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Abstract 

Verbal short-term memory (STM) is highly sensitive to learning effects: digit sequences or 

nonword sequences which have been rendered more familiar via repeated exposure are 

recalled more accurately. In this study we show that sublist-level, incidental learning of item 

co-occurrence regularities affects immediate serial recall of words and nonwords, but not 

digits. In contrast, list-level chunk learning affects serial recall of digits. In a first series of 

experiments, participants heard a continuous sequence of digits in which the co-occurrence of 

digits was governed by an artificial grammar. In a subsequent STM test participants recalled 

lists that were legal or illegal according to the rules of the artificial grammar. No advantage 

for legal lists over illegal lists was observed. A second series of experiments used the same 

incidental learning procedure with nonwords or non-digit words. An advantage for legal 

versus illegal list recall was observed. A final experiment used an incidental learning task 

repeating whole lists of digits; this led to a substantial recall advantage for legal versus illegal 

digit lists. These data show that serial recall of non-digit words is supported by sublist-level 

probabilistic knowledge, whereas serial recall of digits is only supported by incidental 

learning of whole lists. 
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Many studies document a close interaction between short-term memory (STM) and 

long-term memory (LTM), leading a number of authors to consider that a substantial part of 

STM is based on temporarily activated long-term representations in the language system 

(Baddeley, Gathercole, & Papagno, 1998; Botvinick, 2005; Burgess & Hitch, 2006; Cowan, 

1995; Gupta, 2003; Majerus & D’Argembeau, 2011; Martin & Saffran, 1992; Oberauer, 

2009). Long-term learning effects on short-term recall provide the most direct evidence for 

these interactions, by demonstrating a close dependency between representations acquired 

over the long term and their subsequent use in STM tasks. The aim of the present study is to 

gain a deeper understanding of the mechanism that underlies these learning effects in STM. 

We focus our investigation on immediate serial recall of verbal materials because this is the 

area in which most research on the interplay between STM and LTM has been conducted so 

far.  

A direct impact of verbal long-term learning on verbal STM has been demonstrated 

with two different paradigms, statistical learning and Hebb learning. In what follows we 

review the results obtained with these paradigms.   

Effects of incidental statistical learning on verbal STM 

Incidental learning of statistical regularities in sequences have been shown to improve 

immediate serial recall of lists conforming to these regularities, compared to lists not 

conforming to them. Karpicke and Pisoni (2004) asked participants to recall lists of color 

words by pressing appropriate buttons. In the acquisition phase, all lists were constructed 

according to an artificial grammar. In the test phases, lists constructed from the same 

grammar were mixed with lists constructed by an analogous alternative grammar. Serial recall 

was better for lists that conformed to the learned grammar than those that didn’t.  
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Botvinick (2005) and Botvinick and Bylsma (2005) replicated the finding of improved 

serial recall of lists conforming to a learned artificial grammar, using one-syllable nonwords 

as items. Furthermore, Botvinick and Bylsma (2005) observed that the errors in the immediate 

serial recall task progressively adopted the phonological regularities of the artificial grammar. 

Majerus, Van der Linden, Mulder, Peters, and Meulemans (2004) pushed this line of 

research one step further by demonstrating that merely listening to a continuous sequence of 

stimuli constructed from an artificial grammar improved serial recall of lists conforming to 

that grammar. The present study builds directly on their work, and therefore we summarize it 

in some detail here. Children and adult participants were exposed to a continuous stream of 

phonemes during 20 minutes. Phoneme successions were determined by an artificial 

phonotactic grammar (e.g., /b/ could be followed by /a/ or /o/, but not by /i/ or /u/). At the 

phoneme level, there were four consonants and four vowels that could be combined into eight 

legal syllables (which were determined by the phonotactic grammar). At the syllable level, 

each of the eight legal syllables could be followed by four of the eight legal syllables, leading 

to a total of 32 legal combinations. Participants were not required to pay attention to the 

phoneme stream; rather, they had to complete a complex coloring task while hearing the 

sequence. Afterwards, participants completed a test of immediate serial recall of nonwords. 

The nonwords were either legal or illegal according to the artificial phonotactic grammar that 

generated the continuous sequence of phonemes; legal and illegal phoneme combinations 

were in addition matched for native language phonotactic frequency. Participants showed 

significantly higher recall performance for legal nonwords versus illegal nonwords. This 

result shows that the participants had detected the regularities that determined the succession 

of the different phonemes, had acquired this knowledge, and used it in a STM task.  

Taken together, these results show that statistical learning, that is, acquisition of 

knowledge about the transition probabilities or co-occurrence probabilities of successive 
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elements in sequences, contributes to immediate serial recall of verbal material. This 

conclusion dovetails with evidence that statistical sublexical knowledge about people’s 

spoken language has an effect on their verbal STM. Gathercole, Frankish, Pickering, and 

Peaker (1999) and Thorn and Frankish (2005) showed that phonotactic knowledge supports 

STM performance. Phonotactic knowledge refers to the phoneme-co-occurrence statistics of a 

given language: some phonemes co-occur very frequently (e.g., /Np/ for English) while others 

co-occur more rarely (e.g., /Dz/ for English). Immediate serial recall performance for lists of 

nonwords of high phonotactic frequency leads to higher recall performance than immediate 

serial recall performance for nonwords of low phonotactic frequency (see also Majerus & Van 

der Linden, 2003).  

Two explanations have emerged from the literature on statistical learning for how 

knowledge of transition probabilities is acquired (Perruchet & Pacton, 2006). One possibility 

is that the cognitive system gradually adjusts associations between adjacent elements (e.g., 

between phonemes in verbal sequences), such that the strength of associations reflect the 

transition probabilities. The alternative mechanism rests on the formation of chunks of small 

segments of a sequence, typically 2 to 5 elements of length, together with the gradual 

accumulation of knowledge of the relative frequencies of these chunks.  

The Hebb effect 

In the prototypical Hebb learning paradigm participants are repeatedly tested on 

immediate serial recall of short lists, usually consisting of digits. On every third trial, the same 

digit sequence is presented, leading to higher immediate serial recall performance for the 

repeated compared to unrepeated sequences. The effect has been initially observed by Donald 

Hebb (1961) and has led to extensive theoretical developments (e.g., Burgess & Hitch, 1992; 

Rumelhart, McClelland, & the PDP Research Group, 1986). 
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Burgess and Hitch (1992, 1999) proposed an influential computational model of short-

term memory that also accounts for Hebb learning. The basis of this model is the language 

network, represented by local representations at the lexical and sublexical level. The lexical 

nodes are linked with a dynamic context layer, changing over time, and enabling the encoding 

of serial position, by associating each item activated in the lexical network with a distinct 

state of the context layer. According to this model, the Hebb effect occurs due to the 

strengthening of connections between the context layer and item nodes for items within 

repeated lists. In other words, this model assumes that a strengthening of associations between 

items and serial positions accounts for the Hebb learning effect. However, a study by 

Cumming, Page, and Norris (2003) obtained evidence against this account: when comparing 

non-repeated and partially repeated lists where items in some but not all positions were 

repeated (e.g., 7 8 5 1 6 4 9 2 3, 7 4 5 2 6 8 9 1 3, 7 1 5 8 6 2 9 4 3), no advantage for partially 

repeated over non-repeated lists was observed, suggesting that the Hebb affect does not arise 

from the strengthening of individual item-position associations.  

