
Optimized look-ahead tree search policies

Francis Maes, Louis Wehenkel, and Damien Ernst

University of Liège
Dept. of Electrical Engineering and Computer Science

Institut Montefiore, B28, B-4000, Liège - Belgium

Abstract. We consider in this paper look-ahead tree techniques for the
discrete-time control of a deterministic dynamical system so as to max-
imize a sum of discounted rewards over an infinite time horizon. Given
the current system state xt at time t, these techniques explore the look-
ahead tree representing possible evolutions of the system states and re-
wards conditioned on subsequent actions ut, ut+1, . . .. When the com-
puting budget is exhausted, they output the action ut that led to the
best found sequence of discounted rewards. In this context, we are inter-
ested in computing good strategies for exploring the look-ahead tree. We
propose a generic approach that looks for such strategies by solving an
optimization problem whose objective is to compute a (budget compli-
ant) tree-exploration strategy yielding a control policy maximizing the
average return over a postulated set of initial states.
This generic approach is fully specified to the case where the space of
candidate tree-exploration strategies are “best-first” strategies parame-
terized by a linear combination of look-ahead path features – some of
them having been advocated in the literature before – and where the op-
timization problem is solved by using an EDA-algorithm based on Gaus-
sian distributions. Numerical experiments carried out on a model of the
treatment of the HIV infection show that the optimized tree-exploration
strategy is orders of magnitudes better than the previously advocated
ones.

Keywords: Real-time Control, Look-ahead Tree Search, Estimation of
Distribution Algorithms

1 Introduction

Many interesting problems in the field of engineering and robotics can be casted
as optimal control problems for which one seeks to find policies optimising a
sum of discounted rewards over an infinite time horizon. Among the various
approaches that have been proposed in the literature to solve these problems
when both the system dynamics and the reward function are assumed to be
known, a quite recent one has caught our attention. In this approach, which
was first published in [4], a new type of policy relying on look-ahead trees was
proposed. The key idea in this paper is to explore, at any control opportunity t,
in an optimistic way the look-ahead tree starting from the current state xt and
whose branchings are determined by the possible sequences of control actions



2 Francis Maes, Louis Wehenkel, and Damien Ernst

ut, ut+1, . . .. More specifically, this strategy expands at every iteration a leaf of
the tree for which the discounted sum of rewards collected from the root to this
leaf (u-value) plus an optimistic estimation of the future discounted rewards is
maximal, and when the computing budget is exhausted it returns the action ut
(or the sequence of actions ut, ut+1, . . .) leading to the leaf with the best u-value.
The results reported by the authors are impressing: with rather small trees they
managed to control in an efficient way quite complex systems.

We tested this approach on some even more complex benchmark problems
than those considered in [4], and the results were still excellent. This raised the
following question in our mind: while this problem independent tree-exploration
strategy yields excellent results, would it be possible to obtain better results
by computing automatically a problem dependent look-ahead tree-exploration
strategy? From there came the idea of looking within a broader family of tree-
exploration strategies for a best one for a given optimal control problem and a
given real-time computing budget. This led us to the main contribution presented
in this paper, namely the casting of the search for an optimal tree-exploration
strategy as an optimization task exploiting prior knowledge about the optimal
control problem and computing budget available for real-time control.

The present work has also been influenced by other authors which have sought
to identify good tree/graph exploration strategies for other decision problems
than the one tackled here but for which the solution could also be identified in
a computationally efficient way by exploring in a clever way a tree/graph struc-
ture. One of the most seminal works in this field is the A∗ algorithm [3] that uses
a best-first search to find a shortest path towards a goal state. In A∗, the function
used for evaluating the nodes is the sum of two terms: the length of the so far
shortest path towards the current node and an optimistic estimate of the short-
est path from this node to a goal state (a so-called “admissible” heuristic). Note
the close connection that exists between the optimistic planning algorithm of [4]
and the A∗ algorithm even if they apply to different types of planning problems.
Several authors have sought to learn good admissible heuristics for the A∗ algo-
rithm. For example, we can mention the LRTA∗ algorithm [5] which is a variant
of A∗ which is able to learn over multiple trials an optimal admissible heuris-
tic. It has been shown later on, in the work on real-time dynamic programming
from Barto and al. [1], that LRTA∗ has a behaviour similar to the asynchronous
value iteration algorithm. More recent works for learning strategies to efficiently
explore graphs have focused on the use of supervised regression techniques using
various approximation structures to solve this problem (e.g., linear regression,
neural networks, k-nearest neighbours) [7, 8, 10]). To position the contribution of
this paper with respect to this large body of work, we may say that, to the best of
our knowledge, this paper is the first one where the search for a tree-exploration
based control strategy is explicitly casted as an optimization problem which is
afterwards solved using a derivative-free optimisation algorithm.

