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Motivations.

Les recherches récentes du laboratoire HOLOLAB1 dans le domaine du
moiré optique ont abouti à la création de la spin-off DEIOS2 s.a. L’outil
commercialisé par cette société présente une résolution, aussi bien latérale
qu’en profondeur, de l’ordre du dixième de millimètre. Il permet le relevé 3D
de nombreuses pièces et ce pour des applications on ne peut plus diverses :
sauvegarde du patrimoine, interactivité et valorisation des musées, "reverse-
engineering", biomédicales,...

Dans le but de compléter la gamme de mesures accessibles, la société
souhaite maintenant, en collaboration avec le laboratoire HOLOLAB, déve-
lopper un nouvel outil d’acquisition 3D dont les performances permettront
d’atteindre une résolution de l’ordre du micromètre. L’expérience du labo-
ratoire HOLOLAB conduit à penser que l’interférométrie de speckle est la
technique à utiliser ([1],[2]).

Lors d’une première étude bibliographique réalisée par Vanessa ROSSO,
assistante au HOLOLAB, il est apparu qu’en interférométrie de speckle, il
existe une technique particulière, la shearographie, qui présente l’avantage
d’être insensible aux faibles vibrations de l’objet ainsi qu’à celles de l’en-
semble de l’interféromètre. Ces caractéristiques étant essentielles pour une
implémentation future en environnement industriel, l’équipe de DEIOS s.a.
ainsi que celle du HOLOLAB ont décidé de développer un nouvel outil basé
sur la shearographie.

La shearographie peut être utilisée principalement pour deux types d’ap-
plications : le relevé de micro-reliefs et la mesure de micro-déformations.
Dans le domaine des micro-reliefs, la shearographie permet d’effectuer des
mesures aussi diverses que :

– en génie civil, une analyse de rugosité et des tests d’usure ;
1Service de Physique Générale de l’Université de Liège.
2Development & Enhancement of Interferometric Optical Systems.
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– la caractérisation de microtechnologies, lesquelles représentent un do-
maine en pleine expansion ;

– d’acquérir numériquement, dans les domaines de l’archéométrie et de
la conservation du patrimoine, des bas-reliefs ;

– dans le domaine des sciences naturelles, le relevé 3D d’insectes.

Dans le domaine des micro-déformations, la shearographie peut être uti-
lisée pour détecter des défauts de surface, pour déterminer certaines compo-
santes du tenseur des déformations infinitésimales, pour analyser des micro-
craquelures, ou encore les modes de vibrations...
En conclusion, l’outil développé présentera de nombreuses applications dans
de nombreux domaines.

La littérature [3] enseigne que pour le relevé 3D, l’installation de shea-
rographie nécessite, par exemple, un laser accordable en longueur d’onde et
fournit non pas la forme de l’objet mais ses pentes. Une intégration numé-
rique est dès lors nécessaire pour retrouver la forme de l’objet. Tandis que
pour la mesure des déformations, la shearographie livre directement la déri-
vée des déplacements, ce qui constitue un avantage supplémentaire pour les
mécaniciens, et ne nécessite pas de laser particulier. Dès lors, la mesure des
micro-déformations semble plus aisée à mettre en oeuvre et ce domaine d’ap-
plications est donc recommandé pour une familiarisation avec la technique.
Par conséquent, dans ce travail, nous viserons comme domaine d’applications
la mesure des micro-déformations.

Ce rapport a pour ambition de résumer la bibliographie relative à la
mesure de micro-déformations par shearographie, de mettre au point un dis-
positif expérimental destiné à ces mesures de micro-déformations et de tester
ce montage sur une première application élémentaire. Cette application nous
permettra également de nous familiariser expérimentalement avec la shearo-
graphie et l’interprétation de ses résultats, fournis dans un premier temps
sous la forme de courbes d’iso-déformations.

Ce travail n’est pas une fin en soi. Les nombreuses perspectives proposées
à la fin de ce rapport et relatives au domaine des micro-déformations sont
actuellement en cours de réalisation ou seront effectuées dans les mois à ve-
nir. Une fois l’installation pour la mesure des micro-déformations optimisée,
l’outil sera adapté pour le relevé de micro-reliefs. Finalement, à plus ou moins
court terme, une installation autorisant à la fois les mesures de déformations
et le relevé de micro-reliefs devrait être commercialisée par la société DEIOS
s.a. Dans le but de cette commercialisation future, le dispositif mis au point
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au laboratoire devra être robuste, compact et le plus insensible possible aux
perturbations extérieures. Enfin, dans l’espoir de regrouper dans une seule
installation le dispositif de moiré optique déjà commercialisé et le montage
de shearographie étudié dans ce travail, ce dernier devra ressembler au maxi-
mum à l’installation de moiré optique. Pour ce faire, ce travail a été réalisé
en étroite collaboration avec la société et plus précisément avec le Docteur
Vincent MOREAU, ingénieur responsable de la R&D.



Première partie

Préliminaires théoriques.
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La première partie de ce rapport consiste à résumer la théorie relative à la
shearographie. Les détails sont disponibles dans la littérature spécialisée [3].
En partant de la notion de speckle, nous discuterons la méthode permettant
l’obtention de la phase relative de chacune des tavelures, information clef en
shearographie. Cette discussion mènera aux techniques d’interférométrie de
speckle et de shearographie, à la notion de shearogramme, aux algorithmes de
décalage de phase temporel et à la notion de déroulage de phase nécessaire
au traitement des données.

La méthode utilisée traditionnellement pour obtenir la distribution de
phase relative d’une figure de speckle sera d’abord décrite. Nous rappelle-
rons ensuite la notion de vecteur de déplacement d’un objet soumis à une
contrainte. De là, nous introduirons le lien entre la shearographie et la me-
sure de la dérivée première du champ vectoriel des déplacements. Ce lien
permettra l’interprétation physique des résultats obtenus en shearographie en
fonction de l’influence de la géométrie du montage, c’est-à-dire en fonction
de l’orientation du vecteur sensibilité de l’interféromètre.

Les avantages de la technique de shearographie par rapport aux autres
techniques optiques seront également établis en temps voulu.



Chapitre 1

De la granularité laser à la
shearographie.

1.1 La granularité laser : l’effet de speckle.
En éclairage cohérent, l’image d’un objet optiquement rugueux, c’est-à-

dire un objet dont les variations du relief de surface sont de l’ordre de quelques
longueurs d’onde de la lumière incidente, présente un aspect granuleux (Fig.
1.1). Les "grains de lumière" de l’image portent le nom de grains de spe-
ckle , speckles ou tavelures, et l’image est appelée figure de speckle1.
Cette figure de speckle résulte de la micro-interférence des ondes cohérentes
diffusées par les différents points de l’objet éclairé ([4]-[6], [32], [33]).

Fig. 1.1 – Photographie, en niveaux de gris, d’une figure de speckle d’une plaque
métallique éclairée par de la lumière cohérente.

En 1970, GABOR classifie les speckles en deux catégories : les speckles
objectifs et subjectifs [7]. Les speckles objectifs correspondent à des spe-
ckles se propageant dans l’espace libre. De tels speckles peuvent être enre-
gistrés sur une plaque photographique. Quant aux speckles subjectifs, ils

1speckle pattern.
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CHAPITRE 1 : SHEAROGRAPHIE. 9

correspondent à des speckles visualisés par l’intermédiaire d’un système ima-
geant. Dans ce dernier cas, le diamètre2 ds des grains de speckle, défini par
la distance entre deux zones claires, dépend du système optique utilisé. Par
exemple, dans un système optique élémentaire constitué d’une lentille et d’un
diaphragme circulaire, la taille des grains de speckle est donnée par [3] :

ds = 2.44
λp′

D
(1.1)

où p’ est la distance lentille-plan image, λ est la longueur d’onde de la radia-
tion lumineuse utilisée pour l’éclairement et D est le diamètre du diaphragme.

Dans le cas d’un diaphragme carré de côté D, on obtient [4] :

ds = 2
λp′

D
(1.2)

La taille d’un speckle subjectif dépendant du dispositif optique imageant uti-
lisé, plusieurs régimes d’enregistrement sont possibles. Dans le cas où chaque
tavelure recouvre strictement un pixel du détecteur utilisé (CCD, CMOS,...),
on parle de speckle résolu [4].

Remarques.
– Nous avons défini la notion de speckle sur base expérimentale : les spe-

ckles sont les grains de lumière perçus lors de l’éclairement d’une surface
optiquement rugueuse par une lumière cohérente. Signalons toutefois
qu’il existe une "définition mathématique" de la notion de tavelure.
Cette définition est basée sur la fonction de corrélation, entre points
voisins, de l’amplitude et de l’éclairement de l’image de l’objet dif-
fusant, dans le plan d’observation. Cette définition est à la base des
équations 1.1 et 1.2. Le lecteur intéressé par plus de détails est invité à
consulter les références ([4] - [5]). Pour éviter toute redondance avec ces
ouvrages, la fonction de corrélation d’un speckle, et plus généralement,
les propriétés statistiques d’un speckle ne seront pas traitées dans ce
travail.

– Nous verrons ultérieurement que la shearographie considère individuel-
lement chaque tavelure de la figure de speckle. Il sera dès lors nécessaire

2Les speckles sont souvent considérés comme des grains circulaires. La notion de dia-
mètre est dès lors significative et la relation 1.1 permet d’obtenir un ordre de grandeur
relatif de la taille des speckles. Toutefois, signalons que la forme réelle des tavelures équi-
vaut à des bâtonnets ([4], [5]).
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de pouvoir identifier chaque tavelure. Pour ce faire, les talevures seront
nommées à l’aide de leurs coordonnées cartésiennes (x’,y’) dans le plan
image du détecteur, sur base du référentiel décrit par la Fig. 1.2.

Plan image du

détecteur

(CCD, CMOS,...)

Y’

X’

Fig. 1.2 – Système de coordonnées bidimensionnel utilisé pour identifier les tave-
lures d’une figure de speckle.

1.2 Le speckle, source d’information.
Il existe deux manières de considérer le speckle. Le premier consiste à

considérer le speckle comme un bruit à réduire voire, idéalement, à éliminer.
Ce point de vue est adopté, par exemple, en imagerie en lumière cohérente :
GABOR qualifie le speckle d’ennemi numéro 1 de l’holographie [7]. Le second
point de vue est de considérer la granularité laser non plus comme un bruit,
mais bien comme une source d’information3. Nous verrons à la section 1.4
que le second point de vue est adopté en shearographie. Plus précisément,
nous constaterons que l’information relative à la dérivée première des dé-
placements induits par une contrainte, des diverses particules matérielles de
l’objet diffusant est contenue dans la phase φ(x′, y′) des différentes tavelures,
mesurée par rapport à une phase de référence.

En shearographie, il convient donc de déterminer la phase de chaque
tavelure. Cependant, ceci n’est pas chose aisée. La phase d’un grain de spe-
ckle fluctue rapidement dans le temps : pour une illumination avec un laser
Nd-YAG (532nm), la fréquence temporelle des fluctuations de la phase est
de l’ordre de 5.6 1014 Hz. Le stratagème utilisé pour palier à ce problème

3Dans ce cas, nous retiendrons la citation de LEENDERTZ et BUTTERS, "if we cannot
get rid of speckle, why don’t use it ?" [3].
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est l’utilisation d’une deuxième onde, dite onde de référence ou faisceau
de référence , de fréquence égale à celle des fluctuations temporelles de la
phase des speckles. En faisant interférer la figure de speckle de l’objet étudié,
traditionnellement appelée faisceau objet, avec le faisceau de référence, il
est possible de déterminer, après décalage de phase (section 1.3.1), la phase
des différentes tavelures par rapport à la phase de l’onde de référence. Dans
ces conditions, la différence de phase φ(x′, y′) mesurée est constante dans le
temps. Par la suite, cette différence de phase φ(x′, y′) sera appelée phase
relative du speckle (x’,y’).

Les dispositifs expérimentaux utilisés pour faire interférer les faisceaux
objet et de référence sont classés en deux catégories : ceux basés sur l’inter-
férométrie de speckle et ceux fondés sur la shearographie.

1. En interférométrie de speckle4, le faisceau de référence se présente
soit sous la forme d’un faisceau constant en phase et en éclairement
(Fig. 1.3), comme en holographie5, soit sous la forme d’une deuxième
figure de speckle de l’objet.
Le dispositif comporte deux ondes d’éclairement et deux ondes d’ob-
servation. Il est appelé interféromètre de speckle et livre un inter-
férogramme dit specklegramme6. L’interférométrie de speckle a déjà
été étudiée au sein du laboratoire HOLOLAB ([1],[2]).

2. Une seule onde d’illumination est nécessaire en shearographie7. Le
4Dans la littérature, on rencontre également les appellations SPI, Speckle Pattern

Interferometry, ESPI, Electronic Speckle Pattern Interferometry ouDSPI, Di-
gital Speckle Pattern Interferometry pour se référer à l’interférométrie de speckle.
L’appellation utilisée par les différents auteurs est généralement justifiée par le type de
détecteur utilisé. En accord avec les disponibilités technologiques actuelles, la technique
DSPI est de nos jours la plus répandue.

5Tout au long de ce travail, nous réaliserons un maximum d’analogies avec l’holographie
voire l’interférométrie holographique dans le but de faciliter la compréhension du lecteur.
Le lecteur en recherche de connaissances sur ces sujets est invité à consulter les références
[6], [8], [34] et [35].

6Pour les faisceaux de référence constants, le specklegramme est l’analogue de l’ho-
logramme en holographie. Cependant, en interférométrie de speckle, on étudie chaque
tavelure de manière individuelle. Tandis qu’en holographie, on s’intéresse à l’image dans
son entièreté et les grains de speckles sont considérés comme un bruit à réduire, voire
éliminer.

7Signalons que la shearographie est un cas particulier d’interférométrie de speckle : la
shearographie est parfois qualifiée d’interférométrie différentielle de speckle . Cette
appellation sera justifiée ultérieurement. Cette caractéristique permet l’utilisation de la
plupart des outils numériques traditionnellement employé en "interférométrie de speckle
classique". Dans la suite de ce travail, l’appellation "interférométrie de speckle" concernera
l’interférométrie de speckle "traditionnelle".
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LS

Laser

M

FSFS

LSObjet

séparatrice
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M: miroir

LEGENDE:

FS: filtre spatial

CCD

Fig. 1.3 – Exemple d’un interféromètre de speckle dont le faisceau de référence
est constant en phase et en éclairement.

faisceau objet est autoréférencé . Il interfère avec lui-même. Pour ce
faire, l’interféromètre fournit deux figures de speckle à partir du fais-
ceau objet, c’est-à-dire à partir de la figure de speckle (Fig. 1.4). Ces
deux figures de speckle, décalées dans l’espace (Fig. 1.5), permettent,
après interférence, la détermination de la phase relative de chaque tave-
lure : la première figure de speckle joue le rôle de faisceau de référence
pour la deuxième figure de speckle, qui joue le rôle du faisceau objet
et inversement. En d’autres termes, la phase de la tavelure (x’,y’) de
la deuxième figure de speckle est mesurée par rapport à la phase de la
tavelure (x’,y’) de la première figure de speckle. Ou encore, plus préci-
sément, si les deux figures de speckle sont décalées, ou cisaillées, dans
la direction X’ d’une grandeur δx′ dans le plan image du détecteur, la
phase du speckle (x’,y’) du faisceau objet, et relatif au point (x,y) de
l’objet, est mesurée par rapport à la phase du speckle (x’,y’) du faisceau
de référence, et relatif au point (x + δx,y) de l’objet ; où δx est l’équi-
valent dans le plan de l’objet du cisaillement δx′. Les grandeurs δx et
δx′ sont proportionnelles entre elles. Ainsi, pour un système imageant
présentant un grandissement M [3] :

δx′ = Mδx (1.3)
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Laser
Objet

FS

CCD

M

LS

M’

FS: filtre spatial

séparatrice
LS: lame
M’: miroir incliné
M: miroir

LEGENDE:

Fig. 1.4 – Exemple d’un montage de shearographie : interféromètre de Michelson
modifié. Dans un tel dispositif, le cisaillement du faisceau objet est obtenu en incli-
nant un des deux miroirs, généralement à l’aide d’un transducteur piézoélectrique.