A second possibility is that the learning system automatically detects item co-

occurrences and strengthens inter-item connections for repeatedly co-occurring items. This 

possibility is questioned by results from Hitch, Fastame, and Flude (2005). They showed that 

learning in a Hebb paradigm did not transfer to lists that maintained the item-to-item 

transitions of the learned list but shifted them to new serial positions. 

A third possibility, endorsed by Burgess and Hitch (2006) in a revision of their earlier 

model, is that repeated encoding of the same list into working memory contributes to the 

gradual strengthening of a unified representation of that list’s sequence in long-term memory. 

A similar idea has been developed by Grossberg and Stone (1986). These unified long-term 

memory representations would assist recall of a new list to the degree that the new list is 

similar to the list represented in long-term memory, so that the latter is retrieved during 
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encoding of the former. Evidence from a series of transfer experiments with the Hebb effect 

lends most support to this third theoretical option (Hitch et al., 2005).  

The present study 

The two paradigms discussed above suggest the existence of at least two types of long-

term learning in STM tasks. In the Hebb paradigm participants are usually presented with the 

exact predetermined list, or at least substantial segments of a list, repeatedly, and the Hebb 

effect critically depends on the identical repetition of at least the initial part of the list (Hitch 

et al., 2005). Furthermore, demonstrations of the Hebb effect rely on learning of isolated lists 

with a distinct beginning and end. In this sense, the Hebb learning paradigm can be 

considered to be a kind of list-level learning task.  In contrast, studies on statistical learning 

expose people to sequences governed by unequal transition probabilities between elements, 

such that certain pairs and triplets of elements occur more frequently than others, but identical 

repetitions of longer series are increasingly infrequent; this type of learning focuses on 

acquisition of local transition probabilities, spanning four to five elements at best. This 

situation is best described as probabilistic learning of sublist-level information. 

The aim of the present study is to investigate whether the two kinds of learning can be 

explained by a single mechanism. To foreshadow, we obtained evidence for a dissociation 

between the two forms of learning. Specifically, we will show that learning of sublist-level, 

probabilistic regularities affects STM for phonemes, words, and nonwords, but not for digits. 

In contrast, list-level learning affects STM for digits. This pattern provides a challenge for an 

explanation of long-term learning effects on STM in terms of a single learning mechanism. In 

the General Discussion we will explore a theoretical option that could nevertheless provide a 

unified account of our results.    
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Our investigation of incidental learning effects with different kinds of verbal materials 

was motivated by two observations. First, the evidence summarized above has been obtained 

with different kinds of materials. As we have already noted, Hebb learning is most typically 

and frequently demonstrated using repeated and random strings of digits (e.g., Hitch, Flude & 

Burgess, 2009; Cumming, 2001; Hebb, 1961; Oberauer & Meyer, 2009). In contrast, so far, 

the experiments showing that learning of item co-occurrence regularities affects immediate 

serial recall have only used unfamiliar syllables.  

Second, digits differ from other linguistic units (such as syllables, nonwords, and 

words) with regard to their familiarity and their typical use, which afford different kinds of 

learning. The combination of syllables and words in a given language is characterized by a 

number of probabilistic constraints and regularities, which can be acquired through 

probabilistic learning. By presenting a continuous sequence of unfamiliar verbal segments, the 

listener is put in a very similar condition as the prelinguistic child starting to construct 

phonological representations of words, but still having no lexical and lexical-semantic 

representations to map on these phonological representations. This situation might favor the 

learning of item co-occurrence regularities, as phonological information and underlying 

regularities are the only information available to the listener. Furthermore, the extraction of 

sublexical item-co-occurrence probabilities is important in everyday life speech processing as 

it allows to quickly identify uncommon phonological patterns and to adjust the phonological 

system to these new patterns, as is the case for instance when a listener is confronted for the 

first time with a speaker using a particular dialect (e.g., Cambridge-style English versus 

Scottish English) or with young children using phonologically deformed speech. In some 

way, we are well trained to process sublexical phonological regularities (and irregularities) 

and to use these properties in everyday life (e.g., Clopper & Pisoni, 2008; Johnson, 2005). In 

contrast, the combinations of digits are not subject to these regularities but are used in any 



Running head: PROBABILISTIC VS. LIST LEARNING IN STM         9 

 

possible combination to form numbers. Because in the everyday use of digits, every 

combination of digits into multi-digit numbers is equally likely to occur, every pairwise 

association or co-occurrence of digits is likely to be acquired to the same degree. There is no 

useful sublexical, probabilistic information to be extracted from digit co-occurrences in 

numbers. At the same time, some strings of digits might be used very often (e.g., a familiar 

phone number, a PIN). These multi-digit numbers could be acquired as unified 

representations, as proposed by Burgess and Hitch (2006) in their explanation of the Hebb 

effect. If our incidental learning mechanisms are tuned to the specific learning affordances of 

different kinds of verbal materials, then probabilistic learning of item co-occurrences might 

work for non-digit verbal units such as phonemes, syllables, and words, but not for digits. In 

contrast, learning of frequently repeated strings as unified chunks might work for all kinds of 

verbal units, including digits.    

Experiment 1: 

 Incidental Learning of Item-Co-occurrence Regularities for Continuous Digit Sequences 

 All the experiments presented here used an incidental learning paradigm similar to the 

one used by Majerus et al. (2004). Experiment 1 explored whether the same type of incidental 

learning of item-co-occurrences could also be obtained for very familiar stimuli such as digits, 

the material most typically used in Hebb learning experiments. Given that digits are familiar 

syllables with a fixed phonological structure, the artificial phonotactic grammar succession 

rules used in the present experiment were restricted to the syllable-level. Each digit syllable 

could be followed by two other digit syllables, leading to a total of 18 possible combinations 

(see Figure 1). This artificial phonotactic grammar is simpler than the one used in the 

previous study by Majerus et al. (2004), and is closer to the Hebb learning situation where, for 

a sequence of 9 digits, 8 item successions have to be learned. Also, as in Majerus et al. (2004), 



Running head: PROBABILISTIC VS. LIST LEARNING IN STM         10 

 

it was ensured that learning was incidental by focusing the participants’ attention on a 

complex coloring task during the presentation of the continuous sequence of digit syllables.   

Method 

Participants 

Thirty University of Bristol undergraduates (between 17 and 35 years old) participated 

in a one-hour session for course credit or a remuneration of 7 GBP. All were fluent English 

speakers.   

Material 

The digits from 1 to 9 were recorded by a male voice and transformed into digital 

sound files. The sound file’s durations varied from .52 to .91 s depending on speaking 

duration. During the learning sequence, 2200 digits were presented in an uninterrupted 

sequence with 10 ms in between successive sound files. The succession of the digits was 

determined by an artificial grammar, shown in Figure 1. Each arrow in the figure represents a 

possible transition. In generating legal sequences, the two transitions emanating from each 

digit were chosen at random with equal probability. To avoid any bias related to specific 

digits or pairs of digits, we created nine versions of this grammar (only one of which is shown 

in Figure 1) by rotating the assignment of digits to roles in the grammar: For each new 

participant the digit in each role was incremented by one, wrapping around from 9 to 1. For 

instance, participant 1 experienced transitions from 1 to 5 or 8 (each with probability 0.5), 

transitions from 2 to 3 or 5, and so on, as illustrated in Figure 1. For participant 2, the 

corresponding part of the grammar would generate transitions from 2 to 6 or 9, and transitions 

from 3 to 4 or 6. In this way, after 9 participants each digit had each role in the grammar once. 

