90◦, +90◦[ ).

Fig. 6.10 – Influence de l’orientation de la lame de Savart sur l’interfrange de la
trame projetée.

3La sensibilité de l’installation est définie dans ce rapport comme l’amplitude de la

phase déroulée dans laquelle un relief δz unitaire est codé. En d’autres termes, pour un

même relief, plus l’installation est sensible, plus le relief scanné induira un nombre de

franges important dans la carte de phase enroulée.
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La lame de retard de phase λ/4 introduite devant la lame de Savart
permet l’obtention d’une trame dont l’éclairement moyen et le contraste sont
indépendants de l’orientation de la lame de Savart, c’est-à-dire indépendants
de l’inclinaison de la trame (Figs. 6.11 et 6.12). Le projecteur de franges à
lame de Savart permet donc de faire tourner la trame projetée sans affecter
les caractéristiques principales des franges interférométriques. Pour appliquer
le décalage de phase temporel quelle que soit l’orientation α de la lame de
Savart, le modulateur de phase et la lame sont solidaires.

Fig. 6.11 – Influence de l’orientation de la lame de Savart sur l’éclairement moyen
des franges.
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Fig. 6.12 – Influence de l’orientation de la lame de Savart sur la visibilité des
franges.

6.4 Scan d’un bas-relief égyptien.

Les Fig. 6.9 à 6.12 montrent que l’installation développée permet de pro-
jeter des franges interférométriques et d’orienter ces dernières en tournant
la lame de Savart autour de l’axe optique du projecteur. Dans cette section,
nous souhaitons montrer que le traitement de ces franges projetées sur un
objet permet bel et bien l’obtention de cartes de phase caractéristiques du
relief scanné. Nous souhaitons également démontrer expérimentalement que
l’orientation des franges influence la sensibilité de l’installation, c’est-à-dire
l’amplitude de la phase dans laquelle le relief est codé.

Pour démontrer que l’installation est apte à l’établissement de cartes de
phase enroulées par décalage de phase temporel (à quatre incréments), un
bas-relief égyptien a été scanné à l’aide de l’installation. Pour cet essai, la
phase de réference φA(x, y) a été obtenue en projetant les franges sur un écran
considéré plat avec une géométrie (triangulation) identique à celle adoptée
pour le scan du bas-relief. La Fig. 6.13 représente une photographie du bas-
relief étudié et la carte de phase enroulée obtenue à l’aide de l’installation
avec des franges projetées verticalement. La carte de phase déroulée corres-
pondante est représentée à la Fig. 6.14. Cette carte a été obtenue à l’aide
du logiciel de déroulage de phase du Hololab basé sur un algorithme par
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croissance de régions [26].

Fig. 6.13 – A gauche : photographie d’un bas-relief égyptien. A droite : carte de
phase enroulée correspondante et non filtrée (α = 0◦).

Fig. 6.14 – Carte de phase déroulée du bas-relief de la Fig. 6.13.
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6.4.1 De la phase au relief.

La carte de phase déroulée s’interprète qualitativement comme une carte
de relief de l’objet scanné. Pour une analyse quantitative du relief, il est
nécessaire de calibrer l’installation pour établir la relation de corrélation entre
la phase mesurée et la hauteur Z des points scannés par rapport à l’écran plat
de référence. Généralement, la calibration des projecteurs de franges consiste
principalement à évaluer les angles et longueurs lc, lp et d du système de
triangulation défini par l’objet, le projecteur de franges et la caméra. La
phase et la hauteur Z des points scannés sont alors corrélés à l’aide des Eq.
6.4 à 6.6.

Ci-après, nous proposons une procédure de calibration expérimentale de
l’installation qui ne nécessite pas une connaissance précise du système de
triangulation. La philosophie de la calibration consiste à mesurer un dépla-
cement hors-plan connu et à analyser l’amplitude de la phase déroulée qui
correspond à ce déplacement.

La calibration de l’installation consiste à utiliser une plaque d’acier consi-
dérée plane, infiniment raide et suspendue à un axe de rotation X (Fig. 6.15).
Une sphère montée sur une table de translation linéaire est alors mise au
contact de la plaque lorsque cette dernière est suspendue. Quatre images de
la plaque dans cet état de référence décalées en phase sont enregistrées et
la distribution de phase de référence φA(x, y) en est déduite par décalage de
phase temporel. La sphère est alors déplacée d’une distance u précisément
connue (précision : ±5µm) à l’aide de la table de translation. Quatre images
de la plaque dans cet état "sollicité" et déphasées en phase sont enregistrées
et la distribution de phase φB(x, y) est établie par décalage de phase. Une
carte de phase ∆d(x, y) relative au déplacement de la plaque est finalement
calculée en soustrayant φA(x, y) de φB(x, y). La carte de phase déroulée est
filtrée par un masque moyen de dimension 7 pour conserver uniquement les
basses fréquences spatiales et est ajustée par un plan. A l’amplitude PTV du
plan (exprimée en radians) correspond le déplacement hors plan de la plaque
limité à la zone d’intérêt du détecteur. La relation de corrélation entre la
phase déroulée et la hauteur des points scannés est dès lors obtenue aisé-
ment par règle de trois pour la géométrie du montage et l’interfrange effectif
considérés.

Un déplacement u de la sphère induit une rotation de la plaque d’un angle
αu autour de l’axe X donné par :
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Fig. 6.15 – Banc de calibration du projecteur de pfranges.

Tan(αu) =
u

YF

(6.10)

YF étant la distance le long de l’axe vertical entre la sphère mise au contact
de la plaque et l’axe de rotation de cette dernière (Fig. 6.15).

Suite à la poussée induite par la sphère, les points de la plaque imagés sur
la ligne supérieure de la zone d’intérêt du détecteur subissent un déplacement
hors plan Z(Ysup) donné par :

Z(Ysup) = Tan(αu).Ysup =
u

YF

.Ysup (6.11)

Par analogie, les points de la plaque imagés sur la ligne inférieure de
la zone d’intérêt du détecteur subissent un déplacement hors plan Z(Yinf )
donné par :

Z(Yinf ) =
u

YF

.Yinf (6.12)
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Paramètres géométriques Valeur estimée

Distance caméra - objet, lc 559 mm
Distance projecteur - objet, lp 669 mm
Distance caméra-projecteur, d 225 mm
Déplacement de la sphère, u 25 mm

YF 264 mm
Yinf 176 mm
Ysup 75 mm

Tab. 6.2 – Système de triangulation du montage calibré et paramètres de calibra-
tion.

L’amplitude PTV du déplacement hors-plan observé au niveau du détec-
teur, ∆Z, est finalement donnée par :

∆Z = Z(Yinf )− Z(Ysup) =
u

YF

. (Yinf − Ysup) (6.13)

L’installation a été calibrée pour le système de triangulation et pour les
paramètres de calibration (u, YF , Yinf et Ysup) définis à la Tab. 6.2. Pour un
déplacement de 25 mm la sphère, la zone de la plaque observée à l’aide de la
caméra subit un déplacement hors-plan ∆Z de 9.564 mm. L’amplitude PTV
de la phase déroulée correspondant à ce déplacement est reprise à la Fig.
6.16 pour différents interfranges effectifs et pour la configuration du montage
considérée. L’allure de cette courbe s’explique par le fait que la phase est
inversément proportionnelle à l’interfrange effectif et que ce dernier suit une
fonction en 1/cos(α). La courbe de calibration peut être ajustée par une
fonction f(α) = 3.8118cos(α) + 2.1489 avec un coefficient de corrélation R2

de 99.6%.

L’installation calibrée, la plaque d’acier a été remplacée par le bas-relief
et ce dernier a été à nouveau scanné à l’aide de franges verticales (α = 0◦).
La Fig. 6.17 montre la carte de phase déroulée obtenue. Pour des franges
projetées verticalement et la configuration de calibration détaillée à la Tab.
6.2, la calibration enseigne que 5.9607 radians correspondent à un relief de
9.564 mm (1 radian = 1.605 mm). Cette dernière relation de corrélation entre
la phase déroulée et le relief de l’objet scanné permet de transformer l’échelle
de phase de la carte de phase déroulée en une échelle de relief par rapport
à l’écran plat de référence considéré pour la mesure de φA(x, y), et permet
donc une analyse quantitative de la hauteur des points scannés (Fig. 6.17).
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Fig. 6.16 – Courbe de calibration du projecteur de franges pour lc = 559 mm,
lp = 669 mm et d = 225 mm.

Fig. 6.17 – Carte de phase déroulée ou carte de relief du bas-relief scanné, selon
l’échelle considérée.

6.4.2 Validation du concept d’interfrange effectif.

La Fig. 6.18 montre des cartes de phase enroulées du bas-relief pour dif-
férentes inclinaisons des franges. Ces cartes présentent un nombre de franges
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différent. L’inclinaison des franges influence donc la sensibilié de l’installation
comme prédit à la section 6.3.1. Cette conclusion est confirmée par l’allure
en cos(α) de la courbe de calibration de l’installation (Fig. 6.16).

En pratique, la sensibilité du projecteur pourra donc être ajustée en fonc-
tion du relief à scanner et de sorte à obtenir le meilleur compromis entre la
précision de la mesure (utilisation de franges de haute fréquence spatiale)
et la capacité à mesurer le relief malgré ses discontintuités (utilisation de
franges de basse fréquence spatiale).

Fig. 6.18 – Cartes de phase enroulées obtenues pour différentes inclinaisons des
franges projetées.

6.4.3 Performances de l’installation.

La Tab. 6.3 informe des performances du projecteur de franges dans le
cadre de la mesure du bas-relief. Les performances en Z du projecteur de
franges sont similaires à celles de l’installation de shearographie.

X Y Z

Résolution 0.11 mm 0.09 mm 0.024 rad ou λ/262
Précision (après déroulage de phase) . . 0.26 rad ou λ/24

Tab. 6.3 – Performances du projecteur de franges dans le cadre de la mesure du
bas-relief égyptien.
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6.5 Modélisation de la phase de référence.

Les résultats précédents ont été obtenus par décalage de phase en enre-
gistrant deux séries de quatre images. Un tel nombre d’images limite l’ins-
tallation à des mesures sur des objets statiques et dans des environnements
non ou peu contraignants. Pour palier ce problème, dans cette section nous
modélisons la phase de référence pour une géométrie de l’installation don-
née4. Ce modèle permettra d’établir numériquement la distribution φA(x, y)
et de soustraire cette dernière de la distribution de phase φB(x, y). Le nombre
d’acquisitions nécessaires sera par conséquent réduit d’un facteur 2.

Pour modéliser la phase de référence, nous procéderons en trois étapes.
Dans un premier temps, nous modéliserons la phase des franges projetées par
l’installation. Dans un second temps, nous ajusterons le premier modèle pour
tenir compte du fait que la caméra est décentrée par rapport à la normale
de la surface scannée et perçoit donc un interfrange dépendant des variables
cartésiennes x et y. Dans un dernier temps, nous introduirons les aberrations
optiques de l’installation dans le modèle. Nous validerons enfin le modèle
établi en comparant les résultats qu’il permet d’obtenir avec ceux obtenus à
l’aide de 2 x 4 images et présentés à la section 6.4.

6.5.1 Modélisation de la distribution de phase projetée.

Dans le cas de franges parallèles à l’axe vertical Y, la distribution spatiale
de la phase de référence le long de l’axe horizontal X est donnée par, suite
au caractère interférométrique des franges :

φA(x) =
2πx

τ
+ φ0 (6.14)

avec φ0 la phase à l’origine (x = 0) et τ , l’interfrange de la trame le long
de l’axe X au niveau du plan de réference qui serait utilisé pour mesurer la
phase de référence φA.