Le cisaillement réalisé par le dispositif justifie l’appellation de shearo-
graphie8 : en anglais, "to shear" signifiant cisailler. L’interférogramme
fourni par l’interféromètre est quant à lui appelé shearogramme (Fig.
1.5).

Fig. 1.5 – Exemple d’un shearogramme (d’une pièce de monnaie). Ce shearo-
gramme a été enregistré par Vanessa ROSSO de l’Université de Liège (HOLOLAB)
et Pierre BLANDIN de l’Institut d’Optique d’Orsay.

8shearography.
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1.3 Détermination de la distribution de phase.
L’éclairement I(x’,y’) du speckle (x’,y’), ou encore la distribution transver-

sale de l’éclairement I(x’,y’), d’un shearogramme traduit l’interférence entre
les faisceaux objet et de référence. Il est par conséquent décrit par la relation
([3],[10]) :

I(x′, y′) = Iobj(x
′, y′) + Iref (x

′, y′) + 2
√

Iobj(x′, y′)Iref (x′, y′) cos (φ(x′, y′))
(1.4)

où Iobj(x
′, y′) et Iref (x

′, y′) correspondent aux distributions transversales des
éclairements respectives des faisceaux objet et de référence ; φ(x′, y′) repré-
sente la différence de phase entre les ondes objet et de référence, c’est-à-dire la
différence de phase entre les deux figures de speckle, ou encore la distribution
de phase relative des tavelures.

En introduisant l’éclairement moyen I0(x
′, y′) entre le speckle (x’,y’) du

faisceaux objet et la tavelure (x’,y’) du faisceau de référence, ainsi que le
facteur de visibilité γ(x′, y′) de l’interférence du speckle (x’,y’) du fais-
ceau objet avec la tavelure (x’,y’) du faisceau de référence, la relation 1.4
s’écrit([3],[6]) :

I0(x
′, y′) =

Iobj(x
′, y′) + Iref (x

′, y′)
2

(1.5)

γ(x′, y′) =
2 [Iobj(x

′, y′).Iref (x
′, y′)]1/2

Iref (x′, y′) + Iobj(x′, y′)
(1.6)

I(x′, y′) = 2I0(x
′, y′) [1 + γ(x′, y′). cos (φ(x′, y′))] (1.7)

Dans la distribution d’éclairement 1.7, l’argument φ(x′, y′) du cosinus est
de haute fréquence spatiale suite au caractère aléatoire des figures de speckle
[10]. Par conséquent, l’interférogramme enregistré ne se présente pas sous un
ensemble de franges d’interférence9 (Fig. 1.5).

Dans la relation 1.7, c’est-à-dire dans l’éclairement I(x’,y’) de la tavelure
(x’,y’) d’un shearogramme, le paramètre pertinent est la distribution de la
phase φ(x′, y′), clef de voûte de la shearographie. En pratique, le shearo-
gramme est enregistré sur une plaque photographique, un détecteur CCD,...

9fringe pattern.
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Seule la distribution de l’éclairement I(x’,y’) du shearogramme est obtenue,
codée sur 256 niveaux de gris dans le cadre d’un enregistrement numérique
d’images sous 8 bits, et l’information φ(x′, y′) recherchée n’est pas directe-
ment accessible10. Dès lors, à partir de la distribution I(x’,y’) il faut déduire
la distribution φ(x′, y′). Pour ce faire, il existe de nombreux algorithmes [9].
Citons, entre autres, les algorithmes de décalage de phase11 temporel ou spa-
tial, la méthode par inversion trigonométrique, par transformée de Fourier ou
encore la méthode de Morimoto et Fujigaki [11]. La technique la plus utilisée
est le décalage de phase temporel (TPS)12([3], [12] et [10]). C’est celle
que nous avons adoptée dans notre étude.

1.3.1 Décalage de phase temporel (TPS).

L’algorithme TPS propose d’effectuer l’enregistrement d’au moins trois
shearogrammes en introduisant pour chacun, un déphasage α supplémentaire
connu, entre les ondes objet et de référence13. On obtient ainsi un système
d’au moins trois équations (les distributions transversales des éclairements
des divers shearogrammes enregistrés) à trois inconnues
(I0(x

′, y′), γ(x′, y′), φ(x′, y′)) [3] :




I1(x
′, y′) = 2I0(x

′, y′) [1 + γ(x′, y′).cos (φ(x′, y′))]
I2(x

′, y′) = 2I0(x
′, y′) [1 + γ(x′, y′).cos (φ(x′, y′) + α)]

I3(x
′, y′) = 2I0(x

′, y′) [1 + γ(x′, y′).cos (φ(x′, y′)− α)]
(1.8)

où Ii représente la distribution d’éclairement du iieme shearogramme enregis-
tré.

L’incrément de phase α peut être quelconque. Cependant, l’erreur com-
mise sur la détermination de φ(x′, y′) est minimale pour un angle α particu-
lier, l’incrément de phase optimal. Dans le cas d’un décalage de phase
temporel à 3 incréments, l’incrément de phase optimal vaut 2π/3 [9].

10La relation 1.7 contient quatre variables : I(x′, y′), I0(x′, y′), γ(x′, y′) et φ(x′, y′).
Parmi ces variables, seule la grandeur I(x’,y’) est fournie par l’enregistrement du shearo-
gramme. Finalement, nous nous trouvons face à une équation à trois inconnues : problème
insoluble.

11Dans ce cas, les auteurs parlent de phase-shifting shearography .
12temporal phase-shifting.
13En pratique, dans un interféromètre de Michelson modifié, l’incrément de phase est

introduit en translatant un des deux miroirs de l’interféromètre, le plus souvent à l’aide
d’un transducteur piézoélectrique. Dans notre cas, l’incrément de phase sera introduit à
l’aide d’une cellule à cristaux liquides (section 2.1.3).
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La résolution du système 1.8 livre, entre autre, la distribution transversale
φ(x′, y′) recherchée, c’est-à-dire la phase relative du speckle (x’,y’). Pour l’in-
crément de phase optimal, la phase relative de la tavelure (x’,y’) est donnée
par la relation [3] :

φ(x′, y′) = arctan

√
3 (I3(x

′, y′)− I2(x
′, y′))

2I1(x′, y′)− I2(x′, y′)− I3(x′, y′)
(1.9)

L’algorithme TPS à 3 incréments de phase permet d’obtenir la distribu-
tion de phase φ(x′, y′). Signalons toutefois qu’en pratique, et ce malgré une
augmentation du temps d’acquisition, du volume des informations à stocker
et à traiter, certains chercheurs préfèrent l’utilisation d’un algorithme TPS
à plus de 3 incréments de phase pour limiter les erreurs sur la détermination
de φ(x′, y′). Des algorithmes notamment à 4 ([3],[10],[14]) ou 5 incréments α
([9]) sont utilisés.

Dans le cas d’un décalage de phase temporel à quatre incréments de phase,
le système à résoudre devient [3] :





I1(x
′, y′) = 2I0(x

′, y′) [1 + γ(x′, y′).cos (φ(x′, y′))]
I2(x

′, y′) = 2I0(x
′, y′) [1 + γ(x′, y′).cos (φ(x′, y′) + α)]

I3(x
′, y′) = 2I0(x

′, y′) [1 + γ(x′, y′).cos (φ(x′, y′) + 2α)]
I4(x

′, y′) = 2I0(x
′, y′) [1 + γ(x′, y′).cos (φ(x′, y′) + 3α)]

(1.10)

L’incrément de phase optimal vaut dans ce cas π/2. Pour cet incrément de
phase, la solution recherchée φ(x′, y′) du système d’équations 1.10 satisfait
la relation [3] :

φ(x′, y′) = arctan
I4(x

′, y′)− I2(x
′, y′)

I1(x′, y′)− I3(x′, y′)
(1.11)

Dans le cas d’un algorithme TPS à cinq incréments de phase, le système
à résoudre est [9] :





I1(x
′, y′) = 2I0(x

′, y′) [1 + γ(x′, y′).cos (φ(x′, y′)− 2α)]
I2(x

′, y′) = 2I0(x
′, y′) [1 + γ(x′, y′).cos (φ(x′, y′)− α)]

I3(x
′, y′) = 2I0(x

′, y′) [1 + γ(x′, y′).cos (φ(x′, y′))]
I4(x

′, y′) = 2I0(x
′, y′) [1 + γ(x′, y′).cos (φ(x′, y′) + α)]

I5(x
′, y′) = 2I0(x

′, y′) [1 + γ(x′, y′).cos (φ(x′, y′) + 2α)]

(1.12)

L’incrément de phase optimal vaut π/2 et la distribution de phase peut être
déterminée par la formule de Hariharan ([9]) :

φ(x′, y′) = arctan
2 [I2(x

′, y′)− I4(x
′, y′)]

2I3(x′, y′)− I1(x′, y′)− I5(x′, y′)
(1.13)
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Remarque.
Les valeurs de l’angle φ calculées par décalage de phase sont limitées, en
conséquence du théorème de la fonction inverse [15], à l’intervalle ]−π/2, +π/2[.
Dans le but d’accéder à des valeurs incluses entre −π et +π, il est nécessaire
d’analyser les signes du numérateur et du dénominateur de la relation (1.9,
1.11 ou 1.13) utilisée selon le nombre d’incréments de phase, et ce à condition
que les numérateur et dénominateur coïncident respectivement à des fonc-
tions sinus et cosinus ([3],[9],[10]). Pour ce faire, l’équipe R&D de DEIOS s.a.
suggère l’utilisation de la fonction arctan2 basée sur ce principe et disponible
dans la bibliothèque du logiciel de programmation LabViewr utilisé pour
les aspects numériques de ce travail.

1.4 Shearographie et mesure.
Nous venons de décrire la manière d’obtenir la distribution de phase re-

lative d’une figure de speckle. Cette distribution permet d’analyser la déri-
vée première du champ vectoriel des déplacements d’un objet soumis à une
contrainte. Pour introduire la relation entre la phase relative et la dérivée
première des déplacements, nous commencerons par rappeler la notion de
déplacement (sous-section 1.4.1). Cette notion introduite, nous analyserons
la manière d’obtenir à partir de la distribution de phase φ(x′, y′) et en fonc-
tion de la géométrie du montage, les différentes composantes de la dérivée
première du vecteur déplacement de chaque particule matérielle de l’objet
analysé (sous-section 1.4.2).

1.4.1 Vecteur déplacement et carte de phase enroulée.

Considérons un objet dans une configuration de référence A. Dans
cette disposition, chaque particule matérielle14 du corps solide peut être éti-
quetée par ses coordonnées cartésiennes −→xA = (xA, yA, zA). Si une contrainte
est appliquée15, le corps solide analysé se retrouve dans une nouvelle confi-
guration, une configuration B déformée et les particules matérielles sont
maintenant repérées par de nouvelles coordonnées cartésiennes
−→xB = (xB, yB, zB). Ce changement de position dans l’espace correspond, en
mécanique des milieux continus, à la notion de déplacement −→u = (u, v, w)

14La particule matérielle −→xA équivaut à la matière contenue dans un volume infinitésimal
dV entourant le point −→xA [16].

15Un objet soumis à un ensemble de forces, une contrainte, peut se mouvoir en rotation,
en translation et/ou se déformer.
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définie, pour chaque particule matérielle, par la relation [16] :
−→u = −→xB −−→xA (1.14)

La Fig. 1.6 schématise la notion de déplacement.

X

Y

x
A

B
x

u

Particule
matérielle A

B

Fig. 1.6 – Schématisation de la notion de déplacement. En bleu : l’objet dans son
état A de référence. En rouge : l’objet dans sa configuration B déformée suite à
une contrainte quelconque.

La shearographie permet d’obtenir la dérivée première du déplacement de
chaque particule matérielle, lorsque l’objet a été déformé par rapport à sa
configuration de référence.

En shearographie, un objet dans sa configuration de référence, ou plus
généralement dans un état A, livre un shearogramme dont la distribution
transversale de l’éclairement dans le plan image du détecteur est16 :

IA(x′, y′) = 2I0(x
′, y′) [1 + γ(x′, y′).cos (φA(x′, y′))] (1.15)

où l’indice "A" caractérise l’état A de référence de l’objet.

Le même corps dans une configuration B déformée fournit un shearo-
gramme dont la distribution transversale de l’éclairement dans le plan image
du détecteur est maintenant :

IB(x′, y′) = 2I0(x
′, y′) [1 + γ(x′, y′).cos (φB(x′, y′))] (1.16)

16En accord avec l’équation 1.7



CHAPITRE 1 : SHEAROGRAPHIE. 19

où l’indice "B" est relatif à l’état B déformé de l’objet.

La phase relative de la tavelure (x’,y’), suite à la contrainte, n’est plus
définie par la distribution φA(x′, y′), mais par φB(x′, y′) : la contrainte in-
duit une modification du chemin optique des faisceaux donnant naissance
aux speckles. En pratique, les distributions de phase relative φA(x′, y′) et
φB(x′, y′) sont obtenues par application du décalage de phase temporel aux
shearogrammes de l’objet dans ses états A et B17. Une fois les distributions
φA(x′, y′) et φB(x′, y′) déterminées, il est coutume de considérer pour chaque
tavelure (x’,y’), la variation de phase relative ∆(x′, y′), dite aussi carte
de phase enroulée18([3], [13], [17]) :

∆(x′, y′) = φB(x′, y′)− φA(x′, y′) (1.17)

Cette carte de phase enroulée se présente en pratique sous forme d’une figure
de franges (Fig. 1.7), appelées de franges de corrélation [4].
Ces franges correspondent également à des sauts de phase : lors du passage
d’une frange blanche (niveau de gris = 255) à une frange noire (niveau de
gris = 0), la valeur de la variation de phase relative enroulée passe de +π à
−π + ε, au lieu de +π à π + ε. La distribution ∆(x′, y′) est enroulée modulo
2π.
La technique de déroulage de phase spatial19 est traditionnellement uti-
lisée pour obtenir la valeur π + ε lors d’un saut de phase. Ce stratagème
fournit, "en comptant les franges" de la distribution ∆(x′, y′), une nouvelle
distribution angulaire ∆d(x

′, y′) dite carte de phase déroulée. Cette der-
nière ne présente aucune restriction sur les valeurs angulaires possibles de la
variation de phase relative : en ramenant les valeur de ∆(x′, y′) entre 0 et
2π, la distribution ∆d(x

′, y′) renvoie des valeurs angulaires incluses entre 0 et
+∞. La philosophie du déroulage de phase sera explicitée à la section 1.4.3.