The duration of each sequence was about 25 minutes. For the short-term memory task, the 
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digit recordings were presented in sequences of 9 digits, played at the same pace as during the 

implicit-learning phase. There were two blocks of trials, one with lists that were entirely legal 

according to the grammar, and the other block consisting of lists that were illegal. The legal 

lists were constructed by randomly selecting a digit to initiate the list, and by deriving the 

remaining 8 digits according to the grammar (in the version chosen for the given participant). 

We furthermore ensured that each of the 18 possible legal digit successions occurred at a 

similar frequency throughout the 27 trials (each legal transition occurred between 9 and 16 

times). To avoid any confound between the legality status of lists and their structure, we 

constructed the illegal lists by adding 3 to each digit in the legal lists, wrapping around from 9 

to 1. Each block consisted of 27 trials. The presentation of learning and short-term memory 

sequences was controlled via the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) 

running on a MATLAB platform. 

< INSERT FIGURE 1 ABOUT HERE > 

Procedure 

The incidental learning sequence was presented through headphones via a PC 

computer, at a comfortable loudness. At the same time, the participants were presented 

complex line drawings on paper sheets they had to color with crayons provided by the 

experimenter. The coloring task was presented to the participants as the main task and they 

were encouraged to color the drawings as creatively as possible without paying attention to 

the sound sequence, in line with the procedure developed by Saffran, Newport, and Aslin 

(1996) and Saffran, Newport, Aslin, and Tunick (1997). Immediately after the incidental 

learning phase, the short-term memory task was administered: each participant was presented 

the blocks of legal and illegal digit lists, the order of blocks being counterbalanced between 

participants. The participants were instructed to recall each digit list as accurately as possible 
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after its presentation, and they were asked to guess when not remembering a digit in a given 

position. The responses were tape-recorded for later transcription and scoring. We determined 

the mean number of digits recalled in correct serial position for each condition. At the end of 

the experiment, the participants were informed of the primary goal of the study, according to 

APA ethical standards. 

Results and Discussion 

Mean proportion of digits recalled in the correct position was .65, with no discernible 

difference between legal and illegal lists, F (1, 29) = 0.20, MSE=.032, p=0.66, η
2 

p= .007 

(legal: mean = .65, SD = .17; illegal: mean = .64, SD=.14). In the experiment of Majerus et al. 

(2004), the effect size for the contrast between legal lists and illegal lists with violations on 

the syllable level, which is directly comparable to the present comparison of legal and illegal 

lists, was f = .72. The power to detect an effect of that size in our experiment was > .99. The 

conventional significance test only reflects the strength of evidence for the alternative 

hypothesis. The strength of evidence for the null hypothesis can be assessed by computing the 

likelihood ratio between the null hypothesis and the alternative hypothesis, penalizing the 

alternative hypothesis for its additional free parameter (i.e., the free estimate of the effect) by 

the correction formula for AIC or for BIC (Glover & Dixon, 2004; Wagenmakers, 2007). 

Applying this procedure to the findings from our experiment reveals a likelihood ratio of 2.8 

in favor of the null hypothesis after penalizing according to the AIC formula, and a likelihood 

ratio of 5.1 in favor of the null hypothesis after penalizing according to the BIC formula. 

Therefore, the present data are not merely a failure to obtain evidence for an effect of 

incidental learning on serial recall of digits; they provide modest evidence for the null 

hypothesis that there is no such effect. Similar results were observed when analyzing 

performance as a function of serial position: a condition (2) by serial position (9) ANOVA 

showed no significant main effect of legality, F (1, 29) = 0.20, MSE=.032, p=0.66, η
2 

p= .007, 
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but a significant effect of serial position, F (8, 232) = 62.7, MSE=.019, p<0.001, η
2 

p= .68; the 

interaction was not significant, F (8, 232) = .30, MSE=.007, p<0.96, η
2 

p= .01; further 

exploration via planned comparison showed significant linear, F (1, 29) = 81.5, MSE=.07, 

p<.001, η
2 

p= .73,  and quadratic contrasts, F (1, 29) = 54.9, MSE=.026, p<.001, η
2 

p= .65 for 

serial position (see Figure 2). 

< INSERT FIGURE 2 ABOUT HERE > 

Experiment 2: 

 Incidental Learning of Item Co-occurrence Regularities for Continuous Digit and Nonword 

Sequences 

Experiment 1 revealed no evidence for incidental learning of item-co-occurrence 

regularities contained in a continuous sequence of digit syllables. It is unlikely that the 

artificial grammar was too complex to generate learning since the grammar used here only 

contained one level of rules (syllable-level), relative to a previous study which contained two 

levels of rules (syllable-level and phoneme-level) and yet produced significant effects of 

learning (Majerus et al., 2004). Furthermore, the syllable-level rules used here were simpler 

than those used by Majerus et al. The important difference seems to be that Majerus et al. 

used nonword syllables whereas here we used digit, raising the possibility that the incidental 

abstraction of item co-occurrence statistics does not work for digits as items. The aim of 

Experiment 2 was to replicate the null effect observed in the first Experiment, while showing 

that the grammar we used can actually lead to incidental learning when using nonwords rather 

than digits. Although Majerus et al. already showed that incidental learning of co-occurrence 

statistics is possible for nonwords, the two-level grammar used in that former study was 

different from the one-level grammar used in the present study. Furthermore, the syllables 

used in Majerus et al. were simple CV syllables, while the phonological forms of digits are 
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characterized by more variable and complex syllable structures which might have interfered 

with the learning of syllable-co-occurrence regularities. In the following experiment, the 

syllable structure of nonwords was chosen to match the phonological structure of digits. 

Finally, because we expected serial recall of nonwords to be worse and more variable than 

that of digits, the short-term memory lists used in Experiment 2 were of increasing length, 

from two to ten syllables, to capture representative levels of short-term memory performance 

for individuals of varying short-term memory capacity. 

Method 

Participants 

Ninety participants (79 women) aged between 18 years and 31 years participated in 

this experiment on a voluntary basis (no compensation fee nor course credit); they were 

randomly assigned to one of two experimental groups. All participants were native and 

monolingual French speakers with higher levels of education. Informed written consent was 

obtained for each participant. 