Les franges étant verticales, la phase à l’origine et la distribution φA(x)
sont indépendantes de la coordonnée verticale y. Pour établir la carte de phase
enroulée, il convient donc de soustraire la phase porteuse 2πx

τ
de la mesure de

φB(x, y), en considérant x comme la position du pixel traité le long de l’axe

4Nous modéliserons la phase pour une installation dont le projecteur est perpendiculaire

à la surface scannée et la caméra décentrée par rapport à la normale de cette surface. Cette

configuration est analogue à celle employée au laboratoire.



CHAPITRE 6 : PROJECTION DE FRANGES. 140

horizontal du détecteur. En soustrayant numériquement la phase de référence
à la mesure φB(x, y), la phase est alors estimée à une constante φ0 près.

Dans le cas de franges obliques, il convient de considérer dans un premier
temps un seul profil horizontal de l’image à une position vertical y = Y fixée
(idéalement éloigné des bords de l’image). La distribution spatiale de la phase
de référence de ce profil est donnée par :

φy=Y
A (x) =

2πx

τx
eff

+ φ0(Y ) =
2πxcos(α)

τ
+ φ0(Y ) (6.15)

avec τx
eff , la période spatiale des franges le long de l’axe X et α, l’inclinaison

des franges par rapport à l’axe vertical Y.

Par analogie, la distribution spatiale de la phase de référence le long d’un
profil y quelconque est donnée par :

φy
A =

2πxcos(α)

τ
+ φ0(y) (6.16)

Toutefois, suite à l’inclinaison des franges, la phase à l’origine φ0 est dé-
pendante de la coordonée y. Suite au caractère interférométrique des franges,
la distribution spatiale de la phase à l’origine le long de l’axe vertical Y peut
s’écrire :

φ0(y) =
2πy

τ y
eff

+ φ0(Y ) =
2πysin(α)

τ
+ φ0(Y ) (6.17)

avec τ y
eff , la période spatiale des franges le long de l’axe Y.

En intégrant l’Eq. 6.17 dans 6.16, nous obtenons finalement la relation
6.18 pour tout y. La phase est estimée à une constante près φ0(Y ).

φy
A(x) = φA(x, y) =

2π

τ
(cos(α)x + sin(α)y) + φ0(Y ) (6.18)

La variable y s’interprètant comme la position verticale du pixel analysé par
rapport au profil particulier y = Y.

La Fig.6.19 montre des trames calculées numériquement avec une dis-
tribution d’éclairement I(x,y) donnée par l’Eq. 6.19 dans laquelle φA(x, y)
est modélisée par l’Eq. 6.18. Le modèle de φA(x, y) permet de représenter la
phase relative à des franges inclinées d’un angle α par rapport à l’axe vertical.

I(x, y) = 2I0. [1 + γcosφA(x, y)] (6.19)
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Fig. 6.19 – Franges modélisées à partir du modèle de la phase φA(x, y). Paramètres
de simulation : I0 = 128 niveaux de gris, γ = 1, φ0(Y ) = 0 rad et τ = 75 pixels.
De gauche à droite : α = 0◦, α = 45◦ et α = 90◦.

6.5.2 Modélisation de la distribution de phase perçue

par la caméra.

Le modèle précédent représente la phase des franges projetées sur un
écran. Au niveau du détecteur, les interfranges effectifs τx

eff et τ y
eff sont fonc-

tion des variables cartésiennes x et y car pour effectuer nos mesures, la caméra
a été décentrée par rapport à la normale de la surface du bas-relief et par
rapport à l’axe optique du projecteur. Cette configuration géométrique in-
duit que la caméra perçoit des franges qui se resserent au fur et à mesure
que l’on se rapproche des bords du champ de vue. L’influence de cet effet sur
le modèle de la phase de référence est discuté dans ce paragraphe avec les
hypothèses principales suivantes :

1. l’axe optique du projecteur est perpendiculaire à la surface scannée et
se confond avec l’axe Z.

2. la caméra et le projecteur sont dans le même plan y = 0 ;

3. les lignes et colonnes de la matrice CCD ou CMOS sont parallèles aux
axes X et Y, respectivement.

Au centre du champ, en accord avec la Fig. 6.20, l’interfrange perçu par
la caméra le long de l’axe X, τx

eff,CCD(0), est donné par :

τx
eff,CCD(0) = τx

eff .cosθ(0) (6.20)

avec θ(0), l’angle dans le plan OXZ entre les axes optiques du projecteur et
de la caméra ; τx

eff , l’interfrange effectif réel le long de l’axe horizontal X (Eq.
6.9).

Par analogie, dans le champ le long de l’axe X, l’interfrange perçu par le
détecteur est donné par :

τx
eff,CCD(x) = τx

eff .cosθ(x) (6.21)
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Fig. 6.20 – Corrélation entre τx
eff,CCD et τx

eff au centre du champ.

Sur base de la Fig. 6.21, nous pouvons écrire :

A.cosθ(x) = lc.cosθ(0) (6.22)

A.sinθ(x) = lc.sin (θ(0))− x (6.23)

En divisant l’Eq. 6.23 par l’Eq. 6.22, la fonction θ(x) est finalement reliée
au décentrement de la caméra :

tanθ(x) =
−x

lc.cosθ(0)
+ tanθ(0) (6.24)

La relation 6.21 enseigne que la caméra perçoit le long de l’axe X un
interfrange inférieur à l’interfrange effectif réel τx

eff . De plus, la combinaison
des Eq. 6.21 et 6.24 montre que suite à l’ouverture de la caméra, l’interfrange
perçu diminue au fur et à mesure que l’on s’éloigne de x = lc.sinθ(0) (Fig.
6.22).

Dans le cas de franges inclinées d’un anlge α par rapport à l’axe vertical,
il convient d’établir également la corrélation entre l’interfrange effectif perçu
par la caméra dans le champ le long de l’axe Y, τ y

eff,CCD(0), et l’interfrange
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Fig. 6.21 – Schéma permettant l’établissement de la fonction θ(x).

Fig. 6.22 – Interfrange effectif perçu par la caméra en fonction du champ de vue
le long de l’axe X. Les paramètres de simulation sont : lc = 1m et θ(0) = 10◦.
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effectif réel, τ y
eff . Cette corrélation est obtenue par analogie avec les relations

précédentes où θ(0) = 0◦5 :

τ y
eff,CCD(0) = τ y

eff .cosθ(y) (6.25)

tanθ(y) =
−y

lc
(6.26)

Le décentrement de la caméra et son ouverture induisent qu’elle perçoit
des interfranges effectifs dépendants des variables x et y. Sur base des Eq.
6.18, 6.21 et 6.25, la distribution de la phase correspondant aux franges per-
çues par la caméra peut-être modélisée par la relation suivante :

φy
A(x) =

2π

τ

(

cos(α)

cos(θ(x))
x +

sin(α)

cos(θ(y))
y

)

+ φ0(Y ) (6.27)

où les fonctions θ(x) et θ(y) sont données par :

tanθ(x) =
−x

lc.cosθ(0)
+ tanθ(0) (6.28)

tanθ(y) =
−y

lc
(6.29)

La Fig.6.23 montre des trames calculées numériquement avec une distri-
bution d’éclairement I(x,y) donnée par l’Eq. 6.19 et tenant compte du modèle
de φA(x, y) établi6. Le décentrement de la caméra induit que cette dernière ne
perçoit pas des franges rectilignes lorsque celles-ci sont inclinées par rapport
à l’axe vertical du détecteur.

6.5.3 Prise en compte des abérrations optiques.

La Fig. 6.24 présente une carte de phase du bas-relief établie en évaluant
la phase de référence par décalage de phase (section 6.4) et une carte de phase
établie en modélisant la phase de référence par l’Eq. 6.27, avec les paramètres

5Cette simplification est en accord avec l’hypothèse que la caméra et le détecteur sont

dans le même plan y = 0
6La valeur des paramètres a été expréssement exagérée pour mieux mettre en évidence

la déformation des franges perçues par la caméra.
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Fig. 6.23 – Forme des franges modélisées à partir du modèle de la phase φA(x, y)
et perçues par le détecteur. Paramètres de simulation : I0 = 128 niveaux de gris,
γ = 1, φ0(Y ) = 0 rad, τ = 60 pixels, θ(0) = 15◦ et lc = 150 pixels. De gauche à

droite : α = 0◦, α = 45◦ et α = 90◦.

géométriques du montage repris à la Tab. 6.4. Nous constatons que les basses
fréquences spatiales divergent entre les deux cartes.

Fig. 6.24 – A gauche : carte de phase établie en évaluant φA(x, y) par TPS (section
6.4). A droite : carte de phase calculée à l’aide du modèle relatif à l’Eq. 6.27.

La différence entre les deux cartes de phase s’explique par le fait que
le modèle de la phase ne prend actuellement pas en compte les aberrations
optiques de l’installation. Dans la carte de phase établie en évaluant φA(x, y)
par TPS, les aberrations optiques de l’installation sont présentes dans les
distributions φA(x, y) et φB(x, y). L’effet des aberrations est donc limité par
la soustraction de ces deux distributions lors du calcul de la carte de phase.
Dans la carte de phase calculée à l’aide du modèle de la phase de référence,
les aberrations affectent considérablement la carte de phase car elles sont
uniquement présentes dans la distribution φB(x, y) et elles ne sont donc pas
compensées lors de la soustraction de φA(x, y) et φB(x, y). Au final, il en



CHAPITRE 6 : PROJECTION DE FRANGES. 146

Paramètres géométriques Valeur estimée
Nombre de colonnes considérées de la CCD, Nc 1024 pixels
Nombre de lignes considérées de la CCD, Nl 1024 pixels

Champ de vue le long de l’axe X, FOVx 84.5 mm
Champ de vue le long de l’axe Y, FOVy 69 mm

Distance caméra - objet, lc 500 mm
Distance projecteur - objet, lp 530 mm

Angle entre les axes optiques de la caméra et du projecteur, θ 20◦

Période spatiale des franges le long de l’axe X, τx 1.1 mm (14 pxl)

Tab. 6.4 – Estimation des paramètres de triangulation du montage pour le scan
du bas-relief.

résulte donc que les aberrations optiques affectent plus la carte de phase
calculée à l’aide du modèle de la phase de référence que la carte de phase
établie en mesurant φA(x, y) par TPS.

Pour palier ce problème, il convient d’introduire ces abérrations dans
l’Eq. 6.27. La caractérisation des abérrations est réalisée en acquérant quatre
images des franges (décalées de π/2) projetées sur un écran considéré plan
et dans une configuration géométrique identique à celle adoptée pour le scan
du bas-relief. Ces images permettront le calcul d’une distribution φB(x, y).
En utilisant l’Eq. 6.27 pour établir la phase de réference, la carte de phase
obtenue caractérise alors au niveau de la caméra le plan mesuré aux erreurs
du front d’onde près. Ce qui peut également s’interpréter directement comme
la carte des erreurs du front d’onde (WFE7), exprimée en radians. La carte
WFE, WFE(x,y), sera alors introduite dans le modèle à l’aide de la relation
suivante :

φy,AbOpt
A (x) = φy

A(x)−WFE(x, y) (6.30)

avec φy,AbOpt
A (x), le modèle tenant compte des aberrations optiques et φy

A(x),
le modèle ne tenant pas compte des aberrations optiques (Eq. 6.27).

La Fig. 6.25 montre les erreurs du front d’onde de l’installation mesurées.
La décomposition de cette carte en polynômes de Zernike8 a été réalisée à
l’aide d’un outil numérique de la société AMOS et enseigne que les aberra-
tions principales de l’installation sont la coma selon l’axe horizontal (X) et
l’astigmatisme à 0◦ (Tab. 6.5). Ceci est lié au fait que les faisceaux réfractés

7WaveFront Errors
8Quelques rappels relatifs aux aberrations optiques et aux polynômes de Zernike seront

discutés au chapitre V.
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Aberration optique Valeur peak-to-valley [nm]
Tilt selon X 400
Tilt selon Y 2819

Focus 1907
Astigmatisme à 0◦ 2007
Astigmatisme à 45◦ 122

Coma selon X 2897
Coma selon Y 128

Sphéricité 140

Tab. 6.5 – Huit premiers coefficients de Zernike de la carte WFE déroulée de
l’installation.

par la lame de Savart sont hors de l’axe optique et que ces aberrations ont été
évaluées avec des franges verticales, c’est-à-dire avec deux faisceaux réfractés
situés à une même distance Y de l’axe optique. L’origine du tilt peut s’ex-
pliquer par une inclinaison de la surface de référence et/ou du détecteur par
rapport au projecteur. L’origine du focus est probablement liée aux erreurs
d’alignement des différentes lentilles le long de l’axe optique.