Pour un petit cisaillement entre les images relatives aux faisceaux objet
et de référence, la littérature ([3], [13], [17]) signale que la variation de phase
relative déroulée ∆d(x

′, y′) est étroitement liée, en shearographie, à la dérivée
17L’application du décalage de phase temporel à 4 incréments de phase aux shearo-

grammes de l’objet, dans ses états A et B, exige l’enregistrement de 8 shearogrammes (4
shearogrammes de l’objet dans chaque état). A la page 21, nous verrons que la carte de
phase enroulée peut également être obtenue par addition ou soustraction d’images.

18Le qualificatif "enroulée" est introduit pour rappeler que la phase ∆(x′, y′) varie entre
−π et +π.

19spatial phase unwrapping



CHAPITRE 1 : SHEAROGRAPHIE. 20

première des déplacements20 :

∆d(x
′, y′) =

(
A

∂u

∂x′i
+ B

∂v

∂x′i
+ C

∂w

∂x′i

)
δx′i (1.18)

où A, B et C sont des constantes de proportionnalité dépendant de la géomé-
trie du montage et appelées coefficients de sensibilité (section 1.4.2). u, v
et w sont respectivement les composantes selon les axes X, Y et Z des vecteurs
déplacements des particules matérielles de l’objet, induits par la contrainte
exercée. x′i représente la coordonnée cartésienne x’ ou y’ selon que le cisaille-
ment formant le shearogramme a lieu respectivement dans la direction X’ ou
Y’. δx′i caractérise la taille du cisaillement, au niveau du détecteur et dans
la direction X ′

i, entre les images liées aux faisceaux objet et de référence.

L’équation 1.18 donne la relation entre la variation de phase relative dé-
roulée et la dérivée première des déplacements induits des différentes par-
ticules matérielles de l’objet. Cette équation justifie mathématiquement la
nécessité de cisailler les images relatives aux faisceaux objet et de référence
de l’interféromètre : la direction et la taille du cisaillement sont des para-
mètres pertinents.

La shearographie permet d’obtenir la dérivée première du champ vectoriel
des déplacements, c’est une technique différentielle : la shearographie est
parfois appelée interférométrie différentielle de speckle. Cette propriété
induit que les installations de shearographie sont insensibles aux faibles vi-
brations d’ensemble de l’objet étudié. Les dispositifs de shearographie sont
ainsi les plus aptes, parmi les montages interféromériques21, à être utilisés
dans un environnement industriel.

Les techniques utilisées, ou potentiellement utilisables, par les mécani-
ciens (interférométrie de speckle, stéréocorrélation, jauges de contraintes,...)
fournissent le vecteur déplacement −→u . Il leur est donc nécessaire de dériver
numériquement ce vecteur dans le but de retrouver le tenseur des déforma-
tions infinitésimales ε, lequel apparaît dans les lois de la mécanique (par
exemple, la loi de Hooke) et, par conséquent, traduit le comportement du
corps étudié22. La shearographie présente donc l’avantage sur les techniques
traditionnelles de donner directement accès à la dérivée première du vecteur

20La carte de phase déroulée permet une mesure de la dérivée première des déplacements.
21Par exemple, les interféromètres holographiques ou de speckle (ESPI/DSPI), ainsi que

les profilomètres, sont fortement sensibles aux vibrations de l’objet.
22Une interprétation physique des composantes du tenseur des déformations infinitési-

males est disponible dans la référence [16].
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−→u de chaque particule matérielle, directement liée au tenseur ε d’ordre 2
[16] :

ε =
1

2

[
∇−→u + (∇−→u )T

]
(1.19)

où l’exposant "T" signifie transposé.

Par exemple, la composante εxy du tenseur des déformations infinitésimales
est donnée par :

εxy =
1

2

[
∂v

∂x
+

∂u

∂y

]
(1.20)

ou encore la composante εzz du tenseur ε vaut :

εzz =
∂w

∂z
(1.21)

Les techniques d’addition et de soustraction d’images.

La carte de phase enroulée ∆(x′, y′) est obtenue en soustrayant les distri-
butions φB(x′, y′) et φA(x′, y′), déterminées par décalage de phase temporel.
Toutefois signalons qu’il est possible de déterminer la distribution ∆(x′, y′)
sans connaître les distributions de phase relative. Pour ce faire, certains cher-
cheurs utilisent la technique d’addition d’images ou de double exposi-
tion. Celle-ci consiste à enregistrer une figure de speckle de l’objet dans ses
états de référence et déformé. La carte de phase enroulée est obtenue en
analysant l’addition des éclairements de chaque pixel des figures de speckle
enregistrées. L’éclairement total Iad(x

′, y′) résultant de l’addition des éclaire-
ments s’écrit sous la forme [3] :

Iad(x
′, y′) = IA(x′, y′) + IB(x′, y′)

= 4I0(x
′, y′) + 4I0(x

′, y′)γ cos

(
φA(x′, y′) +

∆(x′, y′)
2

)
. cos

(
∆(x′, y′)

2

)

Le terme 4I0(x
′, y′) hautement énergétique empêche la visualisation des franges

de corrélation liées à la distribution ∆(x′, y′). Pour permettre la visualisa-
tion de ces franges, un filtre passe-haut doit être appliqué à la distribution
Iad(x

′, y′) dans l’espace des fréquences spatiales [3].
Un autre stratagème couramment pratiqué pour permettre la visualisation
de la carte de phase enroulée consiste à analyser la valeur absolue de la
soustraction des éclairements IA(x′, y′) et IB(x′, y′). Cette soustraction est
caractérisée par la relation ([3], [4]) :

| Iss(x
′, y′) |=| IA(x′, y′)− IB(x′, y′) |
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=

∣∣∣∣4I0(x
′, y′)γ. sin

(
φA(x′, y′) +

∆(x′, y′)
2

)
. sin

(
∆(x′, y′)

2

)∣∣∣∣ (1.22)

L’addition d’images peut être réalisée soit par implémentation numérique,
soit, comme en interférométrie holographique, par enregistrement successif
des figures de speckle sur une même plaque photographique. Quant à la
soustraction, elle ne peut être réalisée que par voie numérique. Malgré cet
inconvénient, la soustraction d’image est généralement préférée à la double
exposition. L’analyse de la distribution Iss(x

′, y′) est plus simple que celle
de la distribution Iad(x

′, y′). La soustraction fait directement apparaître les
franges de corrélation [18].

La technique de la soustraction d’images présente l’avantage par rapport
au décalage de phase temporel d’être plus rapide au niveau de l’acquisition
des shearogrammes ainsi qu’au niveau de leur traitement numérique, d’être
plus facile à mettre en oeuvre et de ne pas nécessiter de modulateur de phase,
instrument coûteux qui permet le décalage de phase temporel. Cependant, les
résultats obtenus par décalage de phase sont généralement meilleurs. Ainsi,
dans certains cas, les franges de corrélation obtenues par soustraction, ne
sont visibles qu’après élimination du bruit contenu dans la carte de la phase
enroulée.

1.4.2 Géométrie du montage et vecteur sensibilité.

La relation 1.18 liant la carte de phase déroulée à la dérivée du vecteur
déplacement est une fonction de la géométrie du montage par l’intermédiaire
des coefficients de sensibilité A, B et C. En caractérisant cette dernière par
le vecteur sensibilité −→Ks de l’interféromètre, vecteur défini comme étant la
différence entre le vecteur d’onde −→kobs caractérisant la direction d’observation
et le vecteur d’onde −→kinc des ondes éclairant l’objet [3] :

−→
Ks =

−→
kobs −−→kinc (1.23)

la relation 1.18 peut se réécrire [3] :

∆d(x
′, y′) =

[(−→
Ks.−→ex

) ∂u

∂x′i
+

(−→
Ks.−→ey

) ∂v

∂x′i
+

(−→
Ks.−→ez

) ∂w

∂x′i

]
δx′i (1.24)

où le symbole "." qualifie un produit scalaire et les vecteurs −→ei sont les
vecteurs de base unitaires du système de coordonnées (x,y,z).
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En définitive, l’orientation du vecteur sensibilité est un paramètre perti-
nent. Elle permet de sonder la dérivée première, par rapport à x′i, de la com-
posante u, v et/ou w du vecteur de déplacement −→u 23. Ainsi, par exemple,
pour un vecteur sensibilité parallèle à l’axe Z24 la relation devient :

∆d(x
′, y′) =

(−→
Ks.−→ez

) ∂w

∂x′i
δx′i (1.25)

et seule la dérivée de la composante w, dite composante hors-plan, peut
être analysée. Le montage est qualifié de hors-plan. Pour une question de
simplicité, la partie expérimentale de ce travail concernera uniquement les
montages hors-plan, sachant que l’on pourra ensuite transposer cette étude
afin d’analyser les composantes dans le plan, u et v.

L’équation 1.25 permet de lier la carte de phase déroulée à la dérivée
de la composante hors-plan du vecteur déplacement. Elle permet une étude
quantitative des déformations.
De même, la relation 1.25 permet une interprétation qualitative des franges
de corrélation de la carte de phase enroulée. Celles-ci peuvent être "vues"
comme des "courbes d’iso-déformation hors-plan" 25,26.

1.4.3 Introduction au déroulage de phase spatial.

La carte de phase enroulée permet une interprétation qualitative de la
dérivée première des déplacements. Pour une mesure quantitative, basée sur
la relation 1.24, de cette même dérivée, il est nécessaire de dérouler la phase,
c’est-à-dire de restituer le multiple de 2π à ajouter à la valeur obtenue au
terme du décalage de phase, afin de retrouver la valeur réelle ∆d(x

′, y′) de
la phase ∆(x′, y′). Pour ce faire, il existe de nombreux algorithmes ([3], [20],
[21]). En pratique, nous n’aurons pas besoin de développer un programme
de déroulage de phase. Nous utiliserons celui mis au point par la spin-off
DEIOS s.a. Par conséquent, l’algorithme de déroulage de phase ne sera pas

23Par analogie, en optique diffractive, le vecteur d’onde d’un réseau, défini par la diffé-
rence entre le vecteur d’onde du mieme ordre diffracté et le vecteur d’onde incident, est
un paramètre pertinent qui, à la fois, caractérise la géométrie du réseau et régit l’équation
des réseaux [19].

24Traditionnellement, les axes X et Y sont définis par le plan de l’objet (Fig. 1.6). L’axe
Z est perpendiculaire à ce plan et pointe dans la direction du vecteur d’onde des ondes
réfléchies par l’objet.

25Signalons toutefois que le terme "iso-dérivée, par rapport à la direction du cisaillement,
de la composante hors-plan du vecteur déplacement" serait plus adéquat.

26En interférométrie de speckle ([1],[5]) et en interférométrie holographique [35], les
franges de la carte de phase enroulée correspondent à des courbes d’"iso-déplacements".
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détaillé dans ce rapport. Seule la philosophie du déroulage de phase spatial
est introduite ci-après.

Le théorème d’échantillonnage de Shannon implique que pour avoir une
carte de phase enroulée bien échantillonnée, c’est-à-dire qui traduit bien la
réalité physique du problème, l’évolution de la variation de phase relative sur
une rangée de pixels ne peut jamais être supérieure à π [9]. Par conséquent,
toute modification de cette variation de phase relative supérieure (resp. infé-
rieure) à +π (resp. −π) dans la carte de phase enroulée correspond à un saut
de phase induit par la fonction arctan. A chaque saut de phase détecté par
ce critère, il suffit d’augmenter (resp. de diminuer) d’une unité le multiple m
de 2π à ajouter à la valeur ∆(x′, y′) [9] :

∆d(x
′, y′) = ∆(x′, y′) + 2mπ (1.26)

En définitive, en comparant la variation de phase relative ∆(x′, y′) d’un
pixel avec celle de son voisin, il est possible de détecter les sauts de phase dans
la distribution ∆(x′, y′). A ces sauts de phase, la variation de phase relative
est augmentée ou diminuée de 2π. La distribution corrigée est appelée carte
de phase déroulée ∆d(x

′, y′).
La Fig. 1.7, extraite de la référence [3], présente une carte de phase enroulée,
la carte de phase déroulée qui lui est associée, en niveaux de gris et sous
forme de graphique 3D.

Fig. 1.7 – A gauche : une carte de phase enroulée. Au centre : carte de phase
déroulée, en niveaux de gris, relative à l’image de gauche. A droite : la même carte
de phase déroulée sous forme d’un graphique 3D. [3].
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Shearographie expérimentale.
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La première partie du rapport décrit les principes théoriques, mathéma-
tiques et physiques, régissant la shearographie. Cette seconde partie a pour
ambition la mise au point d’un interféromètre différentiel de speckle pour la
mesure de la dérivée première de la composante hors-plan du vecteur déplace-
ment. Le chapitre 2 décrit le montage réalisé au laboratoire. Ce montage dé-
taillé, le chapitre 3 présentera une application du dispositif relative à l’analyse
de la dérivée première de la composante hors-plan des déplacements. Cette
application permettra de tester le bon fonctionnement du montage expéri-
mental, de nous familiariser avec la shearographie et l’interprétation de ses
résultats. Cette familiarisation acquise, les perspectives du travail pourront
être déterminées clairement pour une optimisation de l’installation.



Chapitre 2

Montage expérimental hors-plan
à chemins optiques
quasi-communs et à séparation
des états de polarisation.

Le présent chapitre décrit l’interféromètre de shearographie mis au point
au HOLOLAB pour la mesure de la dérivée première de la composante hors-
plan du vecteur des déplacements d’un objet soumis à une contrainte.

2.1 Dispositif expérimental hors-plan à chemins
optiques quasi-communs.

Les dispositifs de shearographie peuvent être classés en deux catégories :
les interféromètres à chemins optiques séparés1 et ceux à chemins
optiques quasi-communs. Dans ces derniers, les faisceaux objet et de ré-
férence parcourent, comme le nom de l’interféromètre l’indique, des chemins
optiques, ou géométriques, quasi-identiques (Fig. 2.1). Les deux bras de l’in-
terféromètre sont confondus sur la presque totalité du montage et sont donc
influencés simultanément en cas de perturbation. Un interféromètre à che-
mins optiques quasi-communs reste par conséquent opérationnel en présence
de faibles perturbations extérieures (vibrations, turbulences atmosphériques,
gradient de température,...). Cette insensibilité implique que les systèmes à
chemins optiques quasi-communs sont plus aptes pour une implémentation
en milieu industriel que ceux à chemins séparés. Le développement d’une

1Le plus célèbre d’entre eux est l’interféromètre de Michelson modifié (Fig. 1.4).
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installation à chemins quasi-communs paraît dès lors le plus intéressant dans
le cadre de notre approche.

A

B

B’’

A’
A’’

B’

Objet

Elément de cisaillement: 
coin de verre du détecteur

Plan image

FoyerFoyer

Filtre spatial

Laser

Lentille

Fig. 2.1 – Exemple d’un montage courant de shearographie à chemins optiques
quasi-communs. Le coin de verre recouvre la moitié supérieure de la lentille. Ce
semi-recouvrement induit, par réfraction à travers le coin de verre, le cisaillement
du faisceau objet. Les deux figures de speckle décalées interfèrent dans le plan
image du détecteur [3].