Material 

The nonwords were created by starting from the syllabic structure of French digit 

words, changing in each digit the minimal number of phonemes necessary to obtain a 

nonword (see Table 1). Whenever possible, the phonemes of two digit words were swapped 

when creating the nonwords, enabling us to use a similar pool of phonemes for digit and 

nonword stimuli. Furthermore, the phonotactic frequency of nonword diphones was matched 

to the phonotactic frequency of the diphones of digits, based on the phonetic corpus of French 

by Tubach and Boë (1990), F(1,8)=.20, MSE=37398, p=.67, 
2

p=.02. Both digits and 

nonwords were recorded by a female native French speaker and transformed into digital 
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sound files. The learning sequences contained 3795 syllables presented at a monotonous 

regular rate, successive syllables being separated by a 200 ms silence period. The succession 

of the syllables was determined by the same type of artificial grammar as in Experiment 1 

(see Figure 1), different variants of the same grammar being used for the different 

participants. The duration of each sequence was about 37 minutes. For the short-term memory 

task, the syllable recordings for legal and illegal lists were presented by increasing length, 

starting at list length 2 and ending at list length 10, with three trials per list length (27 lists per 

block). The construction of legal and illegal lists was identical to the procedure described in 

Experiment 1, except that illegal lists were constructed by sampling exclusively from illegal 

syllable successions; in Experiment 1, illegal lists could contain a small amount of legal 

syllable successions due to illegal lists resulting from the addition of 3 to legal lists which in a 

minority of instances led to a legal succession (seven of the eighteen legal transitions could 

actually occur in illegal lists, with the same average frequency as in legal lists). The 

presentation of learning and short-term memory sequences was controlled via the Cogent 

Toolbox (FIL, University College London, 2000) running on a MATLAB platform. 

 

< INSERT TABLE 1 ABOUT HERE > 

Procedure 

The incidental learning sequence was presented though headphones via a PC 

computer, at mean output amplitude of 70 dB SPL. Half of the participants heard the digit 

sequence, and half of the participants heard the nonword sequence. During exposure to the 

sequence they worked on the same drawing task as in Experiment 1. After the incidental 

learning phase, the short-term memory task was administered: each participant was presented 

the blocks of legal and illegal digit or nonword lists, the order of blocks being rotated between 
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participants. The participants were instructed to recall each list as accurately as possible after 

its presentation. The responses were tape-recorded for later transcription and scoring. We 

determined the mean number of digits recalled in correct serial position for each condition, 

pooling over the different list lengths. At the end of the experiment, the participants were 

informed of the primary goal of the study, according to APA ethical standards. 

Results  

For the digit incidental learning group, a repeated measures ANOVA on the number of 

digits correctly recalled in the short-term memory task showed an absence of list condition, 

legal and illegal lists leading to identical levels of recall, replicating the findings of 

Experiment 1, F(1,44)=.83, MSE=42.0, p=.37,  
2

p=.02 (Figure 3). As in Experiment 1, we 

applied the procedure proposed by Glover and Dixon (2004) to the findings from Experiment 

2, revealing very comparable results, with a likelihood ratio of 2.07 in favor of the null 

hypothesis after penalizing according to the AIC formula, and a likelihood ratio of 4.40 in 

favor of the null hypothesis after penalizing according to the BIC formula. These results again 

provide modest evidence for the null hypothesis that there is no effect of incidental learning in 

the digit learning group. On the other hand, for the nonword incidental learning group, a 

repeated measures ANOVA on the number of nonwords correctly recalled in the short-term 

memory task revealed a significant effect of list condition, F(1,44)=9.11, MSE=92.2, p<.01,  


2

p=.17. This discrepant finding for the digit and nonword incidental learning groups was 

furthermore confirmed by a mixed ANOVA, with list condition as within subjects factor and 

learning group as between subjects factor: the interaction between learning group and list 

condition was significant, F(1,88)=3.97, MSE=67.16, p<.05, 
2

p=.04. By exploring the 

interaction via planned comparisons, we confirmed an effect of legal list condition for the 

nonword incidental learning group, F(1,88)=12.51, MSE=67, p<.001, but not for the digit 
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incidental learning group, F(1,88)=.52, MSE=67.16, p=.47. This mixed ANOVA further 

showed a main effect of learning group, overall recall performance being higher in the digit 

incidental learning group as opposed to the nonword incidental learning group, 

F(1,88)=99.01, MSE=632.0, p<.001, 
2

p=.53. 

< INSERT FIGURE 3 ABOUT HERE > 

In a next set of analyses, we considered performance as a function of list length. For 

the digit incidental learning, a repeated measures ANOVA on the proportion of digits 

correctly recalled as a function of list lengths 4  to 10 (performance was invariably at ceiling 

for list lengths 2 and 3) revealed no main effect of legal versus illegal list condition,  

F(1,44)=.58, MSE=.01, p=.45,  
2

p=.01, but as expected, a main effect of list length, 

F(6,264)=167.98, MSE=.03, p<.001,  
2

p=.79. The interaction was not significant, 

F(6,264)=1.99, MSE=.01, p=.07,  
2

p=.04. Given that the interaction was nevertheless close 

to significance, planned comparisons were conducted, showing no significant effect of list 

condition (at p<.05) for any list length. As shown in Figure 4a, the marginal significant 

interaction was due to performance tending to be higher for the illegal condition at list lengths 

6 and 8, and somewhat higher for the legal condition at list length 7. Hence, as for the 

previous analyses, there was no evidence for a reliable effect of list condition in the digit 

incidental learning group. The same analysis was conducted for performance in the nonword 

incidental learning group. In addition to the expected main effect of list length, 

F(6,264)=296.20, MSE=.02, p<.001,  
2

p=.87, a main effect of legal versus illegal list 

condition was observed for the nonword incidental learning group, F(1,44)=11.61, MSE=.03, 

p<.001,  
2

p=.21; both factors also significantly interacted, F(6,264)=4.06, MSE=.01, p<.001,  


2

p=.08. Planned comparisons (all p’s <.05) showed that performance was higher for the legal 

condition as compared to the illegal condition most reliably for lists at length 5, 6 and 7 (see 
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Figure 4b). For shorter and longer list lengths, no reliable advantage for recall of legal lists is 

observed due to ceiling and floor levels of performance, respectively. 

< INSERT FIGURE 4 ABOUT HERE > 

A final analysis explored errors produced during recall of illegal digit and nonword 

lists, in order to determine whether these errors show a tendency towards regularization, 

reflecting regularities of the learned artificial grammar (Botvinick & Bylsma, 2005). We 

restricted our error analysis to incorrect syllable successions that were produced, excluding 

omission errors and extra-list intrusion errors (syllables different from those used in the short-

term memory lists); we then determined for each syllable succession whether it was legal 

according to the grammar to be learnt. Finally, we determined the proportion of legal syllable 

successions relative to the overall amount of incorrect syllable successions produced, and 

compared this proportion to the chance probability of producing legal syllable successions 

(given that there were 9 syllables that could be associated in 72 different pairs, and given that 

our grammar only allowed for 18 of these pairs, the chance probability for legal successions 

in the absence of any learning is 18/72 = .25). We did not perform this analysis for legal list 

recall because errors in the legal condition are likely to include legal segments from the target 

sequence to be recalled due to target segments simply migrating in serial position (remember 

that we used a strict serial recall criterion); hence it is impossible to determine whether these 

errors just reflect serial position migration errors of syllables from the target short-term 

memory list or a real influence of sequence learning on error production. For digit sequence 

learning, we observed a mean proportion of .26 (SD: .08) legal successions from a total of 

25.53 (SD: 14.7) incorrect syllable successions that were produced: this proportion did not 

significantly differ from a theoretical distribution centered on the expected proportion of .25, 

t(44)=1.14, p=.26. In contrast, for nonword sequence learning, the proportion of legal 

successions was .34 (SD: .18), from a total of 14.11 (SD: 7.98) incorrect syllable successions 
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produced: this proportion was significantly higher than what could be expected from chance, 

t(44)=3.16, p<.01. 