The rest of this paper is organized as follows. In Section 2, we specify the class
of control problems that we consider and present the look-ahead tree-exploration
approach in this context. Section 3 presents our framework for optimizing look-
ahead tree-exploration strategies and fully specifies an algorithm for solving this



Optimized look-ahead tree search policies 3

problem in a near-optimal way. This algorithm is compared in Section 4 with
several other tree-exploration methods. Finally, Section 5 concludes and presents
further research directions.

2 Problem formulation

We start this section by describing the type of optimal control problem that will
be considered throughout this paper. Afterwards, we describe look-ahead tree
exploration based control policies as well as the specific problem we address.

2.1 Optimal control problem

We consider the general class of deterministic time-invariant dynamical systems
whose dynamics is described (in discrete-time) by:

xt+1 = f(xt, ut) t = 0, 1, . . . (1)

where for all t, the state xt is an element of the state space X and the action
ut is an element of the action space U . We assume in this paper that U is finite
(and not too large) but we do not restrict X.

To the transition from t to t + 1 is associated an instantaneous reward
ρ(xt, ut) ∈ R+ and, for every initial state x0, we define the (infinite horizon,
discounted) return of a (stationary) control policy µ : X → U as:

Jµ(x0) = lim
T→∞

T∑
t=0

γtρ(xt, ut) (2)

subject to ut = µ(xt) and xt+1 = f(xt, ut) ∀t > 0, and where γ ∈ [0, 1[ is
a discount factor. Within the set U of stationary policies, we define optimal
policies µ∗ ∈ U such that, for every initial state x0 ∈ X, we have:

Jµ
∗
(x0) ≥ Jµ(x0),∀µ ∈ U . (3)

In this paper, we are interested in finding a good approximation of an optimal
policy in the sense that its return is close to Jµ

∗
.

2.2 Look-ahead tree exploration based control policies

The control policies considered in this paper are the combination of two com-
ponents: an exploration component that exploits the knowledge of f and ρ to
generate a look-ahead tree representing the evolution of the system states and
the rewards observed given various sequences of actions ut, . . . , ut+n, and a de-
cision component that exploits this information to select the action ut. The
concept of look-head tree is represented on Figure 1.

In the following, we denote look-ahead trees by τ . A look-ahead tree is com-
posed of nodes n ∈ τ that are triplets (ut−1, rt−1, xt) where ut−1 ∈ U is an



4 Francis Maes, Louis Wehenkel, and Damien Ernst

Fig. 1. Example of look-ahead tree in a system with three possible control actions.
Each node of the tree is associated to an action u, a reward value ρ and a state x.

action whose application on the parent’s node state xt−1 leads to the reward
rt−1 = ρ(xt−1, ut−1) and the successor state xt = f(xt−1, ut−1). We denote by
parent(n) the parent node of n ∈ τ . When clear from the context, we use r(n)
(resp. x(n)) to denote the reward (resp. state) attached to node n. Internal nodes
of a look-ahead tree are said to be expanded (or closed) while its leaves are open.
An expansion of an open node consists in adding to this node a number |U |
of children corresponding to the different actions u that can be applied to the
state x of this node. We use path(n) to denote the complete sequence of nodes
from the root node n0 to a node n at depth d(n). Such a path corresponds to a
trajectory (xt, ut, rt, xt+1, . . . , ut+d(n)−1, rt+d(n)−1, xt+d(n)) of the system.