Le montage hors-plan, à chemins optiques quasi-communs, réalisé pour
notre étude est schématisé à la Fig. 2.2. Dans cet interféromètre, le faisceau la-
ser guidé, élargi et nettoyé de ses défauts de phase à l’aide de la fibre optique2,
éclaire de manière quasi-uniforme l’objet à étudier. Après rétro-diffusion sur
l’objet, les ondes électromagnétiques incidentes traversent le prisme sépara-
teur des états de polarisation, élément de cisaillement. Après passage dans le
prisme, les ondes fournissent deux figures de speckle cisaillées : une figure de
l’objet polarisée TE3 et une polarisée TM (section 2.1.2). Ces deux images
de l’objet traversent la cellule à cristaux liquides, c’est-à-dire le modulateur
de phase (section 2.1.3), et interfèrent à l’aide du polariseur linéaire à 45◦.
Le shearogramme est enregistré par l’intermédiaire d’une caméra CMOS.

2La fibre optique, en plus de son rôle de guide d’onde, joue celui de filtre spatial.
3Une onde électromagnétique est dans l’état de polarisation TE , Transverse Electric,

si son champ électrique est perpendiculaire au plan d’incidence à tout moment. Elle sera
dans le mode de polarisation TM , Transverse Magnetic, si c’est son champ magnétique
qui est transverse au plan d’incidence à tout instant. Les modes de polarisation TE et
TM sont des états de polarisation linéaire et forment une base complète pour tout état de
polarisation.
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Fig. 2.2 – Schéma du montage hors-plan et à chemins optiques quasi-communs,
réalisé au laboratoire. La section 2.1.2 décrit le rôle du prisme séparateur de pola-
risation. La section 2.1.3 détaille le comportement de la lame à cristaux liquides.

La structure géométrique adoptée pour ce montage est proche de celle
utilisée par d’autres instruments étudiés par la spin-off DEIOS s.a. A court
terme, la ressemblance et la complémentarité avec le produit basé sur le moiré
optique, commercialisé par DEIOS s.a., permettront d’envisager une implé-
mentation commune dans un appareil de mesure compact des installations de
moiré optique et de shearographie. Cet appareil permettra à la fois la mesure
de forme de haute résolution et la détermination de propriétés mécaniques
de l’objet étudié.

Analysons plus précisément la géométrie du montage et les différents élé-
ments clefs du dispositif, c’est-à-dire le prisme séparateur de polarisation et
la cellule à cristaux liquides.
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2.1.1 Analyse de la géométrie du montage : configura-
tion en ligne.

Dans ce travail, désirant nous limiter à un système hors-plan4, l’interfé-
romètre à réaliser doit présenter un vecteur de sensibilité perpendiculaire au
plan défini par l’objet. En accord avec la définition du vecteur −→Ks, le montage
peut se présenter sous deux configurations différentes :

1. les vecteurs d’onde des ondes incidentes et réfléchies par l’objet sont
symétriques par rapport à la normale au plan (x,y) défini par l’objet
et sont non-parallèles (Fig. 2.3). Une telle configuration est qualifiée de
symétrique ;

2. les vecteurs d’onde des ondes incidentes et réfléchies par l’objet sont
antiparallèles et normaux au plan (x,y) défini par l’objet (Fig 2.3).
Cette configuration est dite en ligne .

Objet Objet

k inc obsk

K s K s

β β

k obs

inck

Fig. 2.3 – Représentation schématique du vecteur sensibilité −→Ks d’un interfé-
romètre hors-plan dans des configurations symétrique (à gauche) et en ligne (à
droite). −−→kinc et −−→kobs correspondent respectivement aux vecteurs d’onde des ondes
incidentes et diffusées par l’objet.

La référence [22] signale que les erreurs commises sur la détermination
des déplacements, dans une installation d’interférométrie de speckle, et liées
au vecteur de sensibilité sont principalement dues au fait que :

4Pour rappel, nous appelons dans ce rapport montage hors-plan, un interféromètre qui
permet uniquement la mesure de la dérivée première de la composante hors-plan w du
vecteur déplacement.
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1. ce vecteur sensibilité en un point P de l’objet varie suite à la déforma-
tion ;

2. ce vecteur sensibilité varie d’un point à l’autre de l’objet.
De ces observations, les auteurs de l’article [22] arrivent, entre autre, à la
conclusion que ces erreurs sont moins importantes dans la configuration en
ligne. C’est celle que nous avons donc réalisée au laboratoire.

2.1.2 Description de l’élément de cisaillement.

La littérature ([3], [23], [24]) propose de nombreux éléments de cisaille-
ment potentiels, souvent appelés "éléments de shearing". Ainsi, certains uti-
lisent un coin de verre (Fig. 2.1), d’autres une lentille biprisme, un cristal
biréfringent ou inclinent un des miroirs d’un interféromètre de Michelson
modifié (Fig. 1.4). Pour notre part, désirant travailler à chemins optiques
quasi-communs et réaliser un montage basé sur la séparation des états de
polarisation proche du produit développé par la spin-off DEIOS s.a, nous
avons choisi un prisme séparateur des états de polarisation comme
élément de cisaillement dans le montage de shearographie (Fig. 2.2).

Ce prisme sépare une onde électromagnétique incidente en deux ondes
polarisées linéairement et perpendiculairement l’une par rapport à l’autre :
une onde polarisée TE et une polarisée TM. Cette séparation de polarisation
est obtenue à l’aide d’une couche mince déposée sur la face arrière d’un prisme
de verre5. En théorie, la séparation de polarisation est optimale au voisinage
de l’incidence normale sur la face du prisme. Sous incidence normale, les
faisceaux émergents polarisés TE et TM correspondent respectivement aux
faisceaux réfléchi et transmis par la couche mince (Fig. 2.4).

Dans l’installation de shearographie (Fig. 2.2), le faisceau objet sera di-
visé en deux faisceaux à l’aide du prisme séparateur des états de polarisation.
Chacun de ces faisceaux correspondra à une figure de speckle de l’objet étu-
dié. Pour diriger ces deux faisceaux dans une même direction, une lame de
verre à faces parallèles est accolée à la couche mince à l’aide d’une huile
d’indice adéquat (n = 1.522). Cette lame réoriente, par réflexion totale, le
faisceau polarisé TM transmis par la couche mince dans la direction du fais-
ceau polarisé TE réfléchi (Fig. 2.5). Pour faire interférer ces deux faisceaux,
un polariseur linéaire à 45◦ par rapport aux directions de polarisation TE et
TM est introduit sur le chemin des faisceaux TE et TM réorienté. Cette inter-

5Ce prisme est fourni par la société Edmund Optics.



CHAPITRE 2 : MONTAGE EXPERIMENTAL. 32

point source

TEpoint
image

TM

point image

couche 
mince

Fig. 2.4 – Représentation schématique de l’action du prisme séparateur des états
de polarisation.

férence donne lieu au shearogramme, lequel est enregistré par l’intermédiaire
d’une caméra CMOS.

point source

couche
mince

TM

TE

images

θ

δx

points

lame

Fig. 2.5 – Représentation schématique de l’élément de cisaillement. Le système
(prisme - couche mince - lame) permet d’obtenir deux points images distincts à
partir d’un seul point source et dans la même direction.

Pour vérifier le comportement du prisme sans la lame de verre accolée,
nous avons relevé ses courbes de réflectivité et de transmittivité pour des
ondes incidentes polarisées TE et TM (Fig. 2.6). La séparation des modes
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de polarisation à l’incidence nulle vaut environ 93% et est optimale aux in-
cidences comprises entre 6◦ et 22◦. Pour des questions d’optimisation, l’inci-
dence du faisceau lumineux sur la face du prisme sera fixée à quelques degrés
au dessus de 0◦ dans le dispositif expérimental de shearographie.
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Fig. 2.6 – Courbes de réflectivité et de transmittivité relevées sur le prisme sépa-
rateur de polarisation à la longueur d’onde 532nm dans l’air.

Remarques.

1. Le prisme séparateur des états de polarisation possède, par construc-
tion, une efficacité maximale à la longueur d’onde de 532nm. Cette
longueur d’onde est celle émise par un laser Nd-YAG, ce qui justifie
son utilisation comme source d’illumination cohérente dans notre mon-
tage expérimental de shearographie.

2. Les réponses du prisme en réflectivité et en transmittivité, sont asymé-
triques par rapport à l’incidence normale. Le signe de l’incidence est
un paramètre pertinent. La Fig. 2.7 précise le signe de l’incidence par
rapport à la normale de la face du prisme et en fonction de l’orientation
de la couche mince.

3. D’autres composants peuvent séparer les états de polarisation : par
exemple, un cristal biréfringent tel un prisme de Wollaston [24] ou un
dispositif de Kretschmann auquel est accolé un réseau guide d’onde [19].
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Fig. 2.7 – Définition du signe de l’incidence par rapport à la normale à la face du
prisme, en fonction de l’orientation de la couche mince.

Cependant, dans un montage de shearographie utilisant ces éléments de
cisaillement, il est impossible de modifier la taille du cisaillement. Par
contre, en utilisant le prisme séparateur des états de polarisation décrit
ci-dessus il est possible de modifier la taille du cisaillement simplement
en remplaçant la lame de verre accolée à la couche mince par une lame
d’épaisseur différente. En effet, en négligeant toute réfraction à travers
la couche mince et en négligeant l’épaisseur introduite par l’huile d’in-
dice, nous avons établi géométriquement que la taille du cisaillement
δx à la sortie du prisme est liée à l’épaisseur d de la lame de verre :

δx =
√

2d cos(θi)

[
1 +

n sin(θi)

n2 − sin2(θi)

]
(2.1)

avec n, l’indice de réfraction du prisme et θi, l’angle d’incidence des
rayons lumineux sur la face du prisme.

La Fig. 2.8 montre la variation de la taille du cisaillement en fonction
des variables d et θi.

En pratique, l’épaisseur d de la lame de verre n’est pas parfaitement
uniforme. La taille du cisaillement varie par conséquent d’un point à
l’autre du shearogramme. Pour limiter cet effet, deux lentilles sont ajou-
tées dans le dispositif expérimental (Fig. 2.9). La lentille à l’entrée du
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Fig. 2.8 – Analyse de l’influence de l’incidence θi des rayons lumineux sur la face
du prisme et de l’épaisseur d de la lame de verre accolée au prisme sur la taille du
cisaillement δx.

prisme est placée de manière à focaliser la figure de speckle polari-
sée TM sur l’interface verre/air de la lame de verre. Cette focalisation
réduit la surface utile de l’interface qui est éclairée. Elle diminue la
probabilité de balayer des épaisseurs relativement différentes. La len-
tille à la sortie du prisme permet la défocalisation des ondes lumineuses.
Signalons aussi que cette seconde lentille augmente la taille du cisaille-
ment et ce en fonction de son grandissement transversal Mlent. Derrière
la lentille, la taille du cisaillement δxlent devient :

δxlent = Mlent.δx (2.2)

La taille du cisaillement au niveau du détecteur est également modulée
par le grandissement transversal Mobj de l’objectif de ce dernier. Ce-
pendant, la taille de l’image de l’objet est affectée de la même manière
par l’objectif de la caméra. Par conséquent le rapport entre la taille du
cisaillement et la taille de l’image est indépendant du grandissement
Mobj. En accord avec l’interprétation physique6 du cisaillement, il est

6Cf. page 12.
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Fig. 2.9 – Schéma du montage définitif hors-plan et à chemins optiques quasi-
communs utilisé au laboratoire.

inutile d’introduire le facteur de modulation Mobj dans la relation 2.2.
En définitive, au niveau du détecteur, la taille du cisaillement δx′ est
donnée par :

δx′ = δxlent = Mlent.
√

2d cos(θi)

[
1 +

n sin(θi)

n2 − sin2(θi)

]
(2.3)

La relation 2.1 montre aussi que la taille du cisaillement varie en fonc-
tion de l’incidence θi des rayons lumineux sur la face du prisme (Fig.
2.8). En pratique, dans le dispositif sans lentille, la position de l’objet
limite naturellement les valeurs de l’incidence. Ainsi, un objet placé à
70 cm du prisme et éclairé par un faisceau gaussien de 10 cm de "dia-
mètre" limite l’incidence des rayons lumineux entre −4◦ et +4◦. Cette
restriction limite le rapport δx/d entre 1.34 et 1.477. Les fluctuations de
la taille du cisaillement sont donc réduites. Malheureusement, dans le
dispositif avec lentilles, les incidences des rayons lumineux sont moins
limitées. Ainsi dans le cas d’utilisation d’une première lentille de 2.5
cm de diamètre et de 6 cm de longueur focale image, l’incidence des
rayons lumineux est comprise approximativement entre −12◦ et +12◦.

7En accord avec l’équation 2.1.
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Le rapport δx/d est inclus entre 1.19 et 1.58. Cet effet peut être réduit
en utilisant une lentille d’un diamètre plus petit ou une longueur focale
image plus grande. La seconde solution semble plus adéquate car la
première réduirait le champ du système optique.

Pour éviter de plus amples fluctuations de la taille du cisaillement,
l’utilisation d’une épaisseur d maximale est conseillée. En effet, sur base
de l’équation 2.1, et pour une incidence fixée, la variation relative8 de
la taille du cisaillement est égale à 1/d.

2.1.3 Description du modulateur de phase.

Comme toute technique interférométrique utilisant l’algorithme de dé-
calage de phase temporel, il est nécessaire en shearographie d’enregistrer
plusieurs interférogrammes déphasés les uns par rapport aux autres. Il est
donc nécessaire d’introduire dans le dispositif expérimental un modulateur
de phase aisément pilotable. Généralement, les dispositifs de shearographie
utilisent des interféromètres de Michelson modifiés. Dans ces montages, le rôle
de modulateur de phase est joué par un transducteur piézoélectrique. Pour
notre part, jouant sur la séparation des états de polarisation, nous utiliserons
une cellule à cristaux liquides .

Une cellule à cristaux liquides possède deux axes principaux perpendicu-
laires, un axe lent et un axe rapide. Deux ondes électromagnétiques polarisées
linéairement et respectivement parallèlement aux axes rapide et lent de la cel-
lule sont déphasées l’une par rapport à l’autre après leur passage à travers la
cellule. Le déphasage introduit par la cellule est fonction de la tension appli-
quée à ses bornes. Dans notre installation, la cellule est placée à la sortie du
prisme séparateur des états de polarisation. De plus, les axes lent et rapide
seront respectivement orientés parallèlement aux directions de polarisations
TE et TM9. Ainsi, les deux faisceaux issus du prisme sont déphasés l’un par
rapport à l’autre. L’incrément de phase induit est imposé en fixant la tension
appliquée aux bornes de la cellule.

Calibrons la cellule à cristaux liquides c’est-à-dire, déterminons le dépha-
sage induit par la cellule en fonction de la tension appliquée à ses bornes.

8Pour une incidence fixée, la variation relative de δx correspond au quotient de la
dérivée première de δx par rapport à d par δx.

9Notons que nous pourrions aussi travailler avec l’axe rapide de la cellule orienté pa-
rallèlement, non par rapport à la direction de polarisation TM, mais par rapport à la
direction de la polarisation TE. Le choix est purement arbitraire.
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Pour ce faire, la référence [25] suggère de déterminer la statistique RMS de
la fonction S(V), définie par l’équation 2.4, pour différentes tensions V ap-
pliquées.

