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Bayesian Networks efficiently encode a probability distribution on a large set of variables but their poor scaling in terms

of the number of variables may make them unfit to tackle learning and inference problems of increasing size. Mixtures of

Markov trees however scale well by design and outperform a single Markov tree maximizing the data likelihood. We show

how learning Mixtures of Bagged Markov Trees can be accelerated using a by-product from computing a first tree so as

to avoid considering poor candidate edges in the subsequently generated trees.

Markov tree T :
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•A class of Bayesian Networks.

•No cycle, each variable has only one parent.

•Encodes a joint probability distribution over

n variables X :

PT (X ) =
n∏

i=1

P (Xi|PaG(Xi)) .

•Learning from a data set is O(n2 log(n))

(Chow-Liu algorithm).

• Inference is O(n).

Mixture of Markov trees [1]:

PT̂ (X )
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•Composed of a set T̂ = {T1, . . . , Tm} of m

elementary Markov Tree densities and a set

{µk}
m
k=1 of weights.

•Convex combination of tree predictions :

PT̂ (X ) =

m∑

k=1

µkPTk
(X ) .

Key points:

•Trees → efficient algorithms.

•Mixture → improved modeling power.

We approximate a mixture of bagged Markov trees by exploiting previous trees to select a good subset Sk of
candidate edges for building the subsequent tree:

k = 1 : maximum-likelihood tree (possibly regularized)
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k > 1 : consider a good subset Sk of candidate edges
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(Xi, Xj) ∈ S

We developed two strategies to build Sk:

Strategy a: inertial:

Sk depends on Tk−1.

Tk−1 |S|

edges()

Sk

⋃
edges

6= random

Illustration of the complexity/quality tradeoff :

Synthetic data set, 200 variables 200 samples:
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Inertial approximations

Run-time (max-likelihood tree : 1) for 500 trees : H 45; � 21; • 532

Strategy b: skeleton-based:

Sk = S ∀k and is obtained by comparing

ID(Xi;Xj) to a threshold depending on a pos-

tulated p-value, say α = 0.05 or smaller.
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Evaluation on real data sets [2]: p
Pigs data set, 441 variables, 200 samples:
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Gene data set, 801 variables, 200 samples:
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Effects of the parameters:
Influence of α in the skeleton-based approximation:
Synthetic data set, 200 variables 200 samples:
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Influence of |S| in the inertial approximation:
Synthetic data set, 1000 variables 1000 samples:
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|S| = n log n
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|S| = n log n
|S| = 2n log n

Inertial approximations (random initialization)
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