Discussion 

On the one hand, these results replicate those observed in Experiment 1, by revealing a 

clear absence of incidental learning on digit short-term memory recall performance. Given 

that short-term memory recall procedures were different in Experiment 1 and 2, with a fixed 

length supra-span recall procedure in Experiment 1 and an increasing list length recall 

procedure in Experiment 2, the present experiment shows that the null effect in Experiment 1 

was not caused by the specific recall procedure (which led to overall lower performance 

levels in Experiment 1). Furthermore, despite the use of different levels of analyses, 

considering either overall levels of performance or performance as a function of list length, 

there was not even a hint for the possibility of a digit sequence learning effect. This was 

further confirmed by an error analysis, showing that errors in the digit sequence learning 

group did not reflect the incidental grammar embedded in the learning sequence. On the other 

hand, Experiment 2 demonstrates that the incidental grammar embedded in the learning 

sequence can be learned for nonword stimuli. Learning was manifest not only as an effect on 

overall recall but also as a tendency of errors on illegal lists to conform to the learned 

grammar more often than chance, replicating the regularization effect of Botvinick and 

Bylsma (2005). These contrasting findings cannot be accounted for by differences at the level 

of phonological characteristics of the digit and nonword stimuli, because both were strictly 

matched for phonological structure and native language phonotactic frequency. 

The comparison between the positive effect of learning for nonword sequences and the 

null effect of learning for digit sequences is difficult to interpret on the level of overall 

accuracy, because there was a large difference in overall performance levels for digit and 
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nonword post-learning recall performance. However, the analyses as a function of list length 

showed that the most pronounced learning effect for nonword sequences was observed at list 

lengths 5 to 7, yielding performance levels ranging between .60 and .35 for illegal lists. 

Similar levels of performance were observed for digit recall at list lengths 8 to 10 in 

Experiment 2, and yet no evidence for learning was observed for these list lengths. Therefore, 

the difference in learning between digits and nonwords is unlikely to be caused by the 

different overall level of memory accuracy.  

Experiment 3: 

 Incidental Learning of Item Co-occurrence Regularities for Continuous Word and Nonword 

Sequences 

Experiment 3 further explores the item characteristics that do or do not lead to learning 

of item-co-occurrence regularities. Experiments 1 and 2 suggest that incidental learning of 

item-co-occurrence regularities for digit items is difficult to obtain, while the same 

regularities can be learned for nonword items. The goal of Experiment 3 is to investigate 

whether the null effect of incidental learning of item-co-occurrence regularities for digit 

sequences is due to the specific linguistic category of digits, or more generally due to the 

lexical status of digit items. In Experiment 3 we used the same incidental learning procedure 

as in the previous two experiments, but using familiar words and nonwords as learning 

material. Like digits, the words had a low age of acquisition and were of high lexical 

frequency, but they were chosen to have a less variable syllabic structure. The less complex 

syllabic structure of the words enabled us to construct a comparable set of nonword stimuli 

that, likewise, had a less complex structure than those used in Experiment 2, leading to a 

higher overall level of recall. Thereby, Experiment 3 created an opportunity to replicate the 

effect of learning for nonwords at a level of memory performance closer to that for digits.      
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Method 

Participants 

Sixty participants (47 women) aged between 18 years and 29 years participated in this 

experiment on a voluntary basis (no compensation fee nor course credit). All participants 

were native and monolingual French speakers with higher levels of education. Informed 

written consent was obtained for each participant. The participants were assigned at random 

to one of two groups; one was given the words and the other was given the nonword 

materials.  

Material 

Familiar, monosyllabic words were selected with a regular CV syllabic structure. The 

words are shown in Table 2. They were concrete, acquired early and were of moderate-to-

high lexical frequency (mean frequency: 65.02; range: 7-196; Lexique 2, New, Pallier, 

Brysbaert, & Ferrand, 2004). The nonwords were constructed by changing in the word stimuli 

the minimal number of phonemes necessary to obtain a nonword (see Table 2). Whenever 

possible, the phonemes of different word forms were swapped when creating the nonwords. 

Furthermore, the phonotactic frequency of word and nonword diphones was matched, 

F(1,8)=.70, MSE=7567, p=.43, 
2

p=.08 (Tubach & Boë, 1990). In all other regards, 

construction and administration of the material followed the same procedure as in Experiment 

2.  

< INSERT TABLE 2 ABOUT HERE > 

Procedure 

The procedure was identical to Experiment 2. 
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Results  

For the word incidental learning group, a repeated measures ANOVA revealed a 

robust effect of condition during the short-term memory test phase, legal word lists leading to 

higher recall performance than illegal word lists, F(1,29)=12.59, MSE=57.80, p<.01, 
2

p=.30 

(see Figure 5). For the nonword incidental learning group, a robust effect of short-memory 

condition was also observed, with significantly higher recall performance for legal nonword 

lists than illegal nonword lists, F(1,29)=12.75, MSE=86.40, p<.01, 
2

p=.31 (see Figure 5). 

Furthermore, as shown in Figure 5, much higher nonword recall performance was observed in 

the present experiment relative to nonword recall performance in Experiment 2. Nonword 

recall performance and word recall performance were actually at comparable levels in 

Experiment 3. This was confirmed by a mixed ANOVA, with list condition as within-subjects 

factor and learning group as between-subjects factor: neither the main effect of learning 

group, F(1,58)=0.84, MSE=593.00, p=.36, 
2

p=.01, nor the interaction between list condition 

and learning group, F(1,58)=0.27, MSE=72.00, p=.61, 
2

p=.005, were significant.  

< INSERT FIGURE 5 ABOUT HERE > 

As with Experiment 2, we also analyzed performance as a function of list length. For 

the word incidental learning group, a repeated measures ANOVA on the proportion of words 

correctly recalled as a function of list lengths 4  to 10 (performance was invariably at ceiling 

for list lengths 2 and 3, as for the digit learning group in Experiment 2) revealed a main effect 

of legal versus illegal list condition,  F(1,29)=12.91, MSE=.02, p<.01,  
2

p=.31, and a main 

effect of list length, F(6,174)=148.45, MSE=.03, p<.001,  
2

p=.84. The interaction was not 

significant, F(6,174)=.82, MSE=.02, p=.56,  
2

p=.03. Although there was an overall effect of 

legal list condition, Figure 6a shows that the effect was most reliable for the longest list 

lengths. The same analysis was conducted for performance in the nonword incidental learning 
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group, revealing comparable results: a main effect of legal list condition, F(1,29)=13.82, 

MSE=.02, p<.001,  
2

p=.32, a main effect of list length, F(6,174)=160.14, MSE=.02, p<.001,  


2

p=.85, but no significant interaction, F(6,174)=1.25, MSE=.02, p=.28,  
2

p=.04. As for the 

word learning group, Figure 6b shows that the effect was most pronounced for the longest list 

lengths.  