S(V ) = I(V, x′, y′)− I(0, x′, y′) (2.4)

où I(V,x’,y’) est l’éclairement du pixel (x’,y’) du shearogramme enregistré
sous la tension V et I(0,x’,y’) l’éclairement du pixel (x’,y’) du shearogramme
enregistré sous une tension nulle.

La fonction S(V) étant définie, la statistique RMS(S(V)) à calculer s’écrit :

RMS(S(V )) =
√
〈S(V )2〉 (2.5)

où le symbole 〈.〉 correspond à une moyenne sur l’ensemble de tous les pixels
(x’,y’) des shearogrammes enregistrés sous les différentes tensions.

La Fig. 2.10 montre le relevé de la statistique RMS(S(V)) de la cellule
à cristaux liquides utilisée. Nous constatons que l’efficacité de la cellule à
cristaux liquides en tant que modulateur de phase est optimale sur l’inter-
valle [1350mV, 3480mV]. Nous travaillerons dans cette gamme de tensions
optimales tout en tenant compte d’une marge de sécurité pour les valeurs
limites : nous travaillerons donc dans la gamme [1500mV, 3300mV].

Le déphasage introduit par la cellule à cristaux liquides en fonction de
la tension appliquée à ses bornes est obtenu en déterminant la phase de la
statistique RMS(S(V)). Pour déterminer la phase d’un signal, la référence
[26] propose l’utilisation de la transformée de Hilbert : la tangente de la
phase du signal est égale à la valeur absolue du quotient de la transformée
de Hilbert du signal par le signal lui-même. Par conséquent, dans notre cas,
la phase α(V ) de la statistique RMS(S(V)) est obtenue par la relation10 :

α(V ) = arctan2

(∣∣∣∣
H(RMS(S(V )))

RMS(S(V ))

∣∣∣∣
)

(2.6)

oùH(RMS(S(V ))) symbolise la transformée de Hilbert de la fonction RMS(S(V)).

La Fig. 2.11 correspond à la phase de la statistique RMS(S(V)) après
déroulage de phase11. Ce graphique montre que sur le domaine de tensions

10Notons que comme pour le décalage de phase temporel, pour obtenir un incrément de
phase compris entre −π et +π, la fonction arctan2 est préférée à la fonction arctan.

11Ce déroulage de phase est essentiel, car la relation 2.6 renvoie, par l’intermédiaire de
la fonction arctan, une phase enroulée.
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Fig. 2.10 – Relevé de la fonction RMS(S(V)) permettant la calibration de la cellule
à cristaux liquides utilisée.

considéré, c’est-à-dire entre 1500 mV et 3300 mV, la réponse de la cellule peut
être ajustée partiellement par des fonctions linéaires excepté entre 2450 mV
et 3050 mV. Le Tab. 2.1 reprend les résultats relatifs aux divers ajustements :

α(V ) = a.V + b (2.7)

où α est la phase de la fonction RMS(S(V)) et V, la tension appliquée aux
bornes de la cellule, exprimées respectivement en degrés et en millivolts.

Domaine de tensions considéré [mV] : a [◦/mV] : b [◦] :
[ 1500, 2050[ 0.230 ±0.001 -92.432 ±2.521
[ 2050, 2450] 0.440 ±0.003 -520.000 ±7.921
[ 3050, 3500] 0.068 ±0.001 458.612 ±1.817

Tab. 2.1 – Résultat des ajustements linéaires de la phase α(V ).

La fonction α(V ) ne peut pas être ajustée par un polynôme d’ordre 1 pour
les tensions comprises dans l’intervalle [2450mV, 3050mV]. Dès lors, dans le
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Fig. 2.11 – Phase de la statistique RMS(S(V)) en fonction de la tension appliquée
aux bornes de la cellule modulatrice de phase.

but de pouvoir utiliser une description analytique simple de la phase α(V ),
nous travaillerons avec des tensions comprises entre 1500 mV et 2450 mV.

Finalement, nous retiendrons que la phase α(V ), exprimée en degrés, de
la fonction RMS(S(V)) est décrite, sur l’intervalle [1500mV, 2450mV], par la
relation :

α(V ) = (0.23V − 92.432).Ξ[1500mV,2050mV [ + (0.44V − 520).Ξ[2050mV,2450mV ]

(2.8)
où les fonctions Ξ[a,b] valent 1 pour les tensions incluses dans l’intervalle [a,b]
et 0 ailleurs.

La représentation analytique de la phase de la fonction RMS(S(V)) per-
met de déduire l’incrément de phase (α(V2) − α(V1)) induit par la cellule
lorsque la tension appliquée à ses bornes passe de V1 à V2 (V1 et V2 apparte-
nant à l’intervalle [1500mV, 2450mV]). Par inversion, la relation 2.8 permet
également de déduire la variation de tension à appliquer aux bornes de la
cellule à cristaux liquides pour induire un incrément de phase désiré.

Par exemple, pour un algorithme TPS à 4 incréments de phase, si l’on fixe
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à 1500 mV la tension sous laquelle le premier shearogramme est enregistré,
ce qui correspond à α ≈ 252◦, la cellule à cristaux liquides devra "amener" la
phase α successivement aux angles 342◦, 432◦ et 522◦ pour l’enregistrement
des trois derniers interférogrammes. En inversant la relation 2.8, on constate
que ceci se reproduit en appliquant successivement des tensions d’environ
1890 mV, 2166 mV et 2371 mV aux bornes du modulateur de phase.

2.2 Interfaçage et implémentation numérique.
Le montage décrit précédemment ne s’avère utile qu’avec l’aide d’un lo-

giciel d’interfaçage et de traitement des données. Pour rencontrer les besoins
de la shearographie, le programme mis au point au laboratoire effectue les
séquences suivantes :

1. acquisition par l’intermédiaire de la caméra, des shearogrammes de l’ob-
jet dans son état A, tout en modifiant la tension aux bornes du modu-
lateur de phase à chaque enregistrement. Le nombre d’incréments de
phase est fixé à 4 car dans la relation 1.11, les éclairements Ii(x

′, y′) pré-
sentent des poids égaux. L’influence du nombre d’incréments de phase
sur la qualité des résultats est une des perspectives de ce travail.

2. mise en attente pendant l’application d’une contrainte au solide étudié,
laquelle amène à l’état déformé B.

3. répétition de l’étape 1 pour l’objet dans son état déformé B.
4. déduction des distributions de phase relative φA(x′, y′) et φB(x′, y′).
5. déduction de la carte de phase enroulée à partir des distributions φA(x′, y′)

et φB(x′, y′).
6. affichage de la carte de phase enroulée.
7. sauvegarde des données et des résultats.

Signalons que pour limiter le nombre d’utilisations de la fonction arctan
pour l’établissement de la carte de phase enroulée, cette dernière n’est pas
déterminée par la relation :

∆(x′, y′) = φB(x′, y′)− φA(x′, y′) (2.9)

mais par la méthode suivante :
1. déduction des distributions sin φA(x′, y′), cos φA(x′, y′), sin φB(x′, y′) et

cos φB(x′, y′) fournies respectivement par les numérateurs et dénomi-
nateurs de la relation 1.11.
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2. détermination de la tangente de la carte de phase enroulée par la for-
mule :

tan ∆(x′, y′) =
sin φA(x′, y′) cos φB(x′, y′)− sin φB(x′, y′) cos φA(x′, y′)
cos φA(x′, y′) cos φB(x′, y′) + sin φA(x′, y′) sin φB(x′, y′)

(2.10)
3. obtention des franges de corrélation par la relation :

∆(x′, y′) = arctan2 [tan ∆(x′, y′)] (2.11)

Le code du programme, réalisé à l’aide du logiciel LabViewr (National
Instruments), n’est pas présenté dans ce travail. Signalons simplement que
pour traiter les images, celles-ci sont converties en matrices. Pour chaque
image, l’élément (x’,y’) de la matrice correspond au pixel (x’,y’) du détecteur.
La valeur de cet élément est exprimée en niveaux de gris et est proportionnelle
à l’éclairement du pixel (x’,y’). Les images enregistrées présentent 512 pixels
x 512 pixels et 256 niveaux de gris.



Chapitre 3

Application du dispositif
expérimental de shearographie.

La première partie de ce rapport a établi les notions nécessaires à la
compréhension de la shearographie. Cette partie bibliographique a permis le
développement d’une installation originale d’interférométrie différentielle de
speckle, à chemins optiques quasi-communs et basée sur la séparation des
états de polarisation. La description de cette installation a été proposée au
chapitre 2. Le présent chapitre concerne une première application du montage
développé. Celle-ci permet de montrer le bon fonctionnement de l’installation
et de nous familiariser avec les résultats obtenus en shearographie.

3.1 Description du système objet/contrainte.
Pour pouvoir par la suite valider l’interprétation des résultats obtenus,

il est nécessaire d’avoir une "idée intuitive" sur la manière dont l’objet se
déforme sous l’effet de la contrainte appliquée. Par conséquent, le système
objet/contrainte étudié est choisi relativement élémentaire. De plus, le choix
d’un système simple permettra par la suite de valider les résultats à l’aide de
simulations numériques par éléments finis. Cette étude comparative entre la
théorie et l’expérience est une des perspectives à court terme de ce travail.
Pour ce faire, des contacts ont été noués avec les équipes respectives des
Professeurs Serge CESCOTTO1 de l’Université de Liège et Hugo SOL2 de la
Vrije Universiteit Brussel.

1Département Structures - Mécanique des matériaux et des solides. Institut de Méca-
nique et Génie Civil.

2Département MEMC (Mechanica van materialen en constructies).
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L’objet analysé est une plaque d’acier plane, rectangulaire, percée dans un
premier temps de trois trous. Ces trous permettent de poser la plaque sur trois
billes, lesquelles sont elles-mêmes posées sur des pieds verticaux3 (Fig. 3.1).
Cette configuration permet de replacer très précisément l’objet. Quant au
système de contraintes, il est constitué d’une masse sphérique. Celle-ci, posée
sur la plaque, y applique une force équivalente à son poids, laquelle induit les
déformations. Le système de contraintes décrit ci-avant permet de déterminer
très précisément la force exercée et donc le tenseur des contraintes pour
les futures simulations par éléments finis. Dans le but de replacer la masse
exactement au même endroit, un quatrième trou a été percé dans la plaque.
Les trous réalisés seront évidemment introduits dans la modélisation de la
plaque d’acier lors des simulations effectuées en collaboration avec l’équipe
du Professeur CESCOTTO. Signalons enfin que les trous qui permettent de
fixer la plaque forment un triangle isocèle. Cette configuration permet de
travailler avec une symétrie optimale4.

Fig. 3.1 – Photographie du système objet/contrainte étudié. Le miroir incliné à
45◦ évite de devoir positionner verticalement le système imageant.

3.2 Cartes de phase enroulées expérimentales.
La Fig. 3.2 présente les cartes de phase enroulées expérimentales relatives

à des masses sphériques m respectivement de 12 g et 19 g.
3Nous avons décidé d’utiliser trois points d’appuis et non quatre, car dans ce dernier

cas, il se pourrait que la plaque ne touche pas un des pieds. Cet effet induirait des erreurs
dans les simulations futures.

4La table d’optique utilisée ne permet pas de former un triangle équilatéral. Avec nos
moyens techniques, le triangle isocèle est donc celui qui présente la symétrie optimale.
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Fig. 3.2 – Cartes de phase enroulées relatives au système objet/contrainte décrit
à la section 3.1. A gauche : m=12 g. A droite : m=19 g.

3.3 Filtrage des cartes de phase enroulées.
En pratique, les franges de corrélation ne sont pas parfaitement visibles

(Fig. 3.2) : le bruit électronique de la caméra CMOS, ainsi que le phénomène
de décorrélation induisent un faible rapport signal sur bruit dans les cartes de
phase enroulées. Il en résulte que l’interprétation de ces dernières est difficile.
De même, le bruit induit une augmentation de l’erreur commise sur la mesure
de la dérivée première des déplacements. Il est par conséquent nécessaire de
les filtrer.

3.3.1 Filtrage par masque.

La littérature ([3], [27]-[29]) enseigne que, traditionnellement en shea-
rographie, la carte de phase enroulée est filtrée pixel par pixel à l’aide de
masques. Ces derniers correspondent à des matrices généralement carrées et
de dimension n impaire. La parité de la dimension du masque se justifie par
le rôle crucial que joue l’élément central de la matrice. Ainsi, en pratique, on
rencontre le plus souvent des matrices de dimension 3, 5, 7 voire 9.

Le masque le plus intuitif à utiliser est le masque moyen. Celui-ci pré-
sente des éléments, dits facteurs de poids ou coefficients, unitaires. Son
utilisation consiste à balader le masque sur l’image à filtrer et à remplacer
l’éclairement des pixels par un éclairement moyen Im, fonction de la valeur
des facteurs de poids et de la dimension du masque. Plus précisément, si
K(i,j) correspond à la valeur du coefficients (i,j) du masque5, si g(i,j) est

5Pour le masque moyen, les coefficients K(i,j) sont tous égaux à 1.



CHAPITRE 3 : APPLICATION. 46

l’éclairement du pixel recouvert par l’élément (i,j) du masque, et si S est la
somme des facteurs de poids K(i,j), alors l’éclairement moyen Im du pixel
recouvert par l’élément (n+1

2
, n+1

2
) central du masque6 résulte de la relation

[3] :

Im =
1

S

n∑
i=1

n∑
j=1

K(i, j)g(i, j) (3.1)

Afin d’éviter des problèmes lors de la conversion en image de la matrice
traitée, les valeurs Im calculées sont arrondies7 selon la convention8 suivante :

– le nombre décimal est arrondi à l’entier le plus proche. Par exemple, le
nombre 2.3 sera remplacé par le nombre 2 tandis que 2.6 sera arrondi
à 3.

– dans le cas où la première décimale correspond à 5, le nombre décimal
est arrondi à l’entier pair le plus proche. Ainsi, le nombre 2.5 sera
arrondi à 2 tandis que 3.5 sera arrondi à 4.

La Fig. 3.3 schématise l’application du masque moyen dans un exemple
arbitraire. Dans cet exemple, l’éclairement exprimé par le niveau de gris "12"
dans l’image à filtrer est remplacé par un éclairement moyen Im égal à "4",
dans le cas d’un masque moyen de dimension 3. En effet, en accord avec la
relation 3.1 :

Im =
1

9
(1.2 + 1.3 + 1.4 + 1.2 + 1.12 + 1.4 + 1.2 + 1.3 + 1.4) = 4

Le masque moyen présente des facteurs de poids égaux. L’éclairement
du pixel analysé, c’est-à-dire recouvert par l’élément central du masque, est
sur le même pied d’égalité que les éclairements de ses voisins lors de la dé-
termination de l’éclairement moyen Im. Pour donner plus d’importance à
l’éclairement du pixel analysé, l’utilisation de facteurs de poids distribués
selon une loi gaussienne à deux dimensions et centrée sur l’élément central
du masque est proposée. Le masque est alors dit masque gaussien. Son
utilisation est analogue à celle du masque moyen.

6L’élément central du masque joue un rôle essentiel pour le filtrage : il permet d’iden-
tifier quel pixel est traité.

7En effet, la valeur des éléments matriciels doit correspondre à un niveau de gris, c’est-
à-dire à un nombre entier compris entre 0 et 255 dans le cas d’un enregistrement sous 8
bits.