A typical example of look-ahead tree search algorithm is the “uniform tree
search” (or breadth-first) algorithm, that first develops a tree representing the
evolutions of the system for all sequences of actions of length d, and then selects
as action ut the first action of a path of the tree along which the highest sum
of discounted cumulated rewards (

∑t+d−1
t′=t γt

′
rt′) is collected. The computing

budget necessary for developing a uniform tree of depth d is O(|U |d), which may
often lead to the case where for a given computational budget the tree cannot
be developed up to a depth which is sufficient to obtain a well performing policy.
This is often true in the context of real-time control of a system and is a reason
for looking for other types of look-ahead tree search policies.

2.3 Budget constrained path-scoring based tree exploration

From now on, we will mainly focus on a particular subclass of look-ahead tree
search policies which is easy to implement, works well in an anytime setting
and is sufficiently rich. Every policy of this subclass is fully defined by a scoring
function h(·) (with values ∈ R) that assigns scores to look-ahead search tree
paths. These policies develop the tree incrementally in such a way that they
always fully expand the leaf whose corresponding path has the largest score.

They stop the tree development when the computational budget is exhausted,
in which case they output as action ut, the first action taken along a path in the



Optimized look-ahead tree search policies 5

Input: the current state of the system xt

Input: path scoring function h(·) ∈ R
Output: an action ut

Set n0 = (∅, ∅, xt) (root node)
Set τ = {n0} (initial tree)
Set v(n0) = 0
repeat

Select a terminal node n = argmax v(n)
foreach u ∈ U do

Add child node n′ =
`
u, ρ(x(n), u), f(x(n), u)

´
to n

Set v(n′) = h(path(n′))
end

until computational budget is exhausted
return the first action of a path towards an open node n and that maximizes

the discounted cumulated rewards
Pt+d(n)−1

t′=t γt′−trt′ (u-value)

Algorithm 1: Generic budget constrained tree exploration based control

tree along which the highest sum of discounted rewards (u-value) is observed. A
generic tabular representation of this path-scoring look-ahead tree control policy
is given by Algorithm 1, where v(n) denotes the score associated to node n using
the scoring function h(·).

Note that the uniform tree search algorithm discussed previously is a par-
ticular case of Algorithm 1, using heuristic hmindepth(path(n)) = −d(n). The
approach proposed by [4] for problems with bounded rewards is also a particular
case of path-scoring based look-ahead tree search with heuristic hoptimistic(path(n)) =∑t+d(n)−1
t′=t γt

′−trt′(n)+Br
γd

1−γ , where {rt′(n)}t+d(n)−1
t′=t are the rewards collected

along the path leading to n.

3 Optimized look-ahead tree exploration based control

In this section we present a generic approach for constructing optimal budget
constrained look-ahead tree exploration based control policies, and we then de-
scribe the fully specified instance of this approach that is tested in Section 4.

3.1 Generic optimized look-ahead tree exploration algorithm

Let µh(x) denote the look-ahead control policy described by Algorithm 1 with
a given scoring function h ∈ H. For identifying a good scoring function h(·), we
propose to proceed as follows. First, we define a rich enough set of candidate
scoring functions H. Second, we select a subset X0 of X in a way that it “covers
well” the area from which the system is likely to be controlled. Finally we pose
the following optimization problem:

argmax
h∈H

RX0(µh)



6 Francis Maes, Louis Wehenkel, and Damien Ernst

where RX0(µh) is the mean return of policy µh when starting from states in X0,
i.e. RX0(µh) = 1

|X0|
∑
x0∈X0

Jµ
h

(x0). An algorithm solving this problem yields
optimized look-ahead tree policies adjusted to the problem at hand (dynamics,
rewards, and budget constraints).

3.2 A particular instance

We now instantiate our generic approach for the particular case of linear func-
tions of path features optimized by an estimation of distribution algorithm.
Set of candidate path scoring functions. In our study, we consider a generic
set of candidate path scoring functions Hφ that are using a vector function
φ(·) ∈ Rp of path features. Such features are chosen beforehand and they may
describe any aspect of a path such as cumulated rewards, depth or states. In the
next section, we give an example of a generic φ(·) that can be applied to any
optimal control problem with continuous state variables.