< INSERT FIGURE 6 ABOUT HERE > 

Discussion 

No error analysis was performed for Experiment 3 due to an insufficient number of 

incorrect syllable succession productions; 37% of participants produced no incorrect syllable 

successions at all. Instead, extra-list intrusion errors were very common. The high prevalence 

of extra-list intrusions can be explained by the larger lexical neighborhood (i.e., the number of 

familiar words that differ from the target item by a single phoneme) of the phonologically less 

complex items used in this Experiment, compared to the nonwords used in Experiment 2. The 

larger phonological neighborhood may also explain the lack of a recall advantage for words 

relative to nonwords in Experiment 3 (although we should note that the materials in 

Experiment 3 were specifically designed to lead to more comparable levels of performance 

for recall of lexical items and nonword items): nonword recall has been shown to benefit from 

the existence of lexical neighbors (Roodenrys & Hinton, 2002; Thorn & Frankish, 2005).   

In sum, these results show that incidental learning of item-co-occurrence regularities is 

possible for material having only a phonological level of representation (i.e., nonwords) as 

well as for material having phonological and lexico-semantic levels of representation, such as 

words. Furthermore, performance levels obtained in Experiment 3 were very similar to those 

observed for the digit sequence learning group in Experiment 2, further indicating that the null 

effect of sequence learning for the digit sequence learning group in Experiment 2 cannot be 
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explained by the specific range of performance levels observed in this group, relative to the 

nonword sequence learning group in Experiment 2. 

Experiment 4: 

 Incidental Learning of Chunked Sequences for Digit Stimuli 

The previous experiments show that incidental learning of item-co-occurrence 

regularities for digit items is difficult to obtain, whereas the same regularities can be learned 

for nonword and word items. This means that learning of digit sequences as evidenced by the 

Hebb learning effect must be supported by a different learning mechanism. Following 

Burgess and Hitch (2006), digit Hebb learning reflects learning of chunks, that is, unified 

representations of whole lists. In other words, repeated digit lists would be learned by laying 

down a long-term representation of that particular list as a whole, rather than acquiring 

knowledge about item-co-occurrence regularities. Experiment 4 tested this hypothesis 

directly, by using the same incidental learning paradigm as in the previous experiments, but 

by introducing sequence regularity in the form of repeated lists instead of probabilistic item-

co-occurrence regularities. The sequence for the learning phase was constructed from three 

lists of seven digits, three lists of eight digits, and three lists of nine digits. These lists were 

concatenated in random order into a single sequence of 3816 digits, which was presented 

during the learning phase. To make the beginning of a list recognizable, the lists were 

separated by a short pause. These pauses should facilitate parsing the sequence into lists, 

which is a prerequisite for learning these lists as chunks.   

To rule out any possibility for item-co-occurrence learning, no digit pair was repeated 

within or between lists; in other words, each of the nine lists was composed of entirely new 

digit pairs, by sampling without replacement from all possible two-digit combinations 

(excluding digit repetitions). Because the majority of all 72 possible pairs of digits were used, 
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and they were presented equally often, a learning mechanism sensitive to pairwise co-

occurrence frequencies, or first-order transition probabilities, would find it much harder to 

learn from this sequence than from the sequences in the preceding experiments, where only 18 

out of the possible 72 pairwise combinations were used. Thus, whereas in the previous 

experiments the regularities applied to pairwise combinations of successive elements, in 

Experiment 4 the regularities existed primarily across larger segments of the sequence. 

Learning mechanisms that are tuned to statistical regularities on the level of pairs of 

successive elements, as have been proposed for explaining statistical learning (Perruchet & 

Vinter, 1998), would find learning harder in Experiment 4 than in the preceding experiments. 

In contrast, a learning mechanism such as proposed by Burgess and Hitch (2006), which 

acquires unified representations of whole lists by chunking them, would have a better chance 

of acquiring the repeated lists (or sub-segments of lists) in the present experiment than in 

preceding experiments, because repeated sequences are marked by pauses.  

At the same time, the present learning paradigm is more demanding than standard 

Hebb learning paradigms, where only a single list has to be learned at a time, and lists are 

learned intentionally at least for immediate recall. In contrast to typical Hebb learning 

experiments, Experiment 4 explores incidental learning of nine lists of digits simultaneously.      

Method 

Participants 

Sixteen participants (12 women) aged between 18 years and 29 years participated in 

this experiment on a voluntary basis (no compensation fee or course credit). All participants 

were native and monolingual French speakers with higher levels of education. Informed 

written consent was obtained for each participant.  
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Material 

Nine sequences containing 7 to 9 digits were created by randomly sampling without 

replacement from the 72 possible digit pairs combining the digits 1 to 9 (by avoiding pairs of 

identical digits such as 2 2). Given that we constructed three lists for each sequence length, 63 

out of these 72 possible pairs were used, leaving only 9 unused digit pairs. The digit stimuli 

were presented following exactly the same procedure as described in Experiment 2, with the 

exception that a pause of 1.5 seconds was inserted between each list to mark the boundaries of 

the different lists. Each list was presented 53 times throughout the incidental learning phase, 

for a total of 3816 digit syllable presentations (note that roughly the same number of syllables 

was presented in Experiments 2 and 3: 3795). For the subsequent short-term memory task, the 

nine lists as well as nine illegal lists were presented in order of increasing length, starting at 

list length 7 and ending at list length 9. Illegal lists were constructed by increasing each digit 

of a legal list by 1, resulting in new lists never presented during the incidental learning phase. 

Furthermore, we ensured that the 8 digit pairs that were never used in the legal lists, also 

never occurred in the illegal lists. In other words, the illegal digit lists contained no digit pair 

that did not also occur in the legal lists; the legal and illegal lists only differed in terms of the 

higher-order combinations of pairs. Finally, as in the previous experiments, the sequences to 

be learned differed between participants, by incrementing the digits in each list by one from 

one participant to the next (wrapping around from 9 to 1) (see Table 3 for an example of the 

digit lists to be learned).  The presentation of learning and short-term memory sequences was 

controlled via the Cogent Toolbox (FIL, University College London, 2000) running on a 

Matlab platform. 

< INSERT TABLE 3 ABOUT HERE > 

Procedure 
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The procedures for administration of the incidental learning task and the subsequent 

short-term memory task were identical to Experiments 2 and 3. 

Results  

A repeated measures ANOVA with condition (2) and list length (3) revealed a robust 

effect of list condition during the short-term memory test phase, legal digit lists leading to 

higher recall performance than illegal digit lists, F(1,15)=50.99, MSE=.006, p<.001, 
2

p=.77 

(see Figure 7). In addition there was an effect of list length, F(2,30)=33.85, MSE=.02, p<.001, 


2

p=.69; the interaction was not significant, F(2,30)=.10, MSE=.009, p=.90, 
2

p=.01. As 

shown in Figure 8, the effect of legal list condition was robust for each of the three list 

lengths. Finally, we determined to what extent incorrect responses in the illegal list condition 

could have been influenced by the list chunks learned during the incidental learning condition, 

by determining the number of recalled digit segments larger than 2 digits that were part of the 

lists to be learned. We obtained no evidence that incorrect responses were influenced by recall 

of partial chunks stemming from the lists to be learned. Only 2 out of the 16 participants 

produced erroneous responses for illegal lists that matched sub-sequences of the legal lists 

that were larger than two digits. In these few instances the extent of overlap was minimal:  

one participant produced one 3-digit segment that coincided with a segment embedded in one 

of the legal lists, and the other participant produced a 4-digit segment that coincided with a 

segment of a legal list. 

