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1 Introduction

Many real-life problems can be modeled either as a knapsack problem or as one of its variants [4].
The outputs of these deterministic models, however, suffer from imprecisions that make their practi-
cal implementation almost impossible in some cases [5]. These imprecisions usually stem from the
lack of full information about the parameters of the problem and/or the dependence of these para-
meters on some uncontrolled events [5]. In this paper we examine procedures for producing robust
solutions to knapsack problems, meaning that the solutions are immune to data uncertainty [3]. For
short, we will speak of robust knapsack problems. We consider the case where uncertainty can af-
fect both the profits and the weights of the items. We investigate both discrete scenarios as well as
interval scenarios – in the former case, the possible values for the profits and the weights are in a
discrete set [5], while the latter case assumes the values to be in a given interval [1]. For evaluation
of the quality of a solution, three different criteria are considered : the absolute robustness criterion,
the min-max regret criterion and the min-max relative regret criterion.

Given is a set N = {1, . . . ,n} of items, a set S of scenarios affecting the items and a capacity b of the
knapsack. Each scenario s ∈ S is a 2n-vector (V s,As), where V s = (vs

1, . . . ,v
s
n) and As = (as

1, . . . ,a
s
n)

and vs
i (as

i ) is the profit (the weight) of item i under scenario s. We assume that for every s ∈ S,
0≤ as

i ≤ b for i = 1, . . . ,n and ∑
n
i=1 as

i > b. With each scenario s ∈ S corresponds a knapsack problem
KPs defined as : max{Fs(X) = ∑

n
i=1 vs

i xi : ∑
n
i=1 as

i xi ≤ b, xi ∈ {0,1}, i = 1, . . . ,n}. Let F∗s be the
optimal objective value of KPs. For X = (x1, . . . ,xn) ∈ {0,1}n satisfying ∑

n
i=1 as

i xi ≤ b, the regret of X
under the scenario s is the value F∗s −Fs(X) and the maximum regret Z(X) is defined by : Z(X) =
max{F∗s −Fs(X) : s ∈ S}. In what follows, we define K = {X ∈ {0,1}n : ∑

n
i=1 as

i xi ≤ b, ∀s ∈ S}.

2 Absolute robustness

We define problem AbKP (with absolute robustness objective) as : maxX∈K mins∈S Fs(X). We ob-
serve that if S is a cartesian product, AbKP can be solved in pseudo-polynomial time by considering
only the scenario s̄ given by vs̄

i = min{vs
i : s ∈ S} and as̄

i = max{as
i : s ∈ S}. Next, we assume that S

is not a cartesian product. The case where uncertainty affects only the profits of items is well studied
in the literature ; confer [1, 5]. When uncertainty affects only the weights of items and the size of S
is bounded, AbKP is a special case of multi-dimensional knapsack problem [4], which can be solved
in pseudo-polynomial time. We obtain the following results.

Proposition 1 When uncertainty affects only the weights of items and S is bounded, the problem
AbKP has a PTAS but does not have a FPTAS.



Proposition 2 The problem AbKP is strongly NP-hard for an unbounded scenario set S.

For the general problem AbKP with uncertainty regarding both the weights and the profits, we des-
cribe a pseudo-polynomial-time dynamic programming (DP) algorithm for solving the problem [6].
Further, we prove that AbKP has a PTAS but not a FPTAS. When |S| is unbounded we show that
the problem is strongly NP-hard and there is no approximation scheme. Further, in [6] we propose
a scenario-relaxation algorithm [2] for solving the problem. This algorithm first solves a restricted
problem with few scenarios. Next, the set of scenarios for which the obtained solution violates either
the feasibility or the optimality condition is identified. If that set is empty then we stop ; otherwise
one or more scenarios from that set are added to the restricted problem and the procedure is repeated.

3 Min-max regret

The min-max regret knapsack problem RgKP is minX∈K Z(X) = minX∈K maxs∈S{F∗s −Fs(X)}. Re-
sults about the special case where uncertainty affects only the profits of items can be found in [1, 5].
When uncertainty affects only the weights of items, the problem is equivalent to AbKP with the same
restriction. For the general problem RgKP, we find that if S is bounded then the problem can be sol-
ved in pseudo-polynomial time using a DP algorithm and there is no approximation scheme. When S
is unbounded, the problem is strongly NP-hard and does not have an approximation scheme, and we
also derive a scenario-relaxation algorithm.

4 Min-max relative regret

We define ReKP as : minX∈K maxs∈S

{
F∗s −Fs(X)

F∗s

}
. When uncertainty affects only the profits of items,

we prove that ReKP is equivalent to AbKP, and can be solved in pseudo-polynomial time if S is
bounded and is strongly NP-hard otherwise. Further, there are no approximation algorithms in either
case. When uncertainty affects only the weights of items, ReKP reduces to AbKP. For the general
case, if |S| is bounded, the problem is solvable in pseudo-polynomial time using DP and is strongly
NP-hard otherwise ; we also derive a scenario-relaxation algorithm.

5 Interval scenarios

In this case, the profit vi (the weight ai) of item i can take any value between a lower bound
vL

i (respectively aL
i ) and an upper bound vU

i (respectively aU
i ). We prove that the robust knapsack

problem with interval scenarios is equivalent to the classic knapsack problem for the first criterion,
and to a discrete-scenarios problem for the other two objectives.
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