Fig. 6.25 – A gauche : carte de phase enroulée caractéristique de la WFE de
l’installation. A droite : carte WFE(x,y) déroulée correspondante.

La Fig. 6.26 présente la carte de phase enroulée obtenue à l’aide du nou-
veau modèle de φA(x, y) (Eq. 6.30). Nous constatons que ces deux cartes sont
identiques. Cette observation est confirmée par l’histogramme des cartes de
phase (Fig. 6.27).

L’analyse des aberrations optiques montre que les aberrations de l’ins-
tallation actuelle sont relativement importantes. Cela s’explique par le fait
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Fig. 6.26 – A gauche : carte de phase établie en évaluant φA(x, y) par TPS
(section 6.4). A droite : carte de phase calculée à l’aide du modèle tenant compte
des aberrations optiques de l’installation (Eq. 6.30).

Fig. 6.27 – Histogramme des cartes de phase enroulées dont la phase de référence
a été obtenue par TPS et par utilisation du dernier modèle de φA(x, y).

que le pojecteur est actuellement au stade de prototype. L’installation étant
prometteuse, nous proposons en perspective à notre travail de réduire ces
abérrations. Pour ce faire, la philosophie suivante pourra être adoptée :

1. définir un cahier des charges sur la qualité du front d’onde et sur la
qualité des franges à obtenir ;

2. par design optique, définir la sensibilité du front d’onde et de la qualité
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des franges vis-à-vis des degrés de liberté de toutes les optiques (par
exemple : définir de combien de pourcents varie le contraste de franges
lorsque la lentille L1 est tournée d’une arcseconde autour de l’axe ver-
tical et par rapport à son orientation nominale définie dans le design
otpique ;

3. établir la tolérance de chaque degré de liberté qui sera mécaniquement
possible d’obtenir en pratique lors de l’intégration des otpiques ;

4. sur base de l’analyse de sensibilité, analyser si le budget correspondant
aux tolérances mécaniques permet de remplir le cahier des charges. Si
non, revoir le cahier des charges ou adopter des tolérances plus contrai-
gnantes ;

5. dessiner et usiner une enveloppe mécanique en accord avec les tolérances
mécaniques adoptées. Prévoir également des compensations pour opti-
miser l’alignement ;

6. intégrer l’optique dans l’enveloppe mécanique ;

7. vérifier la qualité du front d’onde et des franges obtenues ;

8. ajuster l’alignement des optiques à l’aide des compensations définies
préalablement et ce jusqu’à remplir le cahier des charges.

6.5.4 Conclusion relative à la modélisation de la phase

de référence.

Nous avons modélisé la phase de référence perçue par la caméra, tenant
également compte des aberrations optiques de l’installation et pour la confi-
guration géométrique définie à la Tab. 6.5. Le modèle permet de retrouver
exactement les résultats obtenus lorsque la référence est établie par décalage
de phase temporel. En pratique, les projecteurs sont utilisés avec des confi-
gurations géométriques (triangulation) prédéfines. Un modèle de phase de
référence devra être établi pour chacune de ces configurations. En perspec-
tive, nous suggèrons vivement d’améliorer l’alignement de l’installation afin
de réduire au maximum ses abérrations.

6.6 Traitement des franges par transformée de

Hilbert spatiale.

Utiliser un modèle de phase pour établir les cartes de phase permet de
réduire d’un facteur 2 le nombre d’images à acquérir pour effectuer la mesure
3D. Nous souhaitons maintenant investiguer sur le potentiel de l’algorithme
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de mesure de phase par transformée de Hilbert (TH), discuté au chapitre
5, pour réduire davantage ce nombre d’images utiles. L’algorithme discuté
nécessitera l’enregistrement de deux images de franges (en opposition de
phase) et pourra être en cas de besoin adapté pour ne nécessiter qu’une seule
image. Cette dernière adaptation de l’algorithme ne sera toutefois pas traitée
dans ce travail. Nous comparerons les résultats obtenus par TH avec ceux
obtenus par TPS afin de conclure sur le potentiel de l’algorithme. La théorie
relative à la TH ne sera pas rappelée car elle a déjà été introduite à la section
5.1.

6.6.1 Mesure de phase par transformée de Hilbert spa-

tiale.

La mesure de forme par transformée de Hilbert consiste à considérer
chaque ligne du détecteur individuellement9. Chacune des lignes fournit un
signal spatial de l’éclairement, Iy(x), dont la distribution le long de l’axe
horizontal X de la caméra est donnée par une relation du type :

Iy(x) = 2Iy
0 .

(

1 + γy(x)cos

(

2πx

τx
eff (x)

+ φy
B(x)

))

(6.31)

avec φy
B(x) le terme de phase caractéristique du relief scanné le long de la

ligne y considérée.

L’application de la transformée de Hilbert à chaque signal Iy(x) permet
d’évaluer l’argument du cosinus :

tan

(

2πx

τx
eff (x)

+ φy
B(x)

)

=
TH [Iy(x)− 2Iy

0 ]

Iy(x)− 2Iy
0

(6.32)

En soustrayant la phase de référence des résultats obtenus par cette der-
nière équation, la phase φy

B(x) le long de la ligne est estimée. En recombinant
toutes les distributions φy

B(x) dans une seule image, la carte de phase enroulée
représentative de l’objet scanné est enfin établie.

Le terme 2Iy
0 doit être soustrait de chaque signal avant l’application de

la transformée de Hilbert car la transformée d’un terme constant correspond
à une intégrale divergente. En pratique, deux solutions sont envisageables
pour réaliser cette soustraction. La première est analogue à celle utilisée en

9La TH est appliquée spatialement et non temporellement comme en shearographie

dynamique.
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shearographie dynamique : elle consiste à éliminer le terme de fréquence nulle
du signal par application d’un filtre passe haut dans l’espace de Fourier. La
second solution consiste à enregistrer deux images avec des franges en oppo-
sition de phase et à considérer la différence de ces deux images. L’éclairement
des lignes de l’image résultante est alors donné par la relation suivante :

Iy(x) = 4Iy
0γy(x)cos

(

2πx

τx
eff (x)

+ φy
B(x)

)

(6.33)

La phase des signaux Iy(x, ) est alors estimée à l’aide de la relation :

tan

(

2πx

τx
eff (x)

+ φy
B(x)

)

=
TH [Iy(x)]

Iy(x)
(6.34)

La première solution présente l’avantage de ne nécessiter qu’une seule
image pour la mesure 3D, toutefois la qualité des résultats obtenus est fonc-
tion de la forme du filtre passe-haut et de la valeur de sa fréquence de cou-
pure. La seconde solution n’introduisant pas de paramètres de mesure, nous
l’avons privilégiée au détriment de la première. Nous garderons toutefois à
l’esprit que la première solution est envisagable dans le cas où la mesure 3D
ne nécessiterait l’enregistrement que d’une seule image (par exemple, pour
des objets en cours de déformation avec une dynamique très importante par
rapport au taux d’acquisition de la caméra utilisée).

Nous avons démontré à la section 5.3 qu’un algorithme de mesure de phase
par TH est performant à condition qu’une fréquence porteuse soit introduite
dans le signal analysé. En projection de franges, les franges projetées jouent
à la fois le rôle de phase de référence et de fréquence porteuse. La fréquence
spatiale des franges projetées détermine la fréquence porteuse introduite.
De plus, la fréquence porteuse sera éliminée des résultats au moment de la
soustraction de la phase de référence.

6.6.2 Application au bas-relief égyptien.

La Fig. 6.28 présente la carte de phase enroulée obtenue par transformée
de Hilbert spatiale à deux images appliquée sur les même données que celles
utilisées en TPS (α = 0◦). L’algorithme permet d’établir une carte de phase
enroulée représentative du bas-relief. La phase de référence utilisée pour éta-
blir cette carte de phase a été évaluée à partir d’images d’un objet plan pour
pouvoir comparer les résultats obtenus avec ceux de la section 6.4.
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Fig. 6.28 – Cartes de phase enroulées non filtrées obtenues par TH (à gauche) et
TPS (à droite).

En comparant les cartes de phase obtenues par TPS et TH (Fig. 6.28),
nous constatons que les deux algorithmes permettent l’obtention de cartes de
phase similaires. Toutefois, celle obtenue par décalage de phase présente une
meilleure résolution spatiale et une distribution des niveaux de gris plus uni-
forme (Fig. 6.29). Si la transformée de Hilbert permet l’obtention de cartes
de phase en enregistrant moins d’images des franges projetées, c’est au détri-
ment de la qualité de la carte de phase car, en transformée de Hilbert, le bruit
des images enregistrées influence plus la qualité des résultats. Chaque image
a un poids10 de 1/2 contre un poids de 1/4 en décalage de phase à quatre in-
créments. En pratique, il conviendra donc de privilégier le décalage de phase
si celui-ci est adapté à la dynamique de l’objet scanné. Si l’algorithme TPS
ne peut pas être utilisé, par exemple si l’objet subit une déformation rapide,
alors l’algorithme par TH sera adopté.

6.6.3 Influence de la fréquence porteuse.

Selon l’objet à scanner, la lame de Savart et le modulateur de phase
sont tournés autour de l’axe optique du projecteur pour incliner les franges
par rapport à l’axe vertical Y, c’est-à-dire pour moduler l’intefrange effectif
des franges et donc la sensibilité de l’installation. La fréquence spatiale des
franges coïncidant avec la fréquence porteuse des signaux Iy(x), lorsque l’in-

10En statistique, le poids caractérise l’influence d’un élément par rapport à un autre.
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Fig. 6.29 – Histogramme des cartes de phase obtenues par TPS et TH.

clinaison des franges est modifiée, la fréquence porteuse est affectée. La TH
nécessitant une fréquence porteuse pour être performante, nous analysons
dans cette section l’influence de l’inclinaison des franges sur la qualité des
cartes de phase obtenues.

Plus une carte de phase est de bonne qualité, plus son histogramme
converge vers un histogramme uniformément réparti sur 256 niveaux de gris.
La qualité des cartes de phase enroulée peut donc être quantifiée par l’écart-
type σhist de la différence de l’histogramme des niveaux de gris de la carte
et de l’histogramme uniformement réparti sur 256 niveaux de gris. Plus ce
écart-type est faible, plus la carte de phase est de bonne qualité.

La Fig. 6.30 représente l’écart-type σhist des cartes de phase relatives au
bas-relief, établies par TPS et par TH, et pour différentes inclinaisons des
franges. Nous constatons que la qualité des cartes établies par décalage de
phase n’est pas affectée par l’interfrange effectif des franges. Quant aux cartes
de phase établies par TH, elles sont de moins bonnes qualités que celles éta-
blies par TPS comme observé précédemment. De plus, nous constatons que
la qualité des cartes obtenues par TH se déteriore considérablement lorsque
les franges projetées sont inclinées de plus de ±55◦ par rapport à l’axe ver-
tical. Cela traduit l’existence d’une fréquence porteuse effective minimale
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à introduire pour pourvoir appliquer la TH. L’existence de cette fréquence
porteuse effective minimale limite la gamme de sensibilité de l’installation
lorsque cette dernière est employée avec l’algorithme de mesure de phase par
transformée de Hilbert spatiale.

Fig. 6.30 – Ecart-type de l’histogramme des cartes de phase obtenues par TPS et
TH, par rapport à une distribution uniforme.