< INSERT FIGURES 7 AND 8 ABOUT HERE > 

Discussion 

These results indicate that incidental learning of digit sequences is possible, when the 

information to be learned relies on list-level information rather than on item-co-occurrence 
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regularities. This is particularly remarkable given that the structure of the learning material 

contained very little regularities concerning pairwise co-occurrences: Of the 72 possible digit 

pairs (excluding repetitions), 63 pairs were used, and they were all used about equally often. 

In contrast, in the preceding experiments only 18 syllable pairs had to be learned. The strong 

learning effect for digit sequences in the present experiment, combined with the absence of 

such learning in the preceding experiments, implies that incidental learning of regularities in 

digit sequences cannot arise from acquisition of information about pairwise co-occurrences.   

Whereas learning of pairwise co-occurrences was very difficult in Experiment 4, 

learning of higher-order regularities, spanning more than two successive elements was 

facilitated. Because every pair of digits occurred in only one list, each pair, with the exception 

of the final pair in a list, was perfectly predictive of the following pair. In fact, each pair at the 

beginning of a list perfectly predicted the remainder of the list. In contrast, the sequences used 

in the preceding experiments contained little higher-order structure – whereas individual 

elements were probabilistically predictive of the following element, pairs did not predict 

anything beyond individual elements. Thus, whereas the sequential structures of the preceding 

experiments afforded learning of pairwise co-occurrences but not higher-order regularities, 

the structure of Experiment 4 afforded the learning of higher-order regularities, up to the level 

of lists of 7-9 elements, but afforded little learning of pairwise relations.  

The finding that digit sequences were incidentally learned very well in Experiment 4, 

whereas they were not learned at all in the preceding experiments, strongly implies that digit 

sequences are learned incidentally by a mechanism that acquires higher-order regularities 

without having to build on pairwise regularities of successive elements. Chunking of whole 

lists into unified representations is such a mechanism. Chunking of whole lists has been 

proposed to underlie the Hebb effect in serial recall (Burgess & Hitch, 2006). The most 

parsimonious explanation of the findings from Experiment 4, together with earlier findings on 
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the Hebb effect, is that both effects are generated by the same mechanism. If we accept this 

explanation, it implies an expansion of the scope of the mechanism underlying the Hebb 

effect. Different from the Hebb paradigm, participants in our experiment did not encode the 

repeated lists for immediate serial recall. They were not even asked to attend to these lists. 

Moreover, whereas in experiments on the Hebb effect participants usually learn a single list, 

here they learned nine lists in parallel. It seems that there is a learning mechanism for 

acquiring chunks that is more powerful than previously revealed by the Hebb paradigm.   

General Discussion 

The four experiments in this article, together with the experiments by Majerus et al. 

(2004), establish three observations: First, incidental learning of sublist-level, item-co-

occurrence regularities in a continuous auditory verbal sequence of items supports immediate 

serial recall of lists composed of items that follow the same regularities. Second, this 

particular instance of an effect of long-term learning on immediate serial recall works for 

short words and nonwords but not for digits. Third, incidental learning of list-level 

regularities, which requires chunking of whole lists (or at least of sub-segments longer than 

pairs), provides strong support for immediate serial recall of digit lists. These findings have 

important implications for our understanding of the influence of long-term memory on 

performance in verbal STM.  

Learning of item co-occurrence regularities from continuous streams of verbal items, 

as demonstrated in our Experiments 2 and 3 and in Majerus et al. (2004), cannot easily be 

explained by gradual strengthening of item-to-position associations, because items are not 

consistently repeated in particular serial positions. It can also not be explained by the 

formation of unified list representations because the sequence is not segmented into lists. 

Even if participants spontaneously segmented the sequence into strings of the length of the 

later memory lists, these segments would rarely match a legal memory list in its entirety, so 
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that there would rarely be a sufficiently large match between a memory list and a learned 

segment in LTM. We are left with two possibilities for explaining what is learned from 

continuous streams governed by an artificial grammar; they correspond to the two learning 

mechanisms that have been discussed for learning of regularities in continuous sequences 

(Perruchet & Pacton, 2006). Either people learn associations between successive items that 

capture their transition probabilities, or they segment the sequence into ad-hoc chunks of n 

successive items (with n ranging from 2 to about 4 or 5) and learn the relative frequencies of 

these chunks, thereby capturing the different probabilities of pair-wise transitions (and 

possibly of longer-range dependencies). Both learning mechanisms capture regularities in the 

transitions between successive items regardless of their position in a list relative to the 

beginning or the end.   

The Hebb effect, in contrast, does depend on the repetition of items in the same 

positions relative to the beginning of a memory list, as demonstrated by Hitch et al. (2005). 

They showed that learning in a Hebb paradigm did not transfer to lists that maintained the 

item-to-item associations of the learned list but shifted them to new serial positions. Burgess 

and Hitch (2006) as well as Grossberg and Stone (1986) considered that repeated encoding of 

the same list into short-term memory contributes to the gradual strengthening of a unified 

representation of that list’s sequence in long-term memory. These unified long-term memory 

representations would assist recall of a new list to the degree that the new list is similar to the 

list represented in long-term memory, so that the latter is retrieved during encoding of the 

former. We hypothesized that this learning mechanism would also operate incidentally on 

sequences of verbal items, if the sequences contained repeated lists, with clearly marked 

beginnings and ends.  

 In Experiment 4, we provide direct evidence for this hypothesis, by showing a 

capacity in human beings to learn repeated digit sequences as unified chunks. Given that 
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Experiments 1 and 2 have shown that sublist-level chunks based on pairwise item-co-

occurrences probabilities cannot be learned for digit sequences, we can interpret the learning 

effect in Experiment 4 as reflecting learning of higher-order regularities, that is, the 

acquisition of chunks that unify the whole repeated lists, or at least segments of these lists 

longer than two digits. This conclusion is further supported by the fact that there was no 

evidence for transfer of partial segment knowledge in recall errors for illegal digit sequences 

in Experiment 4, in contrast to Experiment 2, where we found transfer of pairwise co-

occurrence regularities to recall errors for nonword lists.   

Thus, the present study directly shows the existence of two types of learning that both 

serve the acquisition of long-term knowledge of serial order, and both assist immediate serial 

recall. One type, which we might call Hebb learning, builds and gradually strengthens unified 

representations of short lists, as proposed by Burgess and Hitch (2006); this type underlies the 

learning effect in Hebb learning paradigms using digit sequences, because the present study 

clearly shows that this is the only possible type of learning for digit sequences. The other 

type, often referred to as statistical learning (Perruchet & Pacton, 2006), acquires knowledge 

of transition probabilities or co-occurrence probabilities of successive items in sequences of 

arbitrary length. The present study shows that this type of probabilistic learning works for 

words and nonwords, but not for digits; other studies have demonstrated statistical learning 

for a variety of other materials shapes (Fiser & Aslin, 2002) and tones (Creel, Newport, & 

Aslin, 2004).  