8Cette convention est adoptée en accord avec celle du logiciel de programmation
LabViewr utilisé pour nos implémentations numériques.



CHAPITRE 3 : APPLICATION. 47

2

2

2

2

❊

3 4 1

3 4 10

2 4 1

3 4 9

12

3 8 1

1 1 1

1 1 1

1 1 1

3 4 5

3 64

3 4 5

1

1

1

1

1

2

2

2

2

2

1 7 3 4 1 2

. . . . . .

.

.

.

.

.. . .. .

masque 
moyen

image filtréeimage à filtrer

.

.

.

.

3

4

4

3 4 4 4

Fig. 3.3 – Exemple de l’application d’un masque moyen [3]. En rouge : la zone
de l’image recouverte par le masque pour le traitement du pixel d’éclairement "12"
de l’image originale. Les éclairements des divers pixels sont exprimés en niveau
de gris. Le symbole étoilé caractérise l’application du masque sur l’image à filtrer.
Cette application est réalisée en accord avec la relation 3.1.

La littérature [3] propose aussi la possibilité de filtrer la carte de phase
enroulée par un filtre médian. Contrairement aux masques moyen et gaus-
sien, le filtre médian est défini à partir de l’image elle-même et est différent
pour chaque pixel de l’image à filtrer. Plus précisément, le coefficient K(i,j)
du masque est pris égal à l’éclairement g(i,j), c’est-à-dire à l’éclairement du
pixel recouvert par l’élément (i,j) du masque. Une fois le masque relatif au
pixel à traiter construit, les coefficients du masque sont classés par ordre
croissant. L’éclairement de l’élément central de ce classement constitue le
nouvel éclairement du pixel analysé (Fig.3.4).

Filtrage aux bords de l’image.

Quelque soit le masque de filtrage de dimension n utilisé, seuls les pixels
de l’image compris entre les éléments matriciels (n+1

2
,n+1

2
), (n+1

2
, C − n+1

2
),

(L − n+1
2
, n+1

2
) et (L − n+1

2
, C − n+1

2
) peuvent être traités ; où L et C cor-

respondent respectivement au nombre de lignes et de colonnes de l’image à
filtrer. Pour palier ce problème, la référence [3] propose d’appliquer le masque
uniquement où cela est possible et de fixer l’éclairement des pixels intrai-
tables, c’est-à-dire proches du bord, égal à 0 dans l’image filtrée. Cette tech-
nique induit une perte d’informations sur les bords de l’image (Fig. 3.5). Par
conséquent, nous avons préféré utiliser un autre stratagème. Celui-ci consiste
à ajouter, comme indiqué à la Fig. 3.5, (n-1) lignes/colonnes de zéros sur
l’image originale, réparties équitablement aux bords de la matrice. Ces nou-
velles rangées permettent d’appliquer le masque aux pixels proches du bord.
Les rangées ainsi ajoutées sont ensuite retirées de l’image filtrée.
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Fig. 3.4 – Exemple de l’application d’un masque médian [3]. En rouge : la zone
de l’image recouverte par le masque pour le traitement du pixel d’éclairement "12"
de l’image originale. Les éclairements des divers pixels sont exprimés en niveau de
gris.

Dans ce traitement des pixels proches des bords de l’image à filtrer, il est
nécessaire de ne pas donner de poids aux nouveaux éléments, c’est-à-dire aux
zéros ajoutés. Pour ce faire, dans le cas d’un masque moyen ou gaussien, la
somme S des coefficients K(i,j) du masque ne comptabilise pas les facteurs
de poids qui recouvrent les zéros ajoutés (Fig. 3.5). Dans le cas d’un masque
médian, les facteurs de poids qui recouvrent les zéros ajoutés n’interviennent
pas dans le classement des coefficients du masque.

Remarques.

1. En pratique, les masques de filtrage sont souvent appliqués plusieurs
fois sur l’image à traiter.

2. Les notations suivantes seront adoptées dans ce travail : un masque
moyen de dimension n appliqué m fois sera noté moy(n/mX) ; un masque
gaussien de dimension n, d’écart-type σ appliqué m fois sera écrit
gauss(n,σ/mX) ; et un masque médian de dimension n appliqué m fois
sera identifié par la notation med(n/mX).

3. L’algorithme de filtrage fondé sur les masques est le plus courant. Tou-
tefois, signalons l’existence de nombreuses autres techniques telles, par
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Fig. 3.5 – Schématisation du traitement des pixels proches des bords de l’image
dans le cas d’un filtre moyen de dimension 3. En haut : la matrice intitulée "image
filtrée I" correspond à l’image originale filtrée par la méthode proposée dans la
référence [3]. En bas : notre méthode. La carte de phase filtrée finale correspondra
à la matrice "image filtrée II" dans laquelle les rangées de zéros sont retirées. Les
éclairements des divers pixels sont exprimés en niveau de gris.

exemples, le filtrage par transformée de Fourier9, par transformée en
ondelettes ([30], [31]), ou encore l’utilisation de masques plus exotiques
tels, par exemple, des masques anisotropes10 [29].

3.3.2 Effets des différents masques de filtrage.

Pour établir les avantages et les inconvénients des différents masques de
filtrage, nous pourrions comparer leurs actions sur un shearogramme obtenu
expérimentalement. Cependant, dans une telle démarche, le profil idéal des
franges, c’est-à-dire celui qui serait enregistré en l’absence de tout bruit, n’est

9Signalons que le filtrage par masque gaussien est très proche de celui par transformée
de Fourier.

10Les masques anisotropes correspondent non plus à des matrices carrées, mais à des
matrices rectangulaires.
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pas connu. Il est dès lors impossible de conclure quel masque est le plus effi-
cace. En d’autres mots, quel masque réduit au mieux le bruit en perdant le
moins d’informations ? Pour résoudre ce problème, la littérature ([30], [21])
suggère d’étudier le filtrage sur une carte de phase établie et bruitée préa-
lablement par simulation numérique (Fig. 3.6). Les franges de corrélation
bruitées sont obtenues en ajoutant un bruit gaussien aux données11.

Fig. 3.6 – A gauche : franges de corrélation idéales simulées numériquement. A
droite : les mêmes franges bruitées à l’aide d’un bruit gaussien.

Pour comparer l’action des différents masques, il est nécessaire de possé-
der des outils de comparaison entre les images filtrées et la carte de phase
idéale. Pour ce faire, le premier outil à notre disposition est la simple visua-
lisation des images. Celle-ci permet une analyse qualitative du filtrage mais
est essentiellement subjective. Pour résoudre ce problème, la visualisation des
cartes de phase sera appuyée par une coupe des images le long de l’axe X’
du détecteur et à une ordonnée Y’ arbitraire. Y’ est fixé égal à 250 pixels
pour toutes les coupes qui suivent. Ce profil permet une visualisation plus
objective de la distribution de l’éclairement des images, exprimée en niveaux
de gris (Fig. 3.7).

Les techniques de filtrage seront également comparées quantitativement
à l’aide de la fonction fidélité F des différentes images filtrées [30] :

F = 1−

∑
x′,y′

[Ifil(x
′, y′)− Iid(x

′, y′)]2

∑
x′,y′

I2
id(x

′, y′)
(3.2)

11Celles-ci correspondent au numérateur et au dénominateur de la distribution
tan∆(x′, y′) (relation 2.10).
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Fig. 3.7 – Profils des franges de corrélation idéales et bruitées de la Fig. 3.6.

où Ifil(x
′, y′) représente la distribution de l’éclairement de l’image filtrée

considérée et Iid(x
′, y′), celle de la carte de phase enroulée idéale. Les sommes

sont effectuées sur tous les pixels (x’,y’) des images. Plus cette fonction
F convergera vers l’unité, plus la carte de phase enroulée filtrée sera, en
moyenne, proche de l’image idéale.

Influence du lieu du filtrage.

La Fig. 3.8 montre l’action d’un masque moyen de dimension 5 appliqué
trois fois sur la carte de phase simulée et bruitée. Cette coupe longitudinale
enseigne principalement que le filtrage induit une perte importante des sauts
de phase : il produit une fonction sinusoïdale au lieu d’une fonction en dents
de scie. Cet effet rend tout déroulage de phase difficile, voire impossible. Pour
éviter ce problème, la littérature ([3], [21]) suggère de filtrer le numérateur
et le dénominateur de la fonction tan ∆(x′, y′), définie par la relation 2.10.
En effet, comme ce numérateur et ce dénominateur correspondent respecti-
vement à une fonction sinus et cosinus, le filtrage causera principalement leur
lissage. Les sauts de phase seront reconstruits après l’application de la fonc-
tion arctan2 sur la distribution tan ∆(x′, y′) filtrée, ce que confirme la Fig.
3.8. En accord avec ces observations, le filtrage sera toujours effectué par la
suite sur le numérateur et le dénominateur de la distribution tan ∆(x′, y′). Il
sera dit appliqué au niveau Sinus/Cosinus .



CHAPITRE 3 : APPLICATION. 52

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450 500

E
cl

ai
re

m
en

t [
ni

ve
au

x 
de

 g
ri

s]

Abscisse X’ [pixels]

Filtrage au niveau de la carte de phase          

Filtrage au niveau Sinus/Cosinus

Fig. 3.8 – Profils des franges de corrélation filtrées par un masque moy(5/3X) au
niveau de la carte de phase ∆(x′, y′) et au niveau Sinus/Cosinus.

Conception d’une nouvelle carte de phase simulée.

Les franges simulées précédemment ont permis de montrer l’influence du
lieu du filtrage. Néanmoins, elles ne rendent pas possible l’étude de l’action
des masques. En effet, nous avons observé que tout masque renvoie, après un
nombre de filtrages suffisant, des franges filtrées proches des franges idéales
simulées mais sans dévoiler l’effet des masques. Ce problème est lié à la li-
néarité du profil ainsi qu’à la fréquence spatiale des franges de corrélation
simulées. Pour permettre l’analyse de l’effet des masques de filtrage, une
nouvelle carte de phase enroulée est simulée. Celle-ci, contrairement à la pré-
cédente, contiendra un "signal", lequel sera détérioré par le filtrage. Cette
détérioration sera intrinsèque au masque utilisé et permettra donc de mettre
en évidence la qualité et les défauts des différents masques. Pour pouvoir ana-
lyser le comportement des filtres vis-à-vis d’une large gamme de fréquences
spatiales, le signal ajouté est choisi rectangulaire12. La Fig. 3.9 montre les
nouvelles franges de corrélation idéales et bruitées simulées. La Fig. 3.10
montre leur profil.

12En effet, la décomposition en série de Fourier d’une fonction créneau comporte un
grand nombre d’harmoniques [36].
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Fig. 3.9 – A gauche : les nouvelles franges de corrélation idéales simulées numé-
riquement. A droite : les mêmes franges bruitées à l’aide d’un bruit gaussien.
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Fig. 3.10 – Profils des images de la Fig. 3.9.

Effet du masque moyen.

La Fig. 3.11 montre le profil de la carte de phase enroulée idéale, ainsi que
celui des franges de corrélation filtrées quarante fois par un masque moyen de
dimension 513. De ce graphique, nous concluons que le filtre moyen joue le rôle
d’un filtre passe-bas : il lisse les bords des signaux rectangulaires et élimine

13Le filtrage a été effectué 40 fois pour bien mettre en évidence l’action du masque.
Les observations réalisées sur ce filtrage restent valables quelle que soit la dimension du
masque.
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le bruit. L’élimination des hautes fréquences spatiales renvoie des images
sans bruit et induit une diminution du contraste des franges de corrélation
représentatives du signal14 (Fig. 3.13). Signalons aussi que le filtre moyen
induit un léger déplacement des sauts de phase. Le comportement du filtre
est lié à la moyenne effectuée lors du filtrage (section 3.3.1).
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Fig. 3.11 – Profils des franges de corrélation idéales et filtrées par un masque
moy(5/40X).

La Fig. 3.12 caractérise la fidélité en fonction de la dimension du masque
et du nombre de filtrages appliqués sur la carte de phase enroulée, bruitée et
simulée. Elle montre que quelle que soit la dimension du masque moyen, la
fidélité en fonction du nombre de filtrages présente toujours la même allure :
la fidélité croît jusqu’à un maximum, qualifié de fidélité optimale Fopt, pour
ensuite décroître. La croissance caractérise l’élimination du bruit. Quant à
la décroissance, elle dépeint la perte des hautes fréquences des signaux rec-
tangulaires15. Les courbes de fidélité signalent aussi que plus la dimension
du filtre est importante, plus la fidélité optimale est ponctuelle16 et est at-
teinte pour une faible valeur du nombre de filtrages. Enfin, quelle que soit

14Les franges relatives au signal et filtrées paraissent floues.
15La décroissance de la fidélité pour le masque de dimension 3 n’est pas visible, car le

nombre de filtrages appliqués n’est pas suffisamment élevé.
16C’est-à-dire, que la fidélité optimale a lieu pour une seule valeur du nombre de filtrages

appliqués.
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la dimension du masque moyen, la fidélité optimale est égale à 97.4% pour
l’exemple étudié.
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Fig. 3.12 – Evolution de la fidélité en fonction du nombre de filtrages appliqués
pour des masques moyens de dimension 3, 5, 7, 9 et 15.

Signalons encore qu’à la fidélité optimale, la carte de phase enroulée fil-
trée est quasi-identique quelle que soit la dimension du masque utilisée. Par
exemple, la carte de phase filtrée par un masque de dimension 3 appliqué
37 fois et celle filtrée par un masque de dimension 7 appliqué 4 fois sont
quasi-identiques (Fig. 3.13 et Fig. 3.14).

Effet du masque gaussien.

La Fig. 3.15 caractérise, entre autres, le profil des franges de corrélation
idéales ainsi que celui de la carte de phase filtrée par un masque
gauss(5,

√
0.2/40X). De ces coupes, nous constatons que le filtre gaussien

produit les mêmes effets qu’un masque moyen, mais avec une élimination
plus lente, en terme de nombre de filtrages, des hautes fréquences spatiales.
Ce comportement permet une meilleure conservation des signaux rectangu-
laires, mais s’accompagne d’une réduction plus faible du bruit. Ceci induit
des franges filtrées plus contrastées, mais plus bruitées par rapport à celles
obtenues à l’aide du masque moyen (Fig. 3.16).
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Fig. 3.13 – A gauche : les franges de corrélation filtrées par un masque
moy(3/37X). A droite : les franges de corrélation filtrées par un masque moy(7/4X).
Les deux images présentent une fidélité de 97.4% par rapport aux les franges de
corrélation idéales.
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Fig. 3.14 – Profil des images de la Fig. 3.13.

L’examen de l’influence de l’écart-type de la distribution gaussienne sur
l’action du masque permet d’affirmer que plus la gaussienne présentera un
écart-type élevé, plus l’élimination des hautes fréquences sera rapide (Fig.
3.15). En effet, plus l’écart-type est grand, plus la pondération de l’élément
central du masque sera proche des autres coefficients K(i,j) et plus le filtre
gaussien convergera vers un filtre moyen de même dimension.
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Fig. 3.15 – Profils des franges de corrélation idéales et filtrées par des masques
gauss(5,

√
0.1/40X) et gauss(5,

√
0.2/40X).