6.6.4 Gain en temps.

L’utilisation de la transformée de Hilbert au détriment du décalage de
phase temporel se justifie principalement par une diminution du temps d’ac-
quisition des données utiles au calcul de la distribution de phase φB(x, y). La
Fig. 6.31 montre, pour différents temps de pose de la caméra, une estimation
du gain en temps d’acquisition des données lorsque d’autres algorithmes (par
TPS à trois incréments, par TH à deux images et par TH à une seule image)
sont utilisés au détriment du décalage de phase temporel à quatre incréments
de phase. Ces estimations considèrent un temps de réponse du modulateur de
phase de 20 ms et un temps de mis en route et d’arrêt du logiciel de 100 ms.
Pour des temps de pose de l’ordre de 300 ms11, l’utilisation des algorithmes
par TPS à trois incréments, par TH à deux images et par TH à une image
permet de gagner respectivement 22%, 43% et 65% de temps d’acquisition,

11Ordre de grandeur représentatif pour des objets tel que le bas-relief scanné précédem-

ment.
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par rapport à l’utilisation de l’algorithme TPS à quatre incréments. Ce der-
nier algorithme recquiert 1.5 s pour acquérir les données avec un temps de
pose de 300 ms.

Fig. 6.31 – Gain en temps d’acquistion lors de l’utilisation des algorithmes par
TPS à trois incréments, par TH à deux images et par TH à une image, par rapport
à l’utilisation de l’algorithme TPS à quatre incréments.

6.6.5 Conclusion relative au traitement des franges par

TH spatiale.

Nous avons discuté la mesure de phase en projection de franges par trans-
formée de Hilbert spatiale. L’algorithme a été brièvement introduit en nous
basant sur l’expérience acquise en shearographie dynamique. Nous avons en-
suite appliqué cette méthode de mesure de phase pour établir la carte de
phase enroulée du bas-relief étudié. Les résultats obtenus ont été comparés
avec ceux obtenus par décalage de phase et nous avons discuté l’influence de
l’inclinaison des franges sur la qualité des résultats obtenus.

De cette discussion nous retiendrons que la TH est apte à la mesure de
phase par projection de franges en utilisant un nombre limité d’images des
franges projetées. Toutefois, les cartes de phase obtenues par TH présentent
une moins bonne résolution spatiale et une moins bonne distribution des ni-
veaux de gris que les cartes établies par TPS. La TH sera donc employée
uniquement quand le décalage de phase ne sera pas apte à la mesure de
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phase (cas des mesures dynamiques "rapides"). L’influence de l’inclinaison
des franges sur la qualité des cartes a également enseigné que la TH, contrai-
rement au décalage de phase, ne peut pas être utilisée avec des franges trop
inclinées, c’est-à-dire avec une fréquence porteuse trop petite. L’ajustement
de la sensibilité de l’installation sera donc limité lorsque cette dernière sera
utilisée avec la TH.

6.7 Conclusion.

Sur base de l’expérience acquise au cours du chapitre 4, nous avons mo-
difié le projecteur de franges interférométriques du Hololab en substituant
l’élément clef de cette installation, le prisme séparateur des états de polarisa-
tion, par une lame de Savart. Cette substitution a été opérée afin de pouvoir
disposer d’un interfrange effectif continu dans un intervalle large. L’inter-
frange pourra ainsi être plus facilement ajusté en fonction de la précision de
mesure souhaitée et/ou en fonction de la discontinuité du relief de l’objet
scanné. L’interfrange est modulé en tournant la lame de Savart et le modu-
lateur de phase autour de l’axe optique du projecteur. L’introduction d’une
lame λ/4 devant la lame de Savart permet de ne pas affecter les caractéris-
tisques des franges (visibilité, éclairement,...) lors de la rotation du cristal
biréfringent.

Le projecteur modifié a finalement été utilisé pour établir les cartes de
phase d’un bas-relief égyptien. Nous avons montré que la sensibilité de l’ins-
tallation peut être ajustée en réorientant la lame de Savart.

Dans le but de réduire le nombre d’images à enregistrer pour la mesure
3D, nous avons discuté deux développements. Le premier consiste à modéliser
la phase de référence en tenant compte de la distribution de phase projetée,
de la distribution perçue par la caméra et en tenant compte des abérrations
optiques de l’installation. L’utilisation de ce modèle permet une réduction
d’un facteur 2 du nombre de données à acquérir. Le second développement
consiste à mesurer la phase des franges observées par transformée de Hilbert
spatiale. L’application de cette transformée permet le traitement des franges
à partir de deux images et donc de réduire de 43% le temps d’acquisition
des données par rapport au décalage de phase temporel à quatre incréments,
mais au détriment de la résolution spatiale et de la distribution des niveaux
de gris des cartes de phase. La transformée de Hilbert est également limitées
aux franges de hautes fréquences spatiales car la fréquence des franges jouent
simultanément le rôle de référence et de porteuse.
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Ces dernières années, le laboratoire a consacré une partie de son éner-
gie à l’étude et au développement de la shearographie. Ainsi, une première
installation de shearographie a été mise au point, utilisée et validée pour la
mesure de la dérivée première de déplacements hors-plan ([30], [31]).
Un second champ d’application a ensuite été investigué au laboratoire. Celui-
ci a consisté à coupler l’interféromètre et une technique d’imagerie tomo-
graphique à faible cohérence pour permettre une caractérisation simultanée,
tomographique et biomécanique, de tissus mous [31].
Ensuite, notre contribution a permis l’emploi de la technique pour la détection
de défauts et la quantification de leur taille.

Dans cette cinquième partie, nous souhaitons ouvrir les portes d’un nou-
veau domaine d’expertise pour la technologie ; à savoir, la mesure d’erreurs
de fronts d’onde par shearographie. De telles mesures trouveront leur intérêt
en optique active ou encore en caractérisation d’optiques.
Nous présenterons la philosophie de la caractérisation de fronts d’onde par
shearographie, nous adapterons l’interféromètre pour ce champ d’application
et nous l’utiliseons dans un premier cas test pour démontrer le bon fonction-
nement du senseur mis en place.





Chapitre 7

Caractérisation de fronts d’onde

par shearographie.

Depuis les permiers télescopes, les astronomes travaillent à l’optimisation
de la qualité et de la fiabilité de leurs images. Pour ce faire, des télescopes
terrestres de plus en plus grands ont été construits pour améliorer leur réso-
lution spatiale (Tab 7.1), les caméras matricielles ont remplacé l’oeil humain,
des télescopes tel que Hubble ont été envoyés dans l’espace pour s’affranchir
des perturbations atmosphériques, l’optique active et l’optique adaptative
ont été developpées ([53], [54]). Ces deux dernières technologies consistent à
déformer un miroir du télescope à l’aide de son support afin de compenser
des effets néfastes pour la qualité image du télescope tels par exemple les
effets thermiques ou gravifiques (optique active), ou encore les effets athmo-
sphériques (optique adaptative).

Mise en service Nom du télescope (Site) Diamètre M1
1908 Hale (Mont Wilson) 1.5 m
1917 Hooker (Mont Wilson) 2.5 m
1949 Hale Telescope (Mont Palomar) 5.1 m
1989 New-Technology Telescope (La Silla) 3 m

1993 et 1998 Keck I et Keck II (Hawai) 10.5 m
1998 VLT UT1 (Paranal) 8.2 m

A l’étude E-ELT (Cerro Armazones) 42 m

Tab. 7.1 – Evolution du diamètre du miroir primaire M1 des télescopes professio-
nels [51], [56], [66].

Nous verrons dans ce chapitre que l’optique active nécessite l’utilisation
d’un senseur de front d’onde. La shearographie pouvant être à la base d’un
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tel senseur, nous adapterons l’installation du laboratoire pour une telle ap-
plication. Nous utiliserons alors le montage dans un premier cas-test.

7.1 Erreurs de fronts d’onde.

La Fig. 7.1 schématise le fonctionnement d’un télescope à deux miroirs.
Les miroirs du télescope collectent la lumière de la source lumineuse (étoile) et
focalisent cette lumière au foyer du télescope. L’étoile pouvant être considérée
à l’infini, le front d’onde incident est plan et est sphérique convergent après
réflexion sur les miroirs.

Fig. 7.1 – Chemin optique d’un télescope à deux miroirs [55].

En pratique, les défauts de fabrication du télescope, l’alignement des op-
tiques et les conditions d’utilisation déteriorent le front d’onde du télescope
et donc sa qualité image (Fig. 7.2). La différence entre le front d’onde réel
du télescope et le front d’onde sphérique convergeant "parfait" est qualifiée
d’erreurs de front d’onde (WFE1).

Fig. 7.2 – Spot image issu d’un front d’onde sphérique parfait (à gauche) et d’un
front d’onde sphérique abérré (à droite) [55].

1Wavefront Errors
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7.1.1 Introduction aux polynômes de Zernike.

Pour interpréter au mieux la WFE, il est d’usage d’analyser quelles aber-
rations optiques (astigmatisme, coma,...) composent la carte WFE de l’ins-
trument. Pour ce faire, la carte WFE est décomposée dans une base de po-
lynômes orthogonaux représentatifs des aberrations optiques :

WFE(r, θ) =
∑

j

ajZj(r, θ); j > 0 (7.1)

avec r et θ les coordonnées polaires (x = r cosθ, y = r sinθ) ; les coefficients
aj indiquent le poids de l’aberration j représentée par le polynôme Zj(r, θ).

Les polynômes généralement employés pour obtenir une décomposition
interprétable en terme d’aberrations optiques2 sont les polynômes de Zer-

nike . Ces derniers sont définis en terme de variables polaires à la Tab.7.2
pour une pupille circulaire. Cette table enseigne également la corrélation
entre l’ordre j du polynôme et l’aberration qu’il représente. Une représen-
tation graphique des pôlynomes de Zernike est également reprise à la Fig.
7.3. La représentation du polynôme Zj schématise la forme des erreurs sur
le front d’onde lorsque ce dernier est affecté par l’aberration correspondante
au polynôme considéré. Par exemple, l’astigmatisme correspond à une erreur
de front d’onde spatialement distribuée comme une "selle de cheval".

2L’annexe C introduit brièvement les aberrations optiques de basse fréquence.
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j Aberration Zj(r, θ)
1 piston 1
2 Tilt selon X 2rcos(θ)
3 Tilt selon Y 2rsin(θ)

4 Focus
√

3 (2r2 − 1)

5 Astigmatisme à 45◦
√

6r2sin(2θ)

6 Astigmatisme à 0◦
√

6r2cos(2θ)

7 Coma selon Y
√

8 (3r3 − 2r) sin(θ)

8 Coma selon X
√

8 (3r3 − 2r) cos(θ)

9 Trefoil à 60◦
√

8r3sin(3θ)

10 Trefoil à 0◦
√

8r3cos(3θ)

11 Sphéricité
√

5 (6r4 − 6r2 + 1)

12 Astigmatisme à 0◦ (2ieme ordre)
√

10 (4r4 − 3r2) cos(2θ)

13 Astigmatisme à 45◦ (2ieme ordre)
√

10 (4r4 − 3r2) sin(2θ)

14 Tetrafoil
√

10r4cos(4θ)

15 Tetrafoil
√

10r4sin(4θ)

16 Coma X (2ieme ordre)
√

12 (10r5 − 12r3 + 3r) cos(θ)

17 Coma Y (2ieme ordre)
√

12 (10r5 − 12r3 + 3r) sin(θ)

18 Trefoil (2ieme ordre)
√

12 (5r5 − 4r3) cos(3θ)

19 Trefoil (2ieme ordre)
√

12 (5r5 − 4r3) sin(3θ)

20 Hexafoil
√

12r5cos(5θ)

21 Hexafoil
√

12r5sin(5θ)

22 Sphéricité (2ieme ordre)
√

7 (20r6 − 30r4 + 12r2 − 1)

Tab. 7.2 – Définition des 22 premiers polynômes de Zernike pour une pupille
circulaire [49].
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Fig. 7.3 – Représentation graphique des premiers polynômes de Zernike [68].

