Effects of long term soil organic matter restitution mode on soil heterotrophic respiration and soil biological properties.

Pauline Buyse1, Monique Carnol2, Sandrine Malchair2, Christian Roisin3, Marc Aubinet1.

1Unit of Biosystem Physics, University of Liege – Gembloux Agro-Bio Tech, Belgium;
2Plant and Microbial Ecology Laboratory, University of Liege, Belgium;
3Wallon Agricultural Research Centre, Gembloux, Belgium.

1. Introduction.

- Soil heterotrophic respiration (SHR) is an important process to study given the possibility of a positive feedback to global change in the future.
- Agricultural soils are potentially large sources of CO₂, on which crop management has a considerable influence.

Objectives:
- Does long-term (> 50 years) application of different organic matter restitution modes (OM-RM) cause differences in SHR fluxes?
- Do different OM-RM imply different responses of SHR to temperature and soil moisture content?

A. Study field:
- Situated in Liroux, near Gembloux.
- 6 different OM-RM (RM1, RM4, RM6) applied since 1959.
- 6 plots (repetitions) in each treatment: 10 by 70 (or 60) m.
- All plots ploughed over 0-25 cm depth.

B. Studied OM-RM:
- RM1: CONTROL (exportation of all crop residues).
- RM4: MANURE (input of manure every 3 to 4 years).
- RM6: RESTITUTION OF CROP RESIDUES (after each crop season).

C. Experimental design:
- Soil CO₂ flux measurements in weeded areas (3 m by 3 m, blue squares in Fig.1) in 3 out of the 6 repetition plots. In 2011, we focused on the two most contrasted treatments, for which we increased the number of measurement points.

<table>
<thead>
<tr>
<th>Measurement campaigns</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement period</td>
<td>2 April – 30 July</td>
<td>5 May - onwards</td>
</tr>
<tr>
<td>Studied OM-RM</td>
<td>RM1, RM4, RM6</td>
<td>RM1, RM4</td>
</tr>
<tr>
<td>Number of measurement points/plot</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Total number of points/treatment</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

D. Measurements:
- Soil CO₂ fluxes: Dynamic closed chamber system (Li-Cor Li-6400XT equipped with a 6400-09 Soil Chamber (Li-COR Biosciences Inc., US)).
- Soil temperature: 5 cm depth.
- Soil moisture content: 0-5 cm depth.

3. Results.

A. Temporal evolution of soil CO₂ fluxes, temperature and moisture content.

B. Soil CO₂ fluxes vs Soil temperature.

C. Soil CO₂ fluxes vs Soil moisture content.

4. Discussion

- No differences appear between the treatments in terms of SHR fluxes.
- Problem of spatial variability
- Both years, impact of drought, low fluxes, smaller differences, more difficult to put forward.
- Important response to rain events in 2010:
 - Possibly due to re-solubilization of labile carbon.

5. Perspectives

A. Soil microbial properties will be studied between treatments, for example:
- Basal respiration
- Labile C and N
- Metabolic profiles
- Microbial biomass

B. In the Manure treatment, soil CO₂ fluxes will be compared with and without fresh manure input.

Acknowledgements: This research is funded by the FRS-FNRS, Belgium.

CONTACT PERSON: Pauline Buyse – FRS-FNRS Research fellow (Pauline.Buyse@ulg.ac.be)
Unit of Biosystem Physics, University of Liège – Gembloux Agro-Bio Tech, Belgium.