Fig. 3.16 – A gauche : les franges de corrélation filtrées par un masque
gauss(5,

√
0.2/40X). A droite : les mêmes franges filtrées par un masque

moy(5/40X).

La faible vitesse d’élimination des hautes fréquences conduit à une crois-
sance plus lente de la fidélité par rapport à celle relative au masque moyen
(Fig. 3.17). Par conséquent, l’utilisation du masque gaussien nécessite un
nombre important de filtrages pour atteindre la fidélité optimale. Dans notre
exemple, la fidélité optimale ne semble pas encore atteinte après 40 filtrages
pour des faibles valeurs de l’écart-type. Pour des écarts-types plus importants
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(σ =
√

0.4 pixel et σ =
√

0.8 pixel), la fidélité optimale est atteinte et est
égale à celle donnée par le masque moyen17.
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Fig. 3.17 – Evolution de la fidélité en fonction du nombre de filtrages appliqués
pour des masques gaussiens de dimension 5, d’écart-type

√
0.2 pixel,

√
0.4 pixel et√

0.8 pixel, et pour un masque moyen de dimension 5.

Suivant les courbes de fidélité, nous serions tentés d’utiliser un écart-type
élevé. Cependant, ce cas revient à utiliser un masque moyen. Par conséquent,
si l’on veut utiliser le masque gaussien pour ses propriétés et non pas pour
celles du masque moyen, nous utiliserons un écart-type fixé à

√
0.2 pixel :

un écart-type de
√

0.1 pixel ne présente pas un effet suffisant (Fig. 3.15) et
un écart-type de

√
0.4 pixel induit déjà une action trop proche de celle du

masque moyen (Fig. 3.18).

Pour un écart-type égal à
√

0.2 pixel, la fidélité est indépendante de la di-
mension du masque (Fig. 3.19). En effet, l’écart-type étant petit, les éléments
aux bords des masques de dimension 5, 7 et plus, présentent des éclairements
négligeables. Ils possèdent par conséquent un poids nul dans la moyenne ef-
fectuée par le filtrage. Cette constatation fondée sur la fidélité est confirmée
par la Fig. 3.20, laquelle représente les profils des franges filtrées par des

17Ce qui est logique vu que plus l’écart-type augmente, plus le masque gaussien converge
vers un masque moyen.
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Fig. 3.18 – Profil des franges idéales et filtrées par des masques gauss(5,
√

0.4/40X)
et moy(7/4X). Les profils des images filtrées sont superposées.

masques gaussiens de dimension 3, 5 et 7, et d’écart-type
√

0.2 pixel. Par
conséquent, pour un écart-type de

√
0.2 pixel, le temps de filtrage est le seul

critère pour le choix de la dimension du masque à utiliser. Le temps de fil-
trage diminuant avec la dimension du masque, la dimension 3 est conseillée
pour l’utilisation d’un filtre gaussien.

Enfin signalons que le filtre gaussien induit un déplacement des sauts de
phase. Celui-ci est d’autant plus marqué que l’écart-type de la distribution
gaussienne est faible (Fig. 3.15 et Fig. 3.18). Cet effet est lié à l’élimination
du bruit : pour un écart-type faible, le bruit est moins éliminé, il affecte donc
de manière plus importante la moyenne réalisée lors du filtrage. Le poids du
bruit dans la moyenne induit le déplacement des sauts de phase.

Effet du masque médian.

La Fig. 3.21 présente le profil des franges de corrélation idéales et fil-
trées quarante fois par un masque médian de dimension 5. Ce masque réduit
le bruit de manière plus efficace que le masque gaussien mais moins que le
masque moyen. Quant à la conservation du signal, le masque médian conserve
mieux les pentes des signaux rectangulaires que ne le font les filtres étudiés
précédemment. Les franges de corrélations filtrées par le masque médian sont
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Fig. 3.19 – Evolution de la fidélité en fonction du nombre de filtrages appliqués
pour des masques gaussiens de dimension 3, 5 et 7, et d’écart-type
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Fig. 3.20 – Profils des franges filtrées par des masques gaussiens de dimension 3,
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les plus contrastées (Fig. 3.23). Ce gain de contraste est un avantage impor-
tant. Malheureusement, il se paye par un inconvénient de taille, le masque
médian propage les erreurs18. En effet si une erreur recouvre un nombre suffi-
samment grand de pixels, alors à la place de l’éliminer, le filtrage la propage.
Ainsi, par exemple, suite au filtrage, les franges noires sont arrondies aux
bords de l’image (Fig. 3.23) et cet effet augmente avec le nombre de filtrages
appliqués. Compte tenu de ce problème, en pratique, le masque médian ne
pourra pas être appliqué un trop grand nombre de fois. Traditionnellement,
le nombre d’applications est limité aux alentours de 5 selon la dimension du
masque.
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Fig. 3.21 – Profils des franges de corrélation idéales et filtrées par un masque
med(5/40X).

La fidélité en fonction du nombre de filtrages appliqués et pour diverses
dimensions du masque médian est reprise à la Fig. 3.22. Contrairement aux
filtres précédents, la fidélité optimale dépend de la dimension du masque.
Ainsi, le filtre de dimension 7 présente une fidélité optimale supérieure à celle
des masques de dimension 3, 5 ou 9. De plus, la décroissance de la fidélité est
moins marquée que celle relative au masque moyen. Cet effet est lié au fait
qu’après un certain nombre de filtrages, la seule action du masque médian

18Les cartes de phase peuvent contenir des erreurs liées, par exemple, à la saturation de
certains pixels du détecteur (Fig. 3.24) ou aux bords de l’image.
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est de propager les erreurs, contrairement au filtre moyen qui moyenne au
maximum les éclairements des pixels.
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Fig. 3.22 – Evolution de la fidélité en fonction du nombre de filtrages appliqués
pour des masques médians de dimension 3, 5, 7 et 9, et pour un masque moyen de
dimension 7.

En résumé, la Fig. 3.23 présente les franges de corrélation idéales et filtrées
par les différents masques étudiés, à leur fidélité optimale et appliqués au
niveau Sinus/Cosinus.

3.3.3 Filtrage des cartes de phase enroulées expérimen-
tales.

Sur base des résultats de l’étude précédente relative à l’action des masques
de filtrage, le Tab. 3.1 classe les masques moyen, gaussien et médian pour dif-
férentes caractéristiques observées. Le chiffre 1 (resp. 3) correspond au mieux
(resp. moins) adapté des trois masques pour la caractéristique analysée.

La classification précédente montre que le filtre gaussien ne prend jamais
le dessus sur les autres masques. Par conséquent, il ne sera pas utilisé pour
filtrer les cartes de phase enroulées expérimentales. Pour les masques moyen
et médian, nous constatons qu’ils présentent des avantages très différents l’un
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Fig. 3.23 – En haut : respectivement de gauche à droite, les franges de corrélation
idéales et filtrées par un masque med(7/7X). En bas : respectivement de gauche
à droite, les franges de corrélation filtrées par un masque moy(7/4X) et par un
masque gauss(3,

√
0.2/40X). Les images filtrées correspondent à la fidélité optimale

de leur masque respectif.

moy(n/mX) gauss(n,σ/mX) med(n/mX))
élimination du bruit 1 3 2

conservation du contraste 3 2 1

Tab. 3.1 – Classification des masques de filtrage vis-à-vis de diverses caractéris-
tiques.

par rapport à l’autre. Dans le but d’exploiter au mieux les avantages de cha-
cun des deux filtres, le filtrage des cartes de phase enroulées devrait dès lors
être constitué d’une combinaison de ces deux masques. Plus précisément, les
cartes de phase enroulées expérimentales devraient d’abord être filtrées par
un masque médian pour éliminer les points aberrants puis par un masque
moyen pour réduire le bruit de manière plus globale. Malheureusement, ces
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prédictions théoriques ne peuvent pas être appliquées à notre cas. En effet,
nous avons constaté que l’application d’un masque médian sur les cartes de
phase induit une augmentation non négligeable des erreurs19 situées au centre
des images et ce même si le masque est de dimension 3 et appliqué une seule
fois (Fig. 3.24). Pour éviter ce problème, les cartes de phase enroulées ana-
lysées actuellement seront filtrées uniquement à l’aide d’un masque moyen.

Fig. 3.24 – A gauche : les franges de corrélation expérimentales filtrées par un
masque med(3/1X) et relatives à la masse de 12 grammes. A droite : les mêmes
franges filtrées à l’aide d’un masque med(3/3X).

En appliquant 14X un masque moyen de dimension 7 sur les franges de
corrélation expérimentales, ces dernières semblent totalement dépourvues de
bruit (Fig. 3.25), mais cette élimination se paye par une diminution de l’am-
plitude des sauts de phase (Fig. 3.26). Pour réduire cet effet, nous préférerons
limiter le filtrage au moment où la visualisation des franges est considérée
suffisamment aisée c’est-à-dire, dans notre cas, après la convolution par un
masque moy(3/1X) (Fig. 3.27). Nous verrons également par la suite que dans
notre exemple, la simple convolution de l’image par un masque moy(3/1X)
est suffisante pour la mesure de la dérivée première de la composante hors-
plan des déplacements (section 3.6).

Pour pouvoir limiter le nombre de filtrages, il est nécessaire de travailler
avec un rapport signal sur bruit initial le plus élevé possible. Nous devons
donc réduire de "manière naturelle" le bruit présent dans les cartes de phase.
Quelques perspectives d’amélioration doivent par conséquent être apportées

19Ces erreurs sont déjà présentes dans les cartes de phase avant le filtrage par le masque
médian. Leur origine est liée à une saturation du détecteur.
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Fig. 3.25 – Les cartes de phase enroulées expérimentales filtrées par un masque
moy(7/14X). A gauche : m=12 g. A droite : m=19 g.
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Fig. 3.26 – Profils des franges de corrélation relatives à la Fig. 3.25.

à court terme dans le dispositif expérimental. Ainsi, nous recommandons le
remplacement de la caméra CMOS par une caméra CCD. Ce changement
permettra la réduction du bruit électronique. De même, une étude devra
être réalisée pour déterminer la taille optimale du diaphragme du système
imageant. En effet, un diaphragme plus petit permettrait de réduire le phé-
nomène de décorrélation mais réduirait le champ du système optique. Un
compromis entre les deux effets doit être effectué. Un raisonnement analogue
peut être tenu pour la taille des pixels du détecteur. Des pixels plus pe-
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Fig. 3.27 – Les franges de corrélation expérimentales filtrées par un masque
moy(3/1X). A gauche : m=12 g. A droite : m=19 g.

tits réduiraient le bruit électronique mais augmenteraient le phénomène de
décorrélation. La taille des pixels va donc devoir également être optimisée
en tenant compte évidemment des disponibilités du marché. Enfin, le bruit
peut être réduit à l’aide d’un algorithme de décalage de phase tempo-
rel "moyenné". Ce dernier consiste à enregistrer n shearogrammes pour
chaque déphasage α introduit par le modulateur de phase. Les n distribu-
tions d’éclairement relatives au même déphasage α sont ensuite moyennées
pour être introduites dans la formule 1.9, 1.11 ou 1.13 selon l’algorithme
TPS utilisé. La réduction du bruit induite par ce décalage de phase tempo-
rel "moyenné" exige toutefois un plus grand nombre d’enregistrements et,
par conséquent, induit une augmentation des temps d’acquisition et de trai-
tements numériques. Pour limiter l’augmentation de ces temps, il est alors
nécessaire d’utiliser des outils et en particulier, une caméra et un ordinateur
plus rapides. Il s’en suivra une augmentation du coût de l’installation. Enfin,
signalons que le décalage de phase temporel "moyenné" a été proposé par
le Docteur Pierre SLANGEN et son doctorant Benoît GAUTHIER de l’ES-
TIM d’Alès20 où j’ai eu le plaisir de séjourner pendant une semaine dans le
cadre d’une collaboration ERASMUS-SOCRATES. Lors de ce stage, j’ai pu
apprécier l’efficacité de cet algorithme.

Remarque.

Dans un futur plus ou moins proche, nous devrons très probablement
traiter des cartes de phase plus complexes, c’est-à-dire qui présentent des
fréquences spatiales élevées et/ou qui contiennent un "signal" caractéristique

20Ecole Supérieure des Techniques Industrielles et des Mines d’Alès (France).
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d’un défaut ou d’une discontinuité dans la dérivée première des déplace-
ments. La philosophie du filtrage adoptée, qui consiste à filtrer au minium
les données, permettra de réduire les pertes d’informations de hautes fré-
quences spatiales. Toutefois le masque moyen sera inadapté au traitement
de ces cartes de phase. Le filtre médian sera testé et/ou un algorithme de
filtrage plus adéquat sera développé.

3.3.4 Conclusions relatives au filtrage.

L’étude, par simulations numériques, de l’action des masques moyen,
gaussien et médian a suggéré de filtrer les cartes de phases enroulées ex-
périmentales au niveau Sinus/Cosinus et consécutivement par des masques
médian et moyen. En pratique, dans l’exemple considéré, le masque médian
propageait trop rapidement des erreurs initialement présentes dans les cartes
de phase. Pour éviter cet effet, seul le masque moyen a été utilisé pour filtrer
les franges de corrélation. Un tel filtrage a permis l’obtention de franges non
bruitées mais a induit une diminution de l’amplitude des sauts de phase. Pour
conserver les sauts de phase, la philosophie qui consiste à limiter le nombre
de filtrages a été adoptée.

Pour les prochaines applications, nous réduirons "de manière naturelle"
le bruit en optimisant certains paramètres du montage tels la taille du dia-
phragme du système imageant et la taille des pixels du détecteur. Pour le
filtrage, nous analyserons l’efficacité de la combinaison des masques médian
et moyen. Si cette combinaison est satisfaisante, elle sera utilisée pour traiter
les résultats sinon un algorithme plus puissant devra être développé, mais
quel que soit le nouvel algorithme utilisé nous limiterons toujours le nombre
de filtrages au moment où l’interprétation des franges s’avère suffisamment
aisée car un filtrage entraînera toujours une perte d’informations.

3.4 Interprétation qualitative des cartes de phase
enroulées expérimentales.

La convolution d’un masque moy(3/1X) avec les cartes de phase expé-
rimentales permet une visualisation confortable des franges de corrélation
(Fig. 3.27). Ces cartes de phase enroulées filtrées permettent d’analyser qua-
litativement la dérivée première des déplacements hors-plan produits par la
charge de la masse sphérique sur la plaque d’acier.
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En rappelant que la direction du cisaillement réalisé par le prisme sépa-
rateur des états de polarisation est parallèle à l’axe X’ du détecteur, nous
constatons que le dispositif de shearographie permet la mesure de la déri-
vée première, par rapport à la direction du cisaillement, des déplacements
hors-plan. La shearographie est donc bien une technique différentielle comme
le prédit la théorie. En effet, l’interférométrie de speckle "classique" donne
des courbes d’iso-déplacements du système objet-contrainte étudié quasi-
circulaires, concentriques et centrées sur la position de la bille (Fig. 3.28).
Le gradient de ces courbes est perpendiculaire à ces dernières. La compo-
sante selon l’axe X’ de ce gradient de déplacements correspond à des franges
semblables à celles obtenues en shearographie et présentées dans ce travail.