7.1.2 Mesure de WFE.

L’objectif de l’optique active est d’optimiser au maximum la qualité image
du télescope en réduisant sa WFE ou une ou plusieurs de ses composantes
Zj(r, θ). Pour ce faire, une mesure de la WFE est effectuée en utilisant un sen-
seur de front d’onde sur une partie déviée du faisceau lumineux du télescope
(Fig. 7.4).

La WFE peut être mesurée par voie interférométrique [54], ce qui permet
d’obtenir une excellente résolution, précision et sensibilité de mesure (ordre
de grandeur du nanomètre) mais aussi une très bonne résolution spatiale
(Mégapixels). Malheureusement les techniques interférométriques sont sen-
sibles aux perturbations extérieures telles que les vibrations et nécessitent
l’utilisation d’un faisceau de référence. Pour pallier ces problèmes, l’utilisa-
tion d’un senseur de front d’onde tel que par exemple un senseur de type
Shack-Hartmann est souvent privilégiée.

Un senseur de type Shack-Hartmann est une caméra matricielle devant la-
quelle est alignée une matrice de microlentilles. Chaque microlentille focalise
la lumière passant par son ouverture sur le capteur du détecteur matriciel
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Fig. 7.4 – Fonctionnement de l’optique active [55].

(Fig. 7.5). Une matrice de spot lumineux est alors observée par l’intermé-
diaire du capteur de la caméra. Pour un front d’onde parfaitement plan, les
spots sont centrés par rapport aux microlentilles. En présence d’abérrations
optiques, les spots sont décentrés par rapport aux microlentilles d’une dis-
tance égale au produit de la longueur focale des microlentilles et de la pente
locale du front d’onde [49]. La longueur focale des microlentilles étant connue,
le front d’onde peut alors être reconstruit soit en mettant bout à bout des
segments de droites dont la pente est égale à la pente locale mesurée du front
d’onde (algorithme itératif), soit en construisant une carte de pentes et en
ajustant cette dernière par la dérivée des polynômes Zj(r, θ) (algorithme des
moindres carrés).

Un exemple de mesure de WFE effectuée à l’aide d’un senseur de front
d’onde de type Shack-Hartmann, composé de 11 x 11 microlentilles, com-
mercialisé par la société Optocraft et réalisés en collaboration avec la société
AMOS3 est présenté ci-après. La Fig. 7.6 représente la matrice de spots rela-
tive à une WFE principalement composée de focus (aj=4 = −10µm) et de tilt
dans la direction horizontale (aj=2 = −5.8µm). L’amplitude des autres abér-

3Site internet de la société AMOS : www.amos.be
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Fig. 7.5 – Principe d’un senseur de type Shack-Hartmann [67].

rations est inférieure à 100 nm. Les cases vertes matérialisent les différentes
pupilles des microlentilles. Les traits blancs représentent le déplacement des
spots par rapport au centre des microlentilles et induit par la WFE. La carte
WFE reconstruite à partir de la mesure du déplacement des spots est repré-
sentée à la Fig. 7.7.

Les senseurs de Shack-Hartmann ne souffrent pas des inconvénients de
l’interférométrie mais leur utilisation est limitée à l’analyse des aberrations
de basse fréquence spatiale (j < 11) due à la dimension limitée de la matrice
des microlentilles (de l’ordre de 10 x 10 microlentilles).

La shearographie étant une technique interférométrique, elle peut égale-
ment servir comme senseur de front d’onde ([49], [54], [58], [59]). Dans ce cas,
le senseur aura une grande partie des avantages des techniques interféromé-
triques (précision et résolution spatiale...) sans souffrir de leurs principaux
inconvénients. Toutefois, le caractère différentiel de la technique induit que
son utilisation nécessitera d’effectuer au moins deux mesures dans deux di-
rections de cisaillement différentes et le senseur ne permettra pas la mesure
des tilts X et Y.



CHAPITRE 7 : WFE ET SHEAROGRAPHIE. 168

Fig. 7.6 – Matrice de spots représentative d’un tilt horizontal et de focus.

7.2 Introduction à la mesure WFE par shearo-

graphie.

Par analogie avec le contrôle non destructif ou la mesure de dérivée de dé-
placements par shearographie, la mesure de WFE par shearographie consiste
à cisailler le front d’onde à analyzer, à décaler spatialement les deux fais-
ceaux issus du cisaillement et à les superposer afin de les faire interférer. Les
faisceaux cisaillés n’ayant été en contact uniquement qu’avec des surfaces
spéculaires (miroirs et lentilles), leur distribtuion de phase ne présente pas
de hautes fréquences spatiales (speckle) et un jeu de franges d’interférence
est alors directement observé dans la zone de recouvrement des faisceaux
cisaillés. En accord avec la théorie des interférences, la distribution d’éclai-
rement de ce jeu de franges est corrélée à la différence de phase entre les
faisceaux interférant : φ(x− δx, y)−φ(x, y), pour un cisaillement de taille δx
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Fig. 7.7 – Carte WFE reconstruite à partir de la matrice de spots de la Fig. 7.6
par un algorithme itératif (à gauche) et par un algorithme de moindres carrés (à
droite).

dans la direction X. Cette différence de phase peut se réécrire [54] :

(φ(x− δx, y)− φ(x, y))
δx

δx
(7.2)

Ou encore, pour des petits cisaillements :

∂ (φ(x, y))

∂x
δx (7.3)

Pour des fronts d’onde quasi-plans, la distribution de phase φ représente la
WFE du front d’onde. La shearographie permet dès lors une mesure de la
dérivée des erreurs de front dans la direction du cisaillement, ∂WFE/∂x, et
ce proportionnellement à sa taille δx.

En pratique, la dérivée des erreurs de front d’onde est mesurée en appli-
quant, par exemple, un algorithme de décalage de phase temporel aux franges
d’interférences de la zone de recouvrement des faisceaux cisaillés. Pour per-
mettre une interprétation physique de la carte de phase obtenue il est cou-
rant, comme précédemment, de décomposer la carte de phase dans une base
de polynômes représentatifs des aberrations optiques. En shearographie, suite
au caractère différentiel de la technique, les polynômes généralement utilisés
pour définir la base sont la dérivée des polynômes de Zernike par rapport à
la direction du cisaillement et modulés par sa taille. Dans ce rapport, nous
qualifierons le résultat de la dérivée des polynômes de Zernike par le terme de
polynômes de Zernike cisaillés. Ces derniers sont définis en coordonnées
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cartésiennes à la Tab. 7.3 pour des cisaillements dans la direction X et dans
la direction Y [60].

Les abérrations d’un front d’onde peuvent être déduites de la distribution
de phase mesurée en considérant les polynômes de Zernike cisaillés comme
base mathématique. En pratique, un opticien averti peut également déduire
les abérrations principales du front d’onde analysé en observant l’allure des
franges d’interférence de la zone de recouvrement des faisceaux cisaillés. Sur
base des équations mathématiques des aberrations (Tab. 7.3), nous avons
simulés les franges d’interférence correspondant aux premiers polynômes de
Zernike cisaillés et ce pour différentes tailles et directions de cisaillement
(Figs. 7.8 à 7.15). Ces shearogrammes nous aiderons à l’interprétation des
données du cas-test (section 7.3.2). Ils permettent également de déjà tirer
quelques conclusions concernant l’utilisation de la shearographie comme sen-
seur de fronts d’onde :

– le nombre de franges est proportionnel à la taille du cisaillement, en
accord avec l’Eq. 7.3. La sensibilité de l’interféromètre pourra dès lors
être ajustée en fonction de l’application ;

– les aberrations de focus et d’astigmatisme à 0◦ induisent des franges
d’allure identique (rectilignes). Il sera donc difficile de différencier les
deux aberrations. Toutefois des différences existent entre les deux jeux
de franges. La période spatiale des franges de focus est deux fois plus
petite à celle des franges d’astigmatisme pour des cisaillements de taille
identique. De même, les franges de focus tournent dans le même sens
que la direction du cisaillement lorsque cette dernière est modifiée, tan-
dis que les franges d’astigmatisme tournent dans le sens inverse ;

– remarquons également que les franges relatives à de la coma X obtenues
avec un cisaillement dans la direction Y, que les franges relatives à de
la coma Y avec un cisaillement dans la direction X et que les franges
de trefoil à 60◦ induites par un cisaillement dans la direction X sont
identiques.

Des deux dernières observations, nous retiendrons que l’analyse qualita-
tive de la WFE sur base de l’observation du jeu de franges d’interférence doit
absolument être réalisée en considérant différentes directions de cisaillement,
si l’aberration constituant principalement la WFE ne peut à priori pas être
connue.
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Fig. 7.8 – Shearogrammes représentatifs de l’aberration de focus pour différentes
tailles et directions de cisaillement. La taille du cisaillement est exprimée en pour-
centage de la taille de l’image.
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Fig. 7.9 – Shearogrammes représentatifs de l’aberration d’astigmatisme à 45◦ pour
différentes tailles et directions de cisaillement. La taille du cisaillement est exprimée
en pourcentage de la taille de l’image.
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Fig. 7.10 – Shearogrammes représentatifs de l’aberration d’astigmatisme à 0◦

pour différentes tailles et directions de cisaillement. La taille du cisaillement est
exprimée en pourcentage de la taille de l’image.
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Fig. 7.11 – Shearogrammes représentatifs de l’aberration de coma selon X pour
différentes tailles et directions de cisaillement. La taille du cisaillement est exprimée
en pourcentage de la taille de l’image.
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Fig. 7.12 – Shearogrammes représentatifs de l’aberration de coma selon Y pour
différentes tailles et directions de cisaillement. La taille du cisaillement est exprimée
en pourcentage de la taille de l’image.
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Fig. 7.13 – Shearogrammes représentatifs de l’aberration de trefoil à 60◦ pour
différentes tailles et directions de cisaillement. La taille du cisaillement est exprimée
en pourcentage de la taille de l’image.



CHAPITRE 7 : WFE ET SHEAROGRAPHIE. 178

Fig. 7.14 – Shearogrammes représentatifs de l’aberration de trefoil à 0◦ pour
différentes tailles et directions de cisaillement. La taille du cisaillement est exprimée
en pourcentage de la taille de l’image.
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Fig. 7.15 – Shearogrammes représentatifs de l’aberration de sphéricité pour dif-
férentes tailles et directions de cisaillement. La taille du cisaillement est exprimée
en pourcentage de la taille de l’image.
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7.3 Caractérisation expérimentale de fronts d’onde

par shearographie.

Dans cette section, nous présenterons l’interféromètre de shearographie
adapté pour la caractérisation de fronts d’onde ainsi qu’un premier cas-test.
Cet essai élémentaire permettra de mettre en évidence les avantages et incon-
vénients de la technique et de l’installation actuelle. Il permettra également
de démontrer le bon fonctionnement de l’installation.

7.3.1 Senseur shearographique de fronts d’onde.

La Fig. 7.16 présente l’interféromètre de shearographie tel qu’il a été
adapté pour la caractérisation de fronts d’onde. Le concept de base de cette
installation est d’analyser le front d’onde focalisé au foyer objet de la lentille
L1 de l’interféromètre. Pour ce faire, L1 collimate le faisceau incident, lequel
traverse alors les différents composants utiles à la shearographie à décalage de
phase temporel4 (lame de Savart, lames λ/4, cellule LCD, polariseur linéaire
et caméra matricielle) afin d’être cisaillé.

Fig. 7.16 – Montage de shearographie à lame de Savart pour la mesure WFE.