Scoring functions hφθ ∈ Hφ are defined as parameterized linear functions:
hφθ (path(n)) = 〈θ, φ(path(n))〉, where θ ∈ Rp is a vector of parameters and 〈·, ·〉
is the dot-product operator. Each value of θ defines a candidate tree-exploration
strategy hφθ ; we thus have Hφ = {hφθ }θ∈Rp .
Optimization problem. Given our candidate set of tree-exploration strategies,
the optimization problem can be reformulated as follows:

argmax
θ∈Rp

RX0(θ) with RX0(θ) =
1
|X0|

∑
x0∈X0

Jµ
h
φ
θ (x0) (4)

Since Jµ
h
φ
θ (x0) involves an infinite sum, it has to be approximated. This can

be done with arbitrary precision by truncating the sum with a sufficiently large
horizon limit. Given a large enough horizon H, we hence approximate it by:

Jµ(x0) u
H−1∑
t=0

γtρ(xt, ut)|ut = µ(xt), xt+1 = f(xt, ut). (5)

Optimization algorithm. To solve Equation 4, we suggest the use of derivative-
free global optimization algorithms, such as those provided by metaheuristics.
In this work, we used a powerful, yet simple, class of metaheuristics known as
Estimation of Distribution Algorithms (EDA) [6]. EDAs rely on a probabilistic
model to describe promising regions of the search space and to sample good
candidate solutions. This is performed by repeating iterations that first sample
a population of N candidates using the current probabilistic model and then
fit a new probabilistic model given the b < N best candidates. Any kind of
probabilistic model may be used inside an EDA. The simplest form of EDAs
uses one marginal distribution per variable to optimize and is known as the uni-
variate marginal distribution algorithm [9]. We have adopted this approach that,
although simple, proves to be quite effective to solve Equation 4.



Optimized look-ahead tree search policies 7

Our EDA algorithm proceeds as follows. There is one Normal distribution per
parameter f ∈ {1, 2, . . . , p}. At first iteration, there distributions are initialized
as standard Normal distributions. At each iteration, N candidates are sampled
using the current distributions and evaluated. At the end of the iteration, the
p distributions are re-estimated using the b < N best candidates of current
iteration. The policy that is returned corresponds to the θ parameters that led
to the highest observed value of RX0(θ) after a number imax of EDA iterations.

4 Experiments

We describe numerical experiments comparing optimized look-ahead tree policies
against previously proposed look-ahead tree policies on a toy problem and on a
much more challenging one that is of some interest to the medical community.

4.1 Path features function

Our optimization approach relies on a path feature function φ(·) ∈ Rp, that,
given a path in the look-ahead search tree, outputs a vector of features describing
this path. The primary goal of the φ(·) function is to project paths of varying
length into a fixed-dimension description. Both global properties (e.g. depth,
cumulated rewards, actions histogram) and local properties (e.g. state contained
in the terminal node, last actions) may be used inside φ(·).

We propose below a particular φ(·) function that can be used for any control
problem with continuous state variables, i.e. for which X ⊂ Rm. Despite its
simplicity, this function lead to optimized look-ahead tree policies performing
remarkably well in our test-beds.

Our feature function is motivated by the fact that two highly relevant vari-
ables to look-ahead tree search are depth and reward. In a sense, penalizing or
favoring depth enables to trade-off between breadth-first and depth-first search
and acting on reward enables to trade-off between greedy search and randomized
search. Since the best way to perform search may crucially depend on the current
state variables, we propose to combine depth and reward with state variables.
This is performed in the following way:

φsimple(n0, . . . , nd) =
(
x1(nd), . . . , xm(nd),
dx1(nd), . . . , dxm(nd),

r(nd)x1(nd) . . . , r(nd)xm(nd)
)

where d is the depth, i.e. the length of path n0, . . . , nd, and r(nd) is the last
reward perceived on the path n0, . . . , nd. If the dimension of state space is m,
φsimple computes vectors of p = 3m features. Note that these features mostly
depend on the leaf nd and only capture global information of the path through
the depth d. Of course, several other feature functions that better exploit global
information of the path could be used, but φsimple already provides a basis to
construct very well performing policies as shown below.



8 Francis Maes, Louis Wehenkel, and Damien Ernst

4.2 Baselines and parameters

In the following, we consider the look-ahead tree policies defined by the following
path scoring tree-exploration strategies:

hmindepth(n0, . . . , nd) = −d hoptimistic(n0, . . . , nd) =
d∑
i=0

γir(ni) +Br
γd

1− γ

hgreedy1(n0, . . . , nd) = r(nd) hgreedy2(n0, . . . , nd) = γdr(nd)

hoptimized(n0, . . . , nd) =
〈
θ∗, φsimple(n0, . . . , nd)

〉
hmindepth corresponds to uniform tree search (a.k.a. breadth-first search).

hoptimistic is the heuristic proposed by [4]. hgreedy1 and hgreedy2 are greedy look-
ahead tree exploration strategies w.r.t. immediate rewards.

