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_ _ _ » The Tana River is the longest river system in Kenya (~1300 km), with a catchment area of ~130,000 km? (Kitheka et al., o
» Rivers play an important role in the global carbon cycle, 2005).
and process ~1.9 Pg C annually (Cole et al., 2007). = » The main perennial source areas of the river are Mount Kenya (up to 5199 m asl), the Abardares ranges in the central e~ -
Rivers do not merely transport carbon from the highlands of Kenya, and the Nyambene Hills in eastern Kenya. .
terrestrial to the oceanic environment, but also bury and = 3 The basin in general experiences a bimodal rainfall pattern: long rains between March and May and short rains between &
process organic matter, typically acting as a source of October and December.
CO, to the atmosphere (Cole and Caraco 2001, » Data from field campaigns throughout the river basin are presented from three campaigns in February 2008 (Bouillon et '
Mayorga et al,. 2005). | al., 2009; dry-season), September to November 2009 (wet-season) and June-July 2010 (end-of-wet-season). A
> It 1s critical to understand carbon cycling both on a | » Fyrthermore, monthly sampling was initiated in January 2009 at several locations (ongoing), and data up to March 2010 +
globgl and a watershed scale. However, there are few are presented here for 2 of the downstream sites (Garissa and Tana River Primate Reserve). Extensive flood plains are
studies which quantity carbon fluxes in tropical rivers, located between these 2 locations, flooding is irregular due to regulation of river flows by reservoirs upstream. - -
and data for the African continent are particularly scarce. = 5 The samples for total suspended matter (TSM) were filtered through pre-combusted and pre-weighed, 47-mm-diameter £ -
> In this study, we report the altitudinal and seasonal Whatman GF/F filters, dried and re-weighed, while samples for POC and &'3C-POC were filtered on pre-combusted 25 = ... 2 N
patterns in carbon pools and their stable isotope mm Whatman GF/F filters, acidified, dried and packed in Ag cups. Soil and sediments samples were collected from all £ - _
compositions in Tana River Basin (Kenya) sampling sites, subsamples grounded, decarbonated and similarly packed in Ag cups. POC, d13C-POC, soil and 2 « b aatidhic #ive A
sediments were measured with standard techniques (EA-IRMS). DOC and 8%°C-DOC samples were measured with @ ‘s i oo sey s s ae s o vov 0w | Monthiystation < ¢ 5 50 75 1og,
TOC analyzer coupled to a Thermo DeltaPlus IRMS. _ 1941-2010 _ _ _
Figure 1:Location of the Tana River basin , sampling
locations and monthly discharge.
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o . . . » 2008 » DOC concentration was higher in wet- = » |n the lower section of the Tana River,
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Figure 2: Altitudinal profile of TSM Figure 3: Comparison of % POC and TSM along Tana River Q . " . » The range of 813C-DOC values (-27.7 to - species during high discharge, while
> A consistent downstream increase in TSM was 3 The POC concentrations shows similar trends as 0 "\ ) SUQQ > - during low  discharge POC s
bserved durina all thr Moling campaian . . . . 2 .| o 2 "ma predominantly of C3 origin and minimal or predominantly derived from C3 plant
ODSErved during all three sampling campaigns. those in TSM, i.e. a consistent downstream increase 21 ° n DOC dominates - - .
> | imilar for the drv- d _ _ _ Y AMg g, #" no in-stream autochthonous production . species.
TSM values were similar for the dry-season an during all sampling campaigns (p<0.01). W 2.9 & _ e
d-of-wet dataset >0.05 but _ _ 1 e A T AR T T0C dominates » The DOC:POC ratios show a significant
€nd-ol-wet-season alasets (p>0.05), Ut > TSM & %POC followed the classical inverse A e G ,, c;‘ " ! inverse relationship with TSM typical of an
significantly  higher during the wet-season relationship for all seasons sampled i.e. dilution of o B . S erosive riverine svstem REferenceS
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