Dans des conditions idéales, le front d’onde incident ne présente aucune
aberrations, les optiques ne présentent aucun défaut de surface et aucune
inhomogénéité d’indice de réfraction, les composants sont parfaitement ali-
gnés entre eux et par rapport à l’axe optique du senseur. Dès lors, le front
d’onde au niveau de la caméra est plan avant cisaillement et aucune franges
d’interference n’est visible au niveau de la caméra. Le shearogramme est une

4Voir chapitre 4
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teinte plate. Pour une installation parfaite et un front d’onde incident pré-
sentant une ou plusieurs aberrations, le front d’onde au niveau de la caméra
est déformé par rapport au plan en fonction des coefficients de Zernike qui
le caractérisent. En pratique, l’interféromètre introduira également des aber-
rations induites par les défauts des optiques et des erreurs d’alignement. Le
front d’onde analysé sera alors d’avantage aberré. Les aberrations de l’ins-
tallation devront être prises en compte lors d’une étape de calibration et/ou
devront pouvoir être négligées par rapport à l’amplitude des aberrations du
front d’onde incident.

Pour réduire les aberrations intrinsèques au senseur et en particulier celles
introduites par la lentille L1, cette dernière est une lentille plano-convexe
présentant une longueur focale f importante par rapport à son diamètre (ré-
ference de L1 : Thorlabs - LA1207). En effet, l’amplitude des aberrations de
sphéricité, de coma et d’astigmatisme dépendent respectivement d’un terme
en 1/f3, 1/f2 et 1/f [52]. Les erreurs de front d’onde de L1 relatives à son
design ont été évaluées à l’aide de simulations Zemax. Les erreurs de front
d’onde liées au design de L1 avant et après cisaillement sont représentées à
la Fig. 7.17.

L’utilisation d’une lentille de longue focale permet une réduction des er-
reurs de front d’onde induites par L1. Toutefois, l’utilisation d’une telle focale
réduit considérablement l’ouverture de l’interféromètre (f/7.8). Si le faisceau
incident à analyser est plus ouvert que le senseur, l’ouverture du senseur peut
être augmentée en remplacant L1 par une lentille présentant un f-number plus
petit. Pour ne pas vignetter le faisceau collimaté avec la lame de Savart, il est
alors recommandé d’utiliser une lentille de même diamètre que L1 (12.7 mm)
et de privilégier l’utilisation d’une focale plus courte que celle de L1 (100
mm). En fonction de l’application et de l’amplitude des aberrations à mesu-
rer, il sera alors peut-être nécessaire d’employer une lentille asphérique ou un
doublet (plano-Cx + ménisque positive) au détriment d’une lentille simple
de type plano-convexe pour limiter les erreurs de front d’onde induites par
la lentille.

7.3.2 Cas-test : caractérisation de défocus.

Le cas-test mis en oeuvre pour tester le senseur shearographique consiste
à caractériser le focus introduit lorsqu’un point source est déplacé par rapport
à L1 le long de l’axe optique OZ du senseur.
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Fig. 7.17 – WFE relative au design de L1 avant et après cisaillement (de gauche
à droite).

Pour mettre en oeuvre ce cas-test, un laser Nd-YAG (532nm) et un filtre
spatial sont alignés sur l’axe optique du senseur et de manière telle que le
pinhole du filtre soit positionné au foyer objet de L1, soit en z0. Le faisceau
émergeant du pinhole est dès lors le faisceau incident à caractériser. Pour une
mise en oeuvre plus aisée, le faisceau est défocalisé par rapport à L1 non pas
en déplacant le filtre spatial le long de l’axe OZ mais bien en déplacant L1
le long de cet axe.

Pour tenir compte dans nos mesures des erreurs introduites sur le front
d’onde par le senseur lui-même, une calibration du senseur est nécessaire.
Cette dernière est effectuée en positionnant au mieux la lentille L1 en z0 le
long de l’axe optique. Cet alignement est réalisé en minimisant les franges
d’interférence observées au niveau du capteur CCD. La lentille positionnée,
quatre images déphasées temporellement de π/2 sont alors enregistrées et
une carte de phase de référence φA est calculée à l’aide de l’Eq.1.11 (Fig.
7.18). La carte de phase de réference ayant l’allure d’un plan dont la pente
est dans la direction orthogonale à la direction du cisaillement, l’aberration
optique principalement introduite par le senseur est de l’astigmatisme à 45◦

(section 7.2).

L’installation calibrée, la lentille est alors déplacée le long de l’axe otique.
Pour chaque position z de la lentille considérée, quatre images déphasées tem-
porellement de π/2 sont enregistrées et la distribution spatiale de la phase
du front d’onde en cette position z, φB(z), est calculée à l’aide de l’Eq.1.11.
La carte de phase de référence φA est alors soustraite de la distribution φB(z)
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Fig. 7.18 – Carte de phase de calibration du senseur, φA.

pour éliminer les erreurs de front d’onde intrinsèques au senseur. La Fig. 7.19
montre différentes cartes de phase enroulées, ∆(z) = φB(z) − φA, obtenues
pour différentes positions z de la lentille. Qualitativement, les franges obser-
vées sont rectilignes et perpendiculaires à la direction du cisaillement. Elles
caractérisent donc bien du défocus, en accord avec la théorie (section 7.2).

Pour analyser quantitativement les cartes de phase obtenues, les cartes ont
été filtrées (par un masque médian de dimension 5 au niveau sinus-cosinus),
déroulées si nécessaire et ajustées par un plan, figure géométrique caractéri-
sant le focus en shearographie. L’amplitude PTV de la phase déroulée, dW4,
a alors été estimée à partir de l’ajustement (Fig. 7.20).

Le défocus peut être mesuré pour de grands déplacements de la lentille
(plusieurs millimètres). Par contre, pour les déplacements inférieurs à 1 mm
par rapport à la position z0 de L1, la dérivée du focus n’a pas pu être estimée
car le rapport signal sur bruit de la mesure est trop faible. En considérant
uniquement les déplacements de L1 supérieurs au millimètre, l’amplitude de
la phase peut être ajustée par une loi en (z − z0)

2 avec un coefficient de
corrélation unitaire (Fig. 7.20) :

dW4(z) = −0.0687 (z − z0)
2 + 3.7088 (z − z0) + 0.169 (7.4)
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Fig. 7.19 – Cartes de phase enroulées (non filtrées) obtenues à différentes positions
z de L1.

Fig. 7.20 – Phase mesurée en fonction du défocus de L1 par rapport à sa position
nominale z0.

Ayant toujours considéré la même région d’intérêt du détecteur quelle que
soit la position de L1 le long de l’axe optique, l’amplitude PTV estimée de
la phase a ensuite été multipliée par un facteur correctif pour tenir compte
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du fait que le défocus induit par le déplacement de L1 modifie la taille de
la pupille de sortie (Fig. 7.21). Le diamètre de la pupille varie de l’ordre de
0.2% par millimètre de déplacement z de L1.

Fig. 7.21 – Estimation numérique du diamètre de la pupille en fonction de la
position z de L1.

Dans le but de valider les mesures précédentes, l’erreur de front d’onde
induit par le déplacement de la lentille a été simulé à l’aide du logiciel de
design optique Zemax. Les cartes d’erreurs de front d’onde obtenues ont alors
été cisaillées avec une direction et une taille de cisaillement identiques à celle
du senseur (δx = 0.83mm). L’amplitude PTV de la phase en a été déduite sur
une pupille carrée de dimension identique à celle analysée au laboratoire (Fig.
7.21). Les simulations enseignent que l’amplitude PTV de la phase induite
par le défocus en fonction du déplacement est donnée par l’équation (Fig.
7.20) :

dW th
4 (z) = −0.029 (z − z0)

2 + 3.7205 (z − z0) + 0.0322 (7.5)

En analysant la différence entre les mesures (multipliées par le facteur
correctif) et les simulations, nous constatons qu’une erreur systématique est
présente dans nos mesures. En effet, la différence entre les mesures et la
théorie suit principalement une loi en (z − z0)

2 (Fig. 7.23) :

dW4(z)− dW th
4 (z) = −0.030 (z − z0)

2 − 0.0121 (z − z0) + 0.132 (7.6)
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La différence entre la théorie et les mesures en z = z0 peut s’expliquer par
les erreurs sur l’estimation de la taille du cisaillement, sur l’estimation du z0

et sur les erreurs sur l’estimation du grandissement pixel-micron du senseur.

Fig. 7.22 – Ecart théorie-expérience.

La composante quadratique de l’erreur peut s’expliquer par un décentre-
ment entre l’axe optique de l’interféromètre et l’axe optique du filtre spatial.
Dans ce cas, l’angle des faisceaux α lumineux au niveau de L1 serait donné
par (Fig. 7.23) :

Tan (α) =
d

zL1

(7.7)

avec zL1 la position de la lentille par rapport au pinhole du filtre.

Le décentrement devant être relativement faible, la relation précédente se
réduirait à :

α ≃ d

zL1

(7.8)

Dans ces conditions, l’incidence des rayons varierait linéairement avec la
position de la lentille. Ce qui induirait de l’astigmatisme dont l’amplitude
varierait quadratiquement avec la position de la lentille : l’astigmatisme est
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Fig. 7.23 – Décentrement des axes optiques (A.O.) du senseur et du filtre spatial.
Les tailles de ce schéma sont fortement accentuées par rapport aux valeurs réelles
pour mieux mettre en évidence l’effet du décentrement.

une fonction quadratique de l’angle α (Fig. 7.24). En shearographie l’astig-
matisme étant une fonction linéraire en x ou en y selon la direction de l’aber-
ration, sa présence a pour effet dans notre méthodologie de compenser ou
d’augmenter l’amplitude PTV mesurée de la phase. Nos mesures de défocus
peuvent donc être affectées par l’astigmatisme présent dans le senseur.

Fig. 7.24 – Astigmatisme induit par L1 en fonction de l’incidence des faisceaux
lumineux.
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7.4 Conclusion.

Dans ce chapitre, nous avons introduit la théorie relative à la caractéri-
sation de fronts d’onde par shearographie ainsi que les polynomes de Zernike
cisaillés. Nous avons alors adapté l’installation de shearographie afin de pou-
voir employer cette dernière comme senseur de fronts d’onde. Le senseur mis
en place a été calibré et validé dans le cadre d’un premier cas-test qui a
consisté en la caractérisation de défocus en fonction du déplacement d’un
point source.

L’amplitude mesurée de défocus est dans les ordres de grandeur atten-
dus. Toutefois, une erreur expérimentale systématique induit que l’amplitude
mesurée diverge légèrement de la théorie et ce quadratiquement en fonction
de la variable z − z0. Cette erreur systèmatique semble liée à une erreur
d’alignement du banc de test.
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Chapitre 8

Conclusion générale et

perspectives.

8.1 Conclusion générale.

Dans un premier temps, la théorie de la shearographie a été rappelée et
les acquis du laboratoire dans ce domaine ont été brièvement présentés. Sur
base de ces connaissances, nous avons employés l’installation pour effectuer
quelques essais de détection de défauts. Ces derniers nous ont permis de nous
familiariser avec la technique mais aussi de montrer que pour mettre en évi-
dence des défauts dans les cartes de phase, il est nécessaire d’appliquer à
l’objet étudié une contrainte la plus homogène possible. Ces essais ont égale-
ment mis en évidence le fait que la direction du cisaillement est un paramètre
clé pour la détection de défauts : seuls les défauts dont la dimension princi-
pale est perpendiculaire à la direction du cisaillement peuvent être détectés
par shearographie. Cette caractéristique de la technique est évidemment à
prendre en considération pour des défauts telles que les fissures. Enfin, les
essais de détection de défauts ont permis de définir les développements à
effectuer pour améliorer la technique.

Si le monde scientifique est d’accord sur le fait que la shearographie est
apte à la détection de défauts, le potentiel de la technique pour la quantifi-
cation de ces défauts est peu discuté voire même les quelques travaux établis
dans ce domaine montrent que la shearographie semble inadaptée pour es-
timer la taille des défauts détectés. Nous avons souhaité éclaircir ce point.
Nous avons par conséquent développé notre propre méthodolgie de quantifi-
cation de défauts et mis en place tous les outils numériques nécessaires à une
telle quantification. Nous sommes arrivés à la conclusion que notre métho-

191
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dologie permet de quantifier la taille des défauts par shearographie et ce de
manière objective et indépendante de la taille du cisaillement. Cependant le
caractère différentiel de la technique limite la quantification des défauts dans
la direction du cisaillement. Rappelons enfin qu’en considérant une taille de
cisaillement nulle dans les équations, notre méthodologie peut être employée
dans d’autres techniques interférométriques.