Fig. 3.28 – Carte de phase enroulée expérimentale, non filtrée, obtenue par in-
terférométrie de speckle à l’ESTIM d’Alès lors d’un stage de formation par la re-
cherche et dans le cadre d’une collaboration ERASMUS-SOCRATES. Le système
objet/contrainte étudié est le même que celui présenté dans ce rapport. La masse
de la bille déposée est 12 grammes.

La carte de phase enroulée relative à la masse de 19 grammes présente
plus de franges, ou en d’autres termes, des franges plus étroites que celles
produites par la bille de 12 grammes. Ceci semble logique car la contrainte,
et donc les déplacements, augmente avec la masse de la bille.

La courbure des franges de corrélation est inversée lorsque l’on se place
parallèlement à l’axe X’ à gauche ou à droite de la bille. Ce changement de
courbure traduira la symétrie de la dérivée première des déplacements que
nous obtiendrons après le déroulage de phase.
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3.5 Déroulage des cartes de phase enroulées ex-
périmentales.

Les cartes de phase enroulées permettent une interprétation qualitative de
la dérivée première du champ des déplacements du système objet/contrainte
étudié. Pour une étude quantitative de la dérivée, il est nécessaire de dérouler
la phase. La spin-off DEIOS s.a. a développé un logiciel de déroulage de phase
fondé sur la croissance de régions [20]. Il s’est avéré que ce programme est
efficace pour le déroulage des franges de corrélation obtenues en shearogra-
phie. Nous utiliserons ce logiciel pour dérouler les cartes de phase enroulées.
Les Fig. 3.29 et 3.30 présentent le résultat du déroulage de phase des franges
de corrélation relatives à la Fig. 3.27. Pour faciliter la visualisation de l’al-
lure des distributions ∆d(x

′, y′), la Fig. 3.31 présente leur profil le long de la
droite d’équation X’ = 215 pixels.

Fig. 3.29 – Carte de phase expérimentale déroulée relative à la charge de la bille
de 12 grammes. L’axe vertical représente la distribution ∆d(x′, y′).

Nous avons vu à la section 1.4.2 que les cartes de phase déroulées ∆d(x
′, y′)
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Fig. 3.30 – Carte de phase expérimentale déroulée relative à la charge de la bille
de 19 grammes. L’axe vertical représente la distribution ∆d(x′, y′).
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Fig. 3.31 – Profils des cartes de phase déroulées des Fig. 3.29 et 3.30.
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sont liées à la dérivée première des déplacements :

∆d(x
′, y′) =

[(−→
Ks.−→ex

) ∂u

∂x′i
+

(−→
Ks.−→ey

) ∂v

∂x′i
+

(−→
Ks.−→ez

) ∂w

∂x′i

]
δx′i (3.3)

L’interféromètre hors-plan mis au point au laboratoire étant en ligne et
le cisaillement étant réalisé parallèlement à la direction X’, la relation précé-
dente peut s’écrire :

∆d(x
′, y′) =

4π

λ

∂w

∂x′
δx′ (3.4)

En pratique, le laser utilisé a une longueur d’onde de 532nm et la taille du
cisaillement a été estimée à 8mm. Par conséquent, les distributions de phase
déroulées ∆d(x

′, y′) livrent la dérivée première de la composante hors-plan
des déplacements par l’équation :

∂w

∂x′
=

532.∆d(x
′, y′)

32π
10−6 (3.5)

Sur base de cette relation, nous avons pu établir les Fig. 3.32 et 3.33, lesquelles
représentent la dérivée première des déplacements hors-plan résultants de
l’application de la charge respective des billes de 12 g et 19 g. La Fig. 3.34
présente le profil de ces cartes de dérivée de déplacements.

3.6 Interprétation des cartes de phase dérou-
lées expérimentales.

Les Fig. 3.33 et 3.34 permettent une analyse quantitative de la dérivée
première de la composante hors-plan des déplacements dus à la charge exercée
par les billes. Pour l’interprétation des résultats, notre raisonnement se basera
sur l’allure de la carte des déplacements hors-plan du système que nous avons
obtenue par interférométrie de speckle à l’ESTIM d’Alès (Fig. 3.35). La Fig.
3.36 correspond au profil de cette carte de déplacements le long de la droite
d’équation X’ = 215 pixels.

Qualitativement, nous constatons que la carte de la dérivée première des
déplacements obtenue en shearographie correspond à la dérivée première de
la carte des déplacements obtenue en interférométrie de speckle. Ceci est
vrai si le point d’inflexion présent dans les cartes de dérivée des déplace-
ments coïncide au maximum de la carte des déplacements, lequel correspond
intuitivement au point d’application de la charge.



CHAPITRE 3 : APPLICATION. 72

Fig. 3.32 – Dérivée première des déplacements hors-plan induits par la charge de
la bille de 12 grammes.

D’un point de vue quantitatif, ce point d’inflexion doit correspondre à une
dérivée première des déplacements nulle, ce qui n’est pas le cas. Ceci est lié
au déroulage de phase. En effet, lors de celui-ci, le programme égale à zéro
la phase d’un point aléatoire de l’image, lequel joue le rôle de référence. Les
résultats quantitatifs présentés correspondent par conséquent à une valeur
relative de la dérivée première des déplacements. Pour obtenir de manière
absolue les dérivées premières, il faut introduire des conditions physiques
supplémentaires. Dans notre cas, nous savons que les coordonnées (x’,y’)
du point d’inflexion correspondent à une valeur maximale des déplacements
hors-plan et donc aussi à une valeur nulle de leur dérivée. Ce critère phy-
sique permet, dans notre exemple, d’obtenir de manière absolue la dérivée
première de la composante hors-plan des déplacements. Pour ce faire, nous
devons fixer le point d’inflexion comme point de référence ou encore ajouter
un terme correctif aux résultats et d’une valeur telle que le point d’inflexion
corresponde à une dérivée première des déplacements nulle. Les Fig. 3.37,
3.38 et 3.39 présentent finalement la dérivée première des déplacements me-
surée de manière absolue. Ainsi, la correction apportée permet d’affirmer que
les charges des billes de 12 g et de 19 g induisent une dérivée première des
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Fig. 3.33 – Dérivée première des déplacements hors-plan induits par la charge de
la bille de 19 grammes.
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Fig. 3.34 – Profil de la dérivée première des déplacements.
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Fig. 3.35 – Carte de la composante hors-plan w des déplacements relatifs. Cette
carte correspond à la charge de 12 g.
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Fig. 3.36 – Profil relatif à la Fig. 3.35.
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déplacements hors-plan de l’ordre de 10−5, en valeur absolue.

Fig. 3.37 – Dérivée première des déplacements hors-plan induits par la charge de
la bille de 12 grammes, après correction.

Enfin, signalons que le filtrage réalisé précédemment est suffisant car la
carte des dérivées des déplacements est peu bruitée et pourrait être ajustée
pour obtenir une description analytique de la dérivée première des déplace-
ments hors-plan. Un manque de temps ne nous a pas permis de réaliser cette
dernière étape.

Remarque.
Les déplacements mesurés en interférométrie de speckle et présentés dans
ce rapport correspondent aussi, suite au déroulage de phase, à des dépla-
cements non pas absolus mais relatifs. Pour obtenir les déplacements abso-
lus, il faut introduire le fait qu’en théorie les points infiniment proches des
trous qui positionnent la plaque ne se déplacent pas. Toutefois, signalons que
cette condition est moins satisfaisante que celle utilisée en shearographie. En
shearographie, nous sommes certains que la dérivée des déplacements à la
position de la bille doit être nulle. En interférométrie de speckle, il est moins
certain que les particules matérielles proches des trous de positionnement
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Fig. 3.38 – Dérivée première des déplacements hors-plan induits par la charge de
la bille de 19 grammes, après correction.
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Fig. 3.39 – Profil de la dérivée première des déplacements.
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ne se déplacent pas : la charge de la masse appliquée à la plaque peut pro-
duire un mouvement de solide rigide. En définitive, dans notre exemple, la
shearographie semble mieux adaptée pour effectuer des mesures absolues que
l’interférométrie de speckle.



Chapitre 4

Conclusion générale et
perspectives.

4.1 Conclusion générale.
La théorie relative à la shearographie (partie I) a permis la mise au point

d’une installation originale, en ligne, compacte, à chemins optiques quasi-
communs et basée sur la séparation des états de polarisation (chapitre 2).
Pour valider le fonctionnement du dispositif et nous familiariser avec les ré-
sultats obtenus en shearographie, une première application du montage a
été réalisée (chapitre 3). Celle-ci avait pour objectif la mesure de la déri-
vée première de la composante hors-plan des déplacements induits par une
charge de billes, de 12 g et de 19 g, déposées sur une plaque d’acier plane
et rectangulaire. Les shearogrammes enregistrés au laboratoire ont permis
l’obtention de franges de corrélation, lesquelles ont été filtrées pour amélio-
rer leur visualisation. Les cartes de phase enroulées filtrées ont permis une
analyse qualitative de la dérivée première des déplacements hors-plan. Après
déroulage de phase, elles ont permis de mesurer de manière relative la même
dérivée. En introduisant des conditions physiques liées à la position de la
bille, la dérivée première des déplacements hors-plan a pu être mesurée de
manière absolue. Ainsi, la charge exercée par une bille de 12 g ou de 19 g sur
le système étudié induit une dérivée première de la composante hors-plan des
déplacements de l’ordre de 10−5. Enfin, il est apparu que dans notre exemple,
la shearographie présente en plus d’être insensible aux perturbations exté-
rieures et d’être une technique différentielle, l’avantage d’être mieux adaptée
que l’interférométrie de speckle "traditionnelle" pour des mesures absolues.

En conclusion, nous retiendrons le bon fonctionnement du dispositif et

78
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nous encourageons l’utilisation de la shearographie pour la mesure de la dé-
rivée première des déplacements.

4.2 Perspectives.
Les résultats présentés dans ce travail sont encourageants et permettent

d’envisager de nombreuses perspectives aussi bien au point de vue des ap-
plications de l’interféromètre, des optimisations des composants optiques ou
des outils informatiques.

Les perspectives suivantes seront prochainement réalisées afin d’améliorer
la qualité des résultats :

– Nous étudierons l’influence de la taille du cisaillement sur les franges de
corrélation. En effet, la taille du cisaillement est un paramètre pertinent
dans l’équation 1.24. Par conséquent, elle doit très probablement jouer
un rôle important sur la résolution du dispositif et/ou sur la gamme
des mesures permises. De même, la théorie prédit que la shearogra-
phie est une technique différentielle uniquement pour les petites tailles
du cisaillement. La connaissance de la taille critique, c’est-à-dire de la
taille pour laquelle le dispositif permet la mesure des déplacements et
non plus de leur dérivée première, permettrait de disposer d’une seule
installation capable de réaliser deux types de mesures différentes. Cette
perspective doit être une des priorités de nos recherches futures.

– Nous déterminerons la taille optimale du diaphragme du système ima-
geant et la taille optimale des pixels du détecteur. Cette étape permet-
tra une réduction du bruit présent dans les cartes de phase enroulées
sans amplifier de manière significative le phénomène de décorrélation.
Dans le même ordre d’idées, la technique du décalage de phase temporel
"moyenné" sera implémentée et testée.

– Une fois les deux points précédents effectués, nous estimerons la réso-
lution et la précision de l’interféromètre.

L’application étudiée dans ce travail laisse à penser que le dispositif fonc-
tionne correctement. Toutefois, pour s’assurer d’avantage de ce bon fonction-
nement, nous proposons les étapes suivantes :

– Lors de notre séjour à l’ESTIM d’Alès, nous avons relevé par interfé-
rométrie de speckle "classique" le champ des déplacements du système
objet/contrainte présenté dans ce travail. Pour valider le dispositif de
shearographie, nous comparerons plus en détails les résultats obtenus
en interférométrie de speckle "traditionnelle", technique qui a fait ses
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preuves, avec ceux obtenus en shearographie. Plus précisément, nous
comparerons la dérivée première des déplacements mesurés en interfé-
rométrie de speckle avec celle obtenue directement par shearographie.

– En collaboration avec les équipes respectives des Professeurs Serge
CESCOTTO de l’Université de Liège et Hugo SOL de la Vrije Uni-
versiteit Brussel, le système objet/contrainte sera simulé par éléments
finis et les prédictions théoriques relatives au champ des déplacements
hors-plan seront comparées aux résultats expérimentaux.

Actuellement nous avons analysé la dérivée première, par rapport à la
direction X’, de la composante hors-plan des déplacements du système ob-
jet/contrainte. Il existe de nombreuses autres applications potentielles en
shearographie. Celles-ci devront être explorées et exploitées en temps oppor-
tun. Voici les principaux axes vers lesquels il serait intéressant d’orienter nos
études lorsque les étapes précédentes auront été acquises :

– Les défauts présents dans un objet impliquent une modification locale
de la déformation de l’objet lorsqu’il est soumis à une contrainte. Cette
propriété induit des franges de corrélation secondaires dans la carte
de phase enroulée. La shearographie permet dès lors une détection des
défauts. Ce domaine d’application doit être exploité car il permettrait,
par exemple, la détection de micro-fissures et faciliterait, par exemple,
la restauration d’oeuvres d’art, opération susceptible d’intéresser les
spécialistes concernés.

– Dans l’espoir d’obtenir toutes les composantes du tenseur des déforma-
tions infinitésimales, nous devrons envisager de développer un interféro-
mètre à trois vecteurs de sensibilité et à trois directions de cisaillement.

– La littérature [3] décrit la possibilité d’analyser les modes de vibration
d’un objet par shearographie. Ce champ d’applications devrait inté-
resser les mécaniciens. Les résultats obtenus pourront être validés par
interférométrie holographique en temps moyenné et par modélisation
par éléments finis.

– Si au lieu de déformer l’objet, on modifie la longueur d’onde d’éclai-
rement, on déplace la source lumineuse ou on introduit une variation
d’indice de réfraction dans le dispositif, la shearographie permet, pour
des grands cisaillements, le relevé 3D de l’objet étudié avec une réso-
lution de l’ordre du micromètre. Ce champ de recherche devra absolu-
ment être exploité et devrait apporter une complémentarité au produit
actuellement développé par la spin-off DEIOS s.a. d’autant que les ins-
tallations de moiré optique et de shearographie sont fort semblables
dans les formes de développement choisies.

– La shearographie, comme toute technique interférométrique, permet
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de mesurer une variation de chemin optique. Par conséquent, elle de-
vrait permettre la mesure du gradient d’indice de réfraction dans des
dispositifs transparents à indice de réfraction non uniforme, tels par
exemple des solutions hétérogènes ou des polymères. Un exemple à étu-
dier consisterait à mesurer la variation temporelle du gradient d’indice
d’une eau salée et d’en déduire l’évolution du gradient de la concentra-
tion en sel en fonction du temps, c’est-à-dire analyser la dissolution du
sel dans l’eau. Un tel dispositif nécessitera toutefois l’utilisation d’une
cuve d’eau bien isolée de son environnement extérieur.

Voici donc quelques pistes de développements et d’utilisations que nous
proposons. Nous espérons pouvoir les explorer en collaboration avec la spin-
off DEIOS s.a. issue d’une collaboration entre le HOLOLAB et le Centre
Européen d’Archéométrie de l’Université de Liège. Pour ce faire, je disposerai
d’un contrat First-Entreprise accordé par la Région Wallonne à DEIOS s.a.
Les travaux seront exécutés au HOLOLAB et au Centre Spatial de Liège.
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