Although the present study shows that incidental learning for digit sequences and 

word/nonword sequences stem from different sources and types of knowledge (deterministic, 

list-level knowledge versus probabilistic knowledge about item-co-occurrences), this does not 

necessarily mean that the underlying learning mechanisms as such are fundamentally 

different.  As we have noted in the Introduction, digits are linguistic units that we frequently 
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experience in arbitrary combinations. If we continuously learn about the transition 

probabilities between linguistic units, statistical learning of digit-to-digit transitions might 

have saturated for young adults. Saturation could be reached if, for instance, learning rests on 

implicit counting of frequencies of chunks, each chunk representing a short sequence (i.e., 

pair, triplet, …) of adjacent elements (Perruchet & Vinter, 1998): After experiencing several 

ten thousands of instances of any possible pair of digits, adding a few hundred more to some 

of them but not others in an experiment like ours makes very little difference for the overall 

relative frequencies of these pairs. In contrast, nonwords have never been experienced before, 

and even the elements of a small set of frequent words, as used in Experiment 3, have rarely 

been experienced in immediate succession (for instance, how often has a French speaker 

experienced the pair “chou-lit”? How often has an English speaker experienced the sequence 

“cabbage-bed”?). Therefore, learning is arguably still far from saturation for pairs of words in 

our set, so that additional experimentally induced learning still makes a difference for the 

memory strength of learned compared to non-learned pairs.  

Statistical learning could be assumed to rest on chunks reflecting relatively small 

strings of units (i.e., mostly pairs and triplets). Generation and gradual strengthening of such 

small chunks is feasible in continuous streams of input because the stream can be initially 

parsed into chunks in any arbitrary way, or in multiple ways in parallel, without creating an 

enormous set of different chunks (Perruchet & Vinter, 1998). In contrast, learning for digit 

sequences rests on chunks that represent whole memory lists of 7 to 9 items, or at least large 

parts of such memory lists, in a unified fashion. Sequences of about 7 to 9 successive digits 

are still novel enough, even after 20 years of experience with numbers, for some additional 

exposure to make a difference in their relative frequency. Generation of such large chunks is 

feasible without explosion of the number of chunks, if the input is already parsed into lists, as 

in the Hebb learning paradigm and in our Experiment 4. With digits as material, learning 
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cannot be observed in an experiment using un-parsed continuous input with only statistical 

regularity, as in our experiments, because the structure in the input affords only learning of 

small chunks of short sequences, which have all been over-learned for digits already. In 

contrast, as demonstrated by Experiment 4, larger chunks of whole memory lists can be 

learned when they are repeated as a whole, and are identifiable by segmentation of the input. 
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Table 1. Stimulus characteristics for stimuli used in Experiment 2. 

Stimuli Phonetic 

transcription 

Syllabic structure Phonotactic 

frequency (mean) 

Digits    

   un [X] V 1635 

   deux [dV] CV 258 

   trios [tYwa] CCvV 2001 

   quatre [katY] CVCC 1752 

   cinq [sRk] CVC 275 

   six [sis] CVC 1800 

   sept [sDt] CVC 1568 

   huit [Pit] vVC 1258 

   neuf [nZf] CVC 339 

    

Nonwords    

   eu [V] V 1367 

   nan [nS] CV 428 

   stoi [stwa] CCvV 1916 

   daste [dast] CVCC 1356 

   linde [lRd] CVC 341 

   leul [lZl] CVC 1973 

   lère [lDY] CVC 1892 

   yeure [jZY] vVC 811 

   zim [zim] CVC 436 
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Table 2. Stimulus characteristics for stimuli used in Experiment 3. 

Stimuli Phonetic 

transcription 

Syllabic structure Phonotactic 

frequency (mean) 

Words    

   dent [dS] CV 1043 

   choux [Gu] CV 2 

   feu [fV] CV 8 

   veau [vo] CV 118 

   pain [pR] CV 29 

   riz [Yi] CV 1479 

   chat [Ga] CV 119 

   nez [ne] CV 1231 

   lit [li] CV 1771 

    

Nonwords    

   na [na] CV 1102 

   chon [GT] CV 1 

   zin [zR] CV 138 

   bi [bi] CV 206 

   leuh [lV] CV 19 

   ko [ko] CV 1305 

   chu [Gy] CV 4 

   ti [ti] CV 1447 

   reu [rZ] CV 1886 
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Table 3. Example of digit lists to be learned in Experiment 4. 

List length List 

  

7 4  2  6  5  8  7  1 

7 9  3  1  6  8  5  4 

7 2  7  9  8  1  4  6 

8 5  2  9  6  7  3  8  4 

8 7  2  5  6  3  9  4  8 

8 1  5  3  4  7  6  1  7 

9 6  4  9  2  8  3  5  1  8 

9 8  9  1  2  4  6  7  5  9 

9 3  2  1  9  7  4  5  7  8 
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FIGURE LEGENDS 

 

Figure 1. Examples of artificial grammars used in Experiments 1, 2 and 3. 

Figure 2. Means and standard errors for recall performance in the post-learning short-term 

memory task, as a function of list condition and serial position in Experiment 1 (digit co-

occurrence learning). 

Figure 3. Means and standard errors for recall performance in the post-learning short-term 

memory task, as a function of list condition and item type in Experiment 2 (digit and nonword 

co-occurrence learning). 

Figure 4. Means and standard errors for recall performance in the post-learning short-term 

memory task, as a function of list condition, item type and list length in Experiment 2 (4a: 

digit co-occurrence learning; 4b: nonword co-occurrence learning). 

Figure 5. Means and standard errors for recall performance in the post-learning short-term 

memory task, as a function of list condition and item type in Experiment 3 (word and 

nonword co-occurrence learning). 

Figure 6. Means and standard errors for recall performance in the post-learning short-term 

memory task, as a function of list condition, item type and list length in Experiment 3 (6a: 

word co-occurrence learning; 6b: nonword co-occurrence learning). 

Figure 7. Means and standard errors for recall performance in the post-learning short-term 

memory task in Experiment 4 (digit chunk learning). 

Figure 8. Means and standard errors for recall performance in the post-learning short-term 

memory task as a function of list length in Experiment 4 (digit chunk learning). 
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Figure 1. 

Experiment 1 and 2 (digits)    Experiment 2 (nonwords) 

 

1   1    eu    eu 

2   2    nan    nan 

3   3    stoi    stoi  

4   4    daste    daste 

5   5    linde    linde 

6   6    leul    leul 

7   7    lère    lère 

8   8    yeure    yeure 

9   9    zim    zim 

 

 

Experiment 3 (words)     Experiment 3 (nonwords) 

 

chou    chou   chon    chon 

feu    feu   zin    zin 

veau    veau   bi    bi  

pain    pain   leuh    leuh 

riz    riz   ko    ko 

chat    chat   chu    chu 

nez    nez   ti    ti 

lit    lit   reu    reu 

dent    dent   na    na 
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Figure 2. 

  

 

  



Running head: PROBABILISTIC VS. LIST LEARNING IN STM         46 

 

Figure 3 
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Figure 4. 

 

 

Fig. 4a - Digits 

Fig. 4b - Nonwords 
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Figure 5. 
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Figure 6. 

 

 

 

 

 

Fig. 6a - Words 

Fig. 6b - Nonwords 
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Figure 7. 
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Figure 8. 

 

 