Nos résultats de détection et de quantification de défauts étant plus qu’en-
courageants, nous avons apporté deux modifications importantes à l’interfé-
romètre du laboratoire afin de conforter son potentiel pour le contrôle non
destructif. Ainsi, l’élément de cisaillement initial de l’installation a été rem-
placé par un cristal biréfringent, plus précisément une lame de Savart. Cette
substitution a été mise en place principalement pour pouvoir facilement mo-
duler la direction du cisaillement, paramètre clé pour la détection et la quan-
tification de défauts. Pour faciliter l’intégration de la lame dans l’interféro-
mètre, son comportement au cours d’une rotation autour de l’axe optique de
l’installation, a d’abord été investiguée expérimentalement. La connaissance
de ce comportement de la lame a permis la mise au point d’une installation
dont la direction de cisaillement peut être modulée sur 360◦ sans affecter de
manière pertinente les cartes de phase obtenues aux différents angles.

La deuxième modification apportée est le développement d’un algorithme
de mesure de phase adapté à la dynamique de l’objet lors de l’enregistrement
des images utiles au calcul des cartes de phase. Pour ce faire, un algorithme
basé sur la transformée de Hilbert temporelle a été présenté, validé sur des
simulations numériques et enfin implémenté au laboratoire. Cet algorithme,
performant à condition d’employer une fréquence porteuse, permet l’obten-
tion de cartes de phase similaires à celles obtenues par décalage de phase
temporel mais surtout peut être employé lorsque la dynamique de l’objet est
plus importante, contrairement aux algorithmes TPS.

Les installations de shearographie et de projection de franges étant initia-
lement semblables dans les optiques et les algorithmes utilisés, les optimisa-
tions faites en shearographie ont été implémentées en projection de franges.
La lame de Savart a dès lors été employée en projection de franges. Ce qui per-
met principalement de disposer d’une gamme continue d’interfranges effec-
tifs. Le bon fonctionnement du projecteur et le concept d’interfranges effectifs
ont été validés en scannant un bas-relief égyptien. L’algorithme de mesure de
phase par transformée de Hilbert développé en shearographie a ensuite été
adapté pour une utilisation en projection de franges. L’emploi de cet algo-
rithme permet de réduire d’un facteur deux le nombre d’images nécessaires
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au calcul de la phase et donc de réduire d’environ 43% le temps d’acquisition
des données par rapport au décalage de phase temporel à quatre incréments.
En comparant les résultats avec ceux obtenus par TPS, nous constatons tou-
tefois que la réduction du nombre d’images se paye par un diminution du
rapport signal sur bruit des cartes de phase mais aussi par une diminution
de la gamme d’interfranges effectifs exploitable car la transformée de Hilbert
nécessite l’utilisation d’une fréquence porteuse. En modélisant les franges de
référence projetées, le nombre d’images utiles au calcul de la phase a encore
été réduit d’un facteur deux. Au total, les cartes de phase peuvent donc être
calculées à partir de deux images des franges en opposition de phase.

Pour terminer, nous avons souhaité ouvrir les portes d’un nouveau champ
d’application pour la shearographie. Nous avons introduit la caractérisation
de fronts d’onde par shearographie. Nous avons présenté la théorie propre à
ce champ d’application et discuté les polynômes de Zernike cisaillés. L’instal-
lation a été adaptée pour jouer le rôle de senseur de fronts d’onde et son bon
fonctionnement a été validé dans le cadre d’un premier cas-test. Les résultats
obtenus dans ce dernier chapitre sont prometteurs et nous suggérons donc à
un potentiel successeur de poursuivre nos travaux dans ce domaine.

8.2 Perspectives

Les résultats obtenus dans ce travail sont encourageants et permettent
d’envisager de nombreuses perspectives aussi bien au point de vue des appli-
cations de l’interféromètre, des optimisations de ses composants optiques ou
des outils informatiques :

- L’installation de shearographie utilise une lame de Savart comme élé-
ment de cisaillement. Utiliser une telle lame comme élément de cisaille-
ment permet de pouvoir disposer d’une direction du cisaillement mo-
dulable, ce qui est essentiel en détection et quantification de défauts.
Toutefois, utiliser une lame de Savart ne permet pas de pouvoir modu-
ler la taille du cisaillement et donc la sensibilité de l’interféromètre. Cet
inconvénient, s’il peut ne poser aucun problème en détection de défauts,
peut être une limitation importante de la technique en caractérisation
de fronts d’onde. Pour pallier ce problème, nous suggérons d’investi-
guer l’utilisation d’un nouvel élément de cisaillement qui permettrait
à la fois une modulation de la direction et de la taille du cisaillement.
Une solution est actuellement à l’étude au Hololab. La piste investi-
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guée consisterait à utiliser un composant à cristaux liquides polymères
comme élément de cisaillement [61].

- Le senseur de fronts d’onde développé a été pensé pour une utilisation
en optique active. Moyennant quelques adaptations, ce senseur pour-
rait être utilisé dans les ateliers de polissage optique pour la mesure des
erreurs des surfaces des optiques polies et plus particulièrement pour
le test des surfaces asphériques.
Certaines surfaces asphériques ne peuvent pas être testées par interfé-
rométrie "classique" (avec une référence sphérique) car dans les zones
où les écarts de forme par rapport à la sphère sont trop importants,
la densité de franges d’interférence est telle que ces franges ne peuvent
pas être résolues par une caméra. Pour pallier ce problème, le test de la
surface des optiques asphériques se fait généralement à l’aide d’un in-
terféromètre et un CGH1 [62], lequel génère un front d’onde ajusté à la
surface théorique de l’optique testée. Si l’utilisation d’un tel composant
de référence est performante, elle est coûteuse (de 10000 à 15000 ¤),
unique (chaque miroir doit avoir son propre CGH), nécessite un temps
relativement important pour l’alignement du banc de test (1 à 2 jours
en fonction de la complexité du banc et de l’expérience de l’opérateur)
et elle rend l’atelier de polissage dépendant du fabricant du CGH.
La shearographie étant moins sensible que les techniques interféromé-
triques "classiques" et sa sensibilité pouvant être ajustée en modulant
la taille du cisaillement, les surfaces asphériques pourraient être tes-
tées avec une "simple" référence sphérique : les franges d’interférence
pourront être résolues à l’aide d’une caméra même dans les zones où les
pentes du miroir sont importantes. Utiliser la shearographie pour tester
les optiques asphériques permettra alors de s’affranchir de l’utilisation
d’un CGH.

- Quelle que soit l’application de l’interféromètre, la shearographie né-
cessite généralement d’effectuer des mesures de la phase avec au moins
deux directions de cisaillement différentes. Dans certaines applications,
telle que la caractérisation de fronts d’onde en optique active, ces me-
sures devront être réalisées simultanément. Il faudrait dès lors mettre
au point un senseur de fronts d’onde qui permettrait une mesure de la
WFE dans deux directions de cisaillement simultanément.

1Computer-Generated-Hologram
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- Un algorithme de mesure de phase par transformée de Hilbert à deux
images a été mis au point et testé au laboratoire dans le cadre de la me-
sure de formes par projection de franges. Utiliser cet algorithme au dé-
triment du décalage de phase temporel à quatre incréments permet une
réduction de l’ordre de 43% du temps d’acquisition des données utiles
au calcul des cartes de phase. Adapter l’algorithme pour permettre le
calcul des cartes de phase à partir d’une seule image est une perspective
pour les applications dynamiques de la projection de franges. Employer
un algorithme à une seule image devrait permettre un gain en temps
d’acquisition supérieur à 60% par rapport à l’algorithme TPS à quatre
incréments.
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Annexe A

Exemples supplémentaires de

quantification de défauts par

transformée en ondelettes.

Cette annexe a pour but de présenter successivement les détails relatifs à
l’estimation des frontières de la zone de "haute-phase" des signaux ∆x=207

d (y)
et ∆II,y=210

d (x) étudiés au paragraphe 3.2.3. La méthodologie est analogue à
celle employée pour estimer les bords de la zone de "haute-phase" du signal
∆y=83

d (x) et détaillée à la section 3.2.2.

A.1 Etude du signal ∆x=207
d (y).

La Fig. A.1 présente le signal ∆x=207
d (y) et sa transformée en ondelettes

"chapeau mexicain". La carte des coefficients en ondelettes se caractérise
principalement par trois cônes, mis en évidence par le rectangle magenta.
Les premier et dernier cônes caractérisent la courbure au voisinage des bords
de la zone de "haute-phase" du signal, tandis que le cône central est relatif
à la courbure au voisinage du maximum du signal.

Pour estimer les frontières de la zone de "haute-phase", il s’agit d’analy-
ser les lignes de modules maxima du plan (u,s) (Fig. A.2). Plus précisément,
il convient d’analyser la convergence aux fines échelles des lignes principales
traversant les premier et troisième cônes de la carte des coefficients en onde-
lettes. La convergence aux fines échelles de ces trajectoires utiles, Ty1

(u, s) et
Ty2

(u, s), correspond respectivement à l’abscisse des frontières y1 et y2 de la
zone de "haute-phase" du signal ∆x=207

d (y).
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Fig. A.1 – Module normalisé de la transformée en ondelettes du signal ∆x=207
d (y).

Le rectangle magenta regroupe les trois cônes qui caractérisent la zone de "haute-
phase".

En pratique, dans le but de limiter l’exploitation des fines échelles, les-
quelles caractérisent principalement le bruit du signal, la convergence des
lignes des modules maxima est définie à partir d’une fréquence de coupure
1/sc. Cette dernière correspond dans notre travail à l’inverse de l’échelle sc

pour laquelle le nombre de nouvelles lignes de modules maxima est juste in-
férieur à 5% du nombre total de trajectoires du plan (u,s). Dans cet exemple,
en accord avec la Fig. A.3, la fréquence de coupure est donc égale à 1/5 pxl−1.

La fréquence de coupure établie, nous déduisons que la convergence des
lignes de modules maxima utiles Ty1

(u, s) et Ty2
(u, s) est, dans cet exemple,

égale respectivement à 53 pxl et 104 pxl (Fig. A.4). Ces pixels correspondent
aux frontières estimées du signal ∆x=207

d (y) et mises en évidence à la Fig. 3.10
de la page 65.
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Fig. A.2 – Lignes des modules maxima de la transformée en ondelettes.

Fig. A.3 – Nombre de nouvelles trajectoires des modules maxima qui apparaissent
le long des échelles s du plan (u,s), et exprimé en pourcents par rapport au nombre
total de lignes de modules maxima présentes dans le plan espace-échelle.
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Fig. A.4 – Lignes des modules maxima Ty1
(u, s) et Ty2

(u, s).

A.2 Etude du signal ∆II,y=210
d (x).

La Fig. A.5 présente le signal ∆II,y=210
d (x) et sa transformée en ondelettes

"chapeau mexicain". La zone de "haute-phase" de ce signal est caractérisée
dans sa transformée en ondelettes par les quatre cônes mis en évidence par le
rectangle magenta. Comme précédemment, les premier et dernier cônes sont
relatifs à la courbure du signal respectivement au voisinage des frontières
xII

1 et xII
2 de sa zone de "haute-phase", tandis que les deuxième et troisième

cônes sont liés à la courbure du signal au voisinage des extrema de sa zone
de "haute-phase".

Les lignes de modules maxima de la transformée en ondelettes du signal
∆II,y=210

d (x) sont reprises à la Fig.A.6. Les trajectoires T II
x1

(u, s) et T II
x2

(u, s)
sont celles utiles respectivement à l’estimation des frontières xII

1 et xII
2 .
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Fig. A.5 – Module normalisé de la transformée en ondelettes du signal
∆II,y=210

d (x).

