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CONDITIONAL HETEROSCEDASTICITY IN PACIFIC-BASIN
STOCK MARKET RETURNS

Corhay Albert, Tourani Rad Alireza

Abstract

This paper examines the statistical behavior of daily stock returns in several Pacific-Basin stock
exchanges, which have grown tremendously in recent years. Empirical evidence reveals that return-
generating models which empirically fit the data are processes with conditional heteroscedastic
innovations. Particularly, the generalized autoregressive conditional heteroscedastic GARCH(1,1)
process turns out to be the best in most cases.

Introduction

The purpose of this paper is to examine the empirical distribution of stock market returns in several
Pacific-Basin stock exchanges and to find out which statistical model fits their distributions best. The
distributional properties of stock returns have important implications for mean-variance portfolio
theory, theoretical models of capital asset-pricing, and pricing of contingent claims. For instance,
empirical tests of asset-pricing models and the efficient market hypothesis make statistical inferences
based on distributional assumptions of stock returns, and estimation of the variance is essential in the
Black-Scholes option-pricing formula.
The simplest and most practical assumption underlying the distribution of security returns is
multivariate normality with stationary parameters over time. As the normal distribution is stable under
addition, any portfolio of stocks will also be normally distributed. If it is also assumed that investors
are risk averse, mean-variance portfolio theory can be derived. Moreover, the assumptions of normality
and parameter stability are implied by most of the statistical methods usually employed in empirical
financial studies. Tests of normality hypothesis were first reported by Osborne (1964). He investigated
returns of stock indices over several time periods and concluded they approximately follow normal
processes. Other studies, however, questioned the normality assumption and showed that distributions
of stock returns have fatter tails and are more peaked than the normal distribution. Mandelbrot (1963)
and Fama (1965) observed that the family of stable Paretian distributions whose members exhibit
heavy tails, conforms better to the distribution of stock returns.
Since then, there have been many models of stock returns describing processes that could generate
distributions having heavier tails than normal distributions. For instance, Paretz (1972), and Blattberg
and Gonedes (1974) showed that the scaled-f distribution, which can be derived as a continuous
variance mixture of normal distributions, better fits daily stock returns than infinite variance stable
Paretian distributions. Models using different mixtures of normal to generate distributions that would
account for the higher magnitude of kurtosis, are, among others, the Poisson mixtures of Press (1967)
and the discrete mixtures of Kon (1984). Furthermore, Clark (1973), Epps and Epps (1976), Merton
(1982), and Tauchen and Pitts (1983) put forward models where the distribution of variance is a
function of the arrival of the information rate, the trading activity, and the trading volume. Such