To find the θ∗ parameter, we use the EDA algorithm with imax = 50 iter-
ations, N = 100 candidates per iteration and b = 10 best candidates; one full
optimization thus involves 5000 look-ahead tree exploration strategy evaluations.

4.3 Synthetic problem

To compare optimized look-ahead tree policies with previously proposed ones,
we adopt the synthetic optimal control problem also used in [4]. In this problem,
a state is composed of a position y and a velocity v and there are two possible
control actions: U = {−1,+1}. The dynamics are as follows:

(yt+1, vt+1) = (yt, vt) + (vt, ut)∆t ρ((yt, vt), ut) = max(1− y2
t+1, 0)

where ∆t = 0.1 is the time discretization step. In this problem, the reward is
obviously upper bounded by Br = 1, and this bound is therefore used in the
optimistic heuristic in our simulations, as in [4].

The set of initial states X0 used for optimizing the exploration policy is
composed of 10 initial states randomly sampled from the domain [−1, 1]×[−2, 2],
and the discount factor is γ = 0.9. The evaluation of the average return by the
EDA algorithm is truncated at horizon H = 50.

We are interested in the mean return values RX0(µh) for different amounts of
computational resources. The budget is the number of node expansions allowed
to take one decision. For a given budget B, the policy expands B nodes and
computes B|U | transitions and values for the nodes. As in [4], we consider values
B = 2d+1 − 1 with d ∈ {1, . . . , 18}, corresponding to complete trees of depth d.
We optimize one tree-exploration strategy per possible value of budget B, i.e.
tree-exploration strategies are specific to a given computational budget.

The results are reported on the left part of Figure 2. It can be seen that
the optimized tree-exploration strategy performs significantly better on X0 than
all other tree-exploration strategies, in the whole range of budget values. In
particular, it reaches a mean discounted return of 7.198 with a budget B =
63, which is still better than the return of 7.179 of the best-performing tree-
exploration strategies with the maximal budget B = 524287. In other words,



Optimized look-ahead tree search policies 9

6.4

6.6

6.8

7

7.2

7.4

1 10 100 1000 10000 100000 1e+06

M
ea

n 
D

is
co

un
te

d 
R

et
ur

n

Budget

Optimized
Mindepth
Greedy 1
Greedy 2
Optimistic

6.4

6.6

6.8

7

7.2

7.4

0 20 40 60 80 100 120

M
ea

n 
D

is
co

un
te

d 
R

et
ur

n

Number of training initial states

Reference
Trained with n random initial states

Fig. 2. Left: mean discounted return of five look-ahead tree policies given different
amounts of computational resources. Right: Comparison of the tree-exploration strat-
egy optimized on X0 with the one optimized on randomly sampled initial states.

with a budget B = 63, the optimized tree-exploration strategy outperforms
exhaustive breadth-first search with a maximal depth of 18.

As an example, the strategy optimized for a budget B = 63 is equal to:

hoptimized−63(n0, . . . , nd) = x1(nd)(0.3249 + 1.3368r(nd)− 2.9695d)
+ x2(nd)(0.9078− 0.2566r(nd) + 0.4561d),

where x1(nd) is the current position and x2(nd) is the current velocity.
Notice that for the moment, we evaluated the optimized tree-exploration

strategy on the same sample X0 that was used for optimization. These results
are thus “in-sample” results for our method. In order to assess out-of sample
behavior and robustness of our algorithm, we performed an additional set of ex-
periments reported on the right of Figure 2. In these experiments, we optimized
our strategy with training samples X ′0 of growing sizes n and generated inde-
pendently from the sample X0 used for the purpose of evaluating the average
return (the same as the one in the left part of the figure). We carried out these
evaluations by averaging the results over 10 runs for a computing budget B = 63
and report the mean and standard deviation of the average returns. When opti-
mized with samples X ′0 and evaluated on X0, the optimized strategy is slightly
inferior to the one obtained when optimizing on X0, but it still outperforms all
the other tree-exploration strategies (for all the runs when n ≥ 4).