Fig. A.6 – Lignes des modules maxima de la transformée en ondelettes.
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Pour le signal ∆II,y=210
d (x), la fréquence de coupure 1/sc a employer pour

analyser la convergence des lignes de modules maxima utiles est égale à 1/6
pxl−1 (Fig. A.7). La convergence des trajectoires utiles du plan (u,s) est
par conséquent définie comme étant la valeur u par laquelle ces trajectoires
passent en s = 6 pxl. La Fig. A.8 enseigne que finalement la convergence
des lignes T II

x1
(u, s) et T II

x2
(u, s) est respectivement de 151 pxl et 253 pxl. Ces

pixels correspondent respectivement aux frontières xII
1 et xII

2 de la zone de
"haute-phase" du signal ∆II,y=210

d (x), lesquelles sont présentées à la Fig. 3.11
de la page 66.

Fig. A.7 – Nombre de nouvelles trajectoires des modules maxima qui apparaissent
le long des échelles s du plan (u,s), et exprimé en pourcents par rapport au nombre
total de lignes de modules maxima présentes dans le plan espace-échelle.
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Fig. A.8 – Lignes des modules maxima T II
x1

(u, s) et T II
x2

(u, s).





Annexe B

Description de quelques

composants biréfringents.

Dans cette annexe, nous rappelons succinctement les caractéristiques de
quelques élements biréfringents. Le lecteur interressé par de plus amples in-
formations est invité à consulter nos références bibliographiques [42] et [57].

B.1 Prisme de Wollaston.

Le prisme de Wollaston porte le nom de son inventeur anglais, William
Hyde Wollaston (1766-1828). Il est constitué de deux demi-primses biréfrin-
gents de Calcite ou de Quartz dont les axes optiques sont orthogonaux entre
eux et tels que schématisés à la Fig.B.1. En accord avec la théorie de la
biréfringence, cette configuration induit que le rayon ordinaire du premier
demi-prisme devient extraordinaire dans le second, et vice-versa.

Ces prismes peuvent être employés pour les longueurs d’onde comprises
entre 350 nm et 2300 nm. Ils sont généralement employés comme polariseurs
pour séparer les états de polarisation. Les faisceaux émergents présentent une
séparation angulaire pouvant atteindre jusqu’à 30◦ pour les matériaux très
biréfringents tel que le Calcite (biréfringence = -0.172). Pour des matériaux
moins biréfringents tel que le Quartz (biréfringence = 0.009), cette séparation
angulaire est limitée aux alentours de 1.5◦. La séparation angulaire augmente
également pour les faibles longueurs d’onde (350 nm).
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Fig. B.1 – Représentation d’un prisme de Wollaston [57].

B.2 Prisme de Rochon.

Le prisme de Rochon a été inventé par un astronome français, l’Abbé
Alexis-Marie Rochon (1741 - 1817). Ce prisme est, tout comme le prisme de
Wollaston, consitué de deux demi-prismes biréfringents. Toutefois, contrai-
rement au prisme de Wollaston, dans le prisme de Rochon, l’axe optique du
premier demi-prisme est perpendiculaire à la face d’entrée du prisme (Fig.
B.2). Dans ces conditions, la biréfringence du premier demi-prisme n’affecte
pas les rayons incidents. Les rayons ordinaire et extraordinaire coïncident au
niveau du premier demi-prisme. Le second demi-prisme permet la séparation
angulaire de ces deux rayons tout en conservant le rayon ordinaire parallèle
à la direction de propagation du faisceau incident. Pour des petites sépara-
tions angulaires, la déviation D du rayon extraordinaire par rapport au rayon
ordianire est corrélée à la biréfringence du prisme par la relation [42] :

D = (ne − no)tan(A) (B.1)

avec ne et no, respectivement les indices de réfraction ordinaire et extraordi-
naire du crital et A, l’angle du demi-prisme.

Pour des demi-prismes en Calcite, la déviation peut atteindre 15◦, tandis
qu’elle est limitée à quelques degrés pour des cristaux de Quartz.
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Fig. B.2 – Représentation d’un prisme de Rochon [57].

B.3 Polariseur de Glan-Thompson.

La Fig. B.3 schématise un polariseur de Glan-Thompson. Un tel com-
posant est constitué de deux demi-prismes de Calcite collés par une colle
isotrope d’indice de réfraction adéquat. Par biréfringence, le cristal sépare le
rayon incident en deux faisceaux polarisés TE et TM. La polarisation TM
est alors réfléchie totalement par l’interface Calcite-colle, tandis que la po-
larisation TE est transmise parallèlement à la direction de propagation du
rayonnement incident. Un tel composant est généralement employé comme
miroir semi-réfléchissant.

Fig. B.3 – Représentation d’un polariseur de Glan-Thompson [57].
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B.4 Polariseur de Glan-Taylor.

Un polariseur de Glan-Taylor est un polariseur de Glan-Thompson qui
présente un intervalle d’air entre les deux demi-prismes, au détriment de la
colle d’indice (Fig. B.4).

Fig. B.4 – Représentation d’un polariseur de Glan-Taylor [57].

Un polariseur de Glan-Taylor présente l’avantage par rapport au polari-
seur de Glan-Thompson de pouvoir être utilisé avec des lasers plus puissants.
Le polariseur de Glan-Thompson étant limité aux lasers de puissance in-
férieure à 2W en régime continu, à cause de la colle d’indice. Toutefois, un
polariseur de Glan-Taylor présente une ouverture angulaire (4.6◦ pour le Cal-
cite) inférieure à celle du polariseur de Glan-Thompson (20◦ pour le Calcite).



Annexe C

Aberrations optiques.

Cette annexe introduit brièvement les aberrations optiques les plus cour-
ramment traitées. Des informations complémentaires sur ces abérrations sont
disponibles dans la référence [52].

C.1 Tilt.

Le terme de tilt traduit une déviation du faisceau lumineux par rapport
à l’axe optique ou au faisceau de référence. Ce terme est généralement induit
par un désalignement de l’optique. Il est compensé optiquement en ajustant
l’alignement du détecteur.

C.2 Défocus.

L’aberration de défocus trouve son origine dans une erreur de positionne-
ment d’une optique le long de l’axe optique d’une installation. Cette erreur
de positionnement induit une erreur de courbure du front d’onde émergeant
de l’optique et donc une erreur sur la position du point image observé. Cette
aberration peut également être observée dans le cas où le détecteur n’est pas
parfaitement positionné dans le plan image de l’installation.

C.3 Aberration de sphéricité.

L’aberration de sphéricité, aussi qualifiée d’aberration sphérique, est re-
présentée à la Fig. C.1 : les rayons paraxiaux et les rayons marginaux ne
convergent pas au même foyer, dû à la forme de la pupille d’entrée. Cette
aberration existe principalement pour les optiques sphériques. Elle peut être
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réduite en préférant l’utilisation de composants paraboliques ou asphériques.
Ces derniers sont malheureusement plus difficiles à polir et à tester que les
optiques sphériques.

Fig. C.1 – Formation d’un point image par une lentille en l’absence d’abérration
(en haut) et en présence d’abérration de sphéricité (en bas) [69].

C.4 Astigmatisme.

L’aberration d’astigmatisme est schématisée à la Fig. C.2. Elle est liée à
une asymétrie axiale du système optique. Cette aberration induit l’existence
de deux foyers (un sagital et un tangentiel) et peut être mise en évidence en
inclinant une lentille par rapport à un faisceau incident.

C.5 Coma.

L’aberration de coma est schématisée à la Fig. C.3 : les rayons parallèles
hors de l’axe optique ne convergent pas au même point image, due à la
forme de la pupille d’entrée, et ce en fonction du champ et de l’ouverture de
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Fig. C.2 – Représentation de l’abérration d’astigmatisme [69].

l’optique. En pratique, l’aberration de coma induit un point image en forme
d’aigrette. Cette abérration peut être réduite en adaptant la courbure de
l’optique.

Fig. C.3 – Représentation de l’abérration de coma [69].

C.6 Trefoil.

L’aberration de trefoil est généralement liée à une déformation en trois
points de l’optique due à son supportage. Le trefoil peut par conséquent être
réduit en minimisant les contraintes locales induites par le supportage.





Annexe D

Publications de l’auteur.

Publications dans des revues scientifiques

F. Michel, Y. Renotte, and S. Habraken, "Measure of the defect size by
shearography", Applied Optics, soumis pour publication (2011).

V. Rosso, F. Michel1, V. Moreau, Y. Renotte, B. Tilkens, and Y. Lion, "
An almost-common path interferometer using the separation of polarization
states for digital phase-shifting shearography", Optical Engineering 46(10),
105601 (2007).

C. Lenaerts, F. Michel, B. Tilkens, Y. Lion, and Y. Renotte, "High trans-
mission efficiency for surface plasmon resonance by use of a dielectric gra-
ting", Applied Optics 44(28), 6017-6022 (2005).

Proceedings de congrès internationaux

P. Blain, F. Michel, Y. Renotte, and S. Habraken, "Using a Savart plate
in optical metrology", in Proceeding of Photonics West 2010, Cosme Furlong,
Christophe Gorecki, and Erik L. Novak Eds. (Proc. SPIE 7791, 2010).

P. Blain, F. Michel, O. Vanhooteghem, V. Moreau, M. de la Brassinne,
Y. Renotte, and S. Habraken, "Comparison of spectral colorimetric measure-
ments vs. color pictures in dermatology", in Proceeding of Photonics Europe
2010, Jürgen Popp, Wolfgang Drexler, Valery V. Tuchin, Dennis L. Matthews
EdS. (Proc. SPIE 7715, 2010).

1Publication en tant que co-auteur
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F. Michel, P. Blain, E. Auger, Y. Renotte, and S. Habraken, "Non des-
tructive testing by digital shearography using a Savart plate", in Proceeding
of Photonics North 2009, Réal Vallée Eds. (Proc. SPIE 7386, 2009).

F. Michel, V. Moreau, V. Rosso, S. Habraken, and B. Tilkens, "Quan-
tification of defect size in shearing direction by shearography and wavelet
transform", in Proceeding of Optical Metrology 2007, Wolfgang Osten, Chris-
tophe Gorecki, and Erik L. Novak Eds. (Proc. SPIE 6616, 2007).

V. Rosso, F. Michel, V. Moreau, Y. Renotte, B. Tilkens, Y. Renotte, and
Yves LION, "An almost-common path shearographic interferometer using
the separation of the polarization states", in Proceeding of Speckle06 : from
grains to flowers, P. Slangen and C. Cerruti Eds. (Proc. SPIE 6341, 2006).

V. Rosso, L. Zhang, F. Michel, Y. Renotte, Y. Lion, and A-M. Habraken,
"Out-of-plane displacement derivate measurement : comparison of results
obtained by an original shearographic interferometer using the separation
of the polarization states and the finite elements method", in Proceeding of
Photonics North 2006, Pierre Mathieu Ed. (Proc. SPIE 6343, 2006).

V. Rosso, F. Michel, V. Moreau, Y. Renotte, B. Tilkens, and Y. Lion,
"Highlighting properties of filters for their application in temporal phase
shifting interferometry", in Proceeding of Photonics North 2005, Warren C.
W. Chan, Kui Yu, Ulrich J. Krull, Richard I. Hornsey, Brian C. Wilson, and
Robert A. Weersink Eds. (Proc. SPIE 5969, 2005).

Proceedings de congrès francophones

P. Blain, F. Michel, V. Moreau, Y. Renotte et S. Habraken, "Utilisation
d’une lame de Savart pour un système de projection de franges interféromé-
triques pour la mesure de forme 3D", Actes du colloque francophone Méthodes
et Techniques Optiques pour l’Industrie 2009, SFO Ed. (2009).
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Méthodes et Techniques Optiques pour l’Industrie 2005, SFO Ed. (2005).
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