4.4 HIV infection control

We now consider the challenging problem described in [2]. The aim is to control
the treatment of a simulated HIV infection. Prevalent HIV treatment strategies
involve two types of drugs that will generically be called here “drug 1” and
“drug 2”. The negative side effects of these drugs in the long term motivate the
investigation of optimal strategies for their use. The problem is represented by
a six-dimensional nonlinear model and has four actions: “no drugs”, “drug 1”,
“drug 2”, “both drugs”. The system is controlled with a sampling time of 5 days
and we seek for an optimal strategy over a horizon of a few years.



10 Francis Maes, Louis Wehenkel, and Damien Ernst

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1 10 100 1000 10000 100000

D
is

co
un

te
d 

R
et

ur
n

Budget

Optimized
Mindepth
Greedy 1
Greedy 2

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1 10 100 1000 10000 100000

D
is

co
un

te
d 

R
et

ur
n

Budget

Optimized
Optimistic(Br <= 10^3)
Optimistic (Br = 10^6)

Optimistic (Br >= 10^9)

Fig. 3. Left: Discounted returns when starting from the unhealthy initial state given
different amounts of computational resources. Right: Comparison of the optimized tree-
exploration strategy with various optimistic heuristics.

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1 10 100 1000

D
is

co
un

te
d 

R
et

ur
n

Budget

Optimized
Mindepth
Greedy 1
Greedy 2

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1 10 100 1000

D
is

co
un

te
d 

R
et

ur
n

Budget

Optimized
Mindepth
Greedy 1
Greedy 2

Fig. 4. Discounted returns when starting from two different initial states.

We consider a single initial state x0 = (163573, 5, 11945, 46, 63919, 24) which
corresponds to an unhealthy stable equilibrium and which represents the state of
a patient with a very low immune response. The maximum horizon is H = 300
and the discount factor is γ = 0.98.

We use the same heuristics as previously except hoptimistic which cannot be
applied directly since no exact bound on the reward is known for this problem.
Since state and reward variables may have very large numerical values (these
variables typically range from 100 to 106), we slightly modified φsimple by apply-
ing the log(·) function on state variables xd(nd) and on rewards r(nd). Except
for this difference, we used the same parameters as in the previous example.

Figure 3 reports the results for growing budget values B. Since optimized
look-ahead tree policies worked very well for small values of B, we performed a
more fine sampling of its performance for small values of B. The gain of using
optimized look-ahead tree policies is striking on this domain: with a budget
of only B = 2, the optimized tree-exploration strategy outperforms the best
heuristic (including uniform tree search) with B = 87381 (3.48e9 against 3.02e9).
Note that, the root node (corresponding to current state) being always expanded
first, the policy withB = 2 only chooses which node to expand at the second step,
based on the successor states f(xt, ut) and on the immediate rewards ρ(xt, ut).
Therefore, in this case, the depth d is not relevant in the feature function.



Optimized look-ahead tree search policies 11

Besides the particular case where B = 2, the optimized tree-exploration strat-
egy significantly outperforms all other strategies on the whole range of budget
values. With B = 85, the optimized policy gives similar results to the best results
reported by [2] with a reinforcement learning approach (4.13e9 v.s. 4.16e9).

To analyze the behavior of an “optimistic” approach on this problem, since
Br is not known exactly, we have tried the hoptimistic heuristic with all values
Br = 10k with k ∈ {−9,−6,−3, . . . , 12, 15, 18}. The scores of these heuristics are
reported on the right of Figure 3. We observed three different behaviors. When
Br <= 103, the optimistic term is very small and the heuristic acts as hgreedy1.
When Br >= 109, the optimistic term takes all the importance and the heuristic
acts as hmindepth. When Br = 106, we obtain an intermediate heuristic.

Since we optimized the tree-exploration strategy from a single initial state,
it is of interest to assess to what extent it generalizes well when starting from
other initial states. The left part of Figure 4 reports the returns when start-
ing from an initial state which is close to the one used during optimization:
(163500, 4, 12000, 50, 63000, 20). The results here are quite similar to those of Fig-
ure 3, which shows that small differences in the initial state do not significantly
degrade the quality of the optimized strategy on this problem. To experiment
the robustness of our approach, we then tried with a completely different initial
state that corresponds to a healthy patient that just got infected by the virus:
(106, 3198, 0, 0, 1, 10). Although this initial state is totally different from the one
that was used during optimization, our optimized strategy still works reasonably
well and nearly always outperforms the other tree-exploration strategies.

5 Conclusion and further work

In this paper, we have proposed a new approach to design look-ahead tree search
policies for optimally controlling a system over an infinite horizon. It departs
from the existing techniques by the fact that it optimizes the tree exploration
technique in an off-line stage, by tuning it to the system dynamics, the reward
function, and to the on-line computing budget. The resulting optimized look-
ahead tree policy has been tested on two-benchmark problems and simulation
results show that for similar or better performances it requires significantly less
on-line computational resources than other look-ahead policies.

While the optimized look-ahead tree exploration strategies tested in this
paper where performing very well, we believe that there is still room for improv-
ing their performances. This could be done for example by using other search
spaces for candidate tree-exploration algorithms as well as other optimization
techniques for looking for the best one. In particular, we conjecture that using
incremental tree-exploration algorithms which do not score anymore a terminal
node based only on the information contained in the path connecting this node
to the top one, may be a more relevant technical choice.

We have assumed in this paper that we were dealing with optimal control
problems having a finite, and not too large, action space. However, many in-
teresting problems have very large or even continuous action spaces for which
it is not possible for look-ahead tree policies to develop a node so that it has



12 Francis Maes, Louis Wehenkel, and Damien Ernst

successors for every possible action. One way to extend our approach to such a
setting would be to use a set of candidate tree-exploration algorithms that do
not only point to the nodes that should be preferably developed but also to a
subset of control actions that should be used to expand these nodes.

While we have in this paper considered a deterministic and fully observable
setting, related types of policies have also been proposed in the literature for
stochastic, adversarial and/or partially observable settings many of them be-
longing to the class of Monte-Carlo tree search techniques. A key issue for these
techniques to work well is to have good tree-exploration strategies. Investigat-
ing whether the systematic approach proposed in this paper for designing such
strategies could be used in such settings would be very relevant.

Acknowledgements

Damien Ernst acknowledges the financial support of the Belgian National Fund
of Scientic Research (FNRS) of which he is a Research Associate. This paper
presents research results of the European excellence network PASCAL2 and of
the Belgian Network BIOMAGNET, funded by the Interuniversity Attraction
Poles Programme, initiated by the Belgian State, Science Policy Office.

References

1. A.G. Barto, S.J. Bradtke, and S.P. Singh. Learning to act using real-time dynamic
programming. Artificial Intelligence, 72:81–138, 1995.

2. D. Ernst, G. Stan, J. Goncalves, and L. Wehenkel. Clinical data based optimal
STI strategies for HIV; a reinforcement learning approach. In Proceedings of the
45th IEEE Conference on Decision and Control, 2006.

3. P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, February 1968.

4. J-F. Hren and R. Munos. Optimistic planning of deterministic systems. In Eu-
ropean Workshop on Reinforcement Learning Springer LNAI 5323, editor, Recent
Advances in Reinforcement Learning, pages 151–164, 2008.

5. Richard E. Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189–
211, 1990.

6. J A Lozano, J A Lozano, and P Larra Naga. Estimation of Distribution Algorithms.
A New Tool for Evolutionary Computation, pages 99–124. Kluwer Academic Pub-
lishers, 2002.

7. F. Maes. Learning in Markov Decision Processes for Structured Prediction. PhD
thesis, Pierre and Marie Curie University, Computer Science Laboratory of Paris
6 (LIP6), October 2009.

8. S. Minton. Machine Learning Methods for Planning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1994.

9. M. Pelikan and H. Mühlenbein. Marginal distributions in evolutionary algorithms.
In Proceedings of the International Conference on Genetic Algorithms Mendel ’98,
pages 90–95, Brno, Czech Republic, 1998.

10. S. W. Yoon, A. Fern, and R. Givan. Learning heuristic functions from relaxed plans.
In International Conference on Automated Planning and Scheduling (ICAPS’06),
pages 162–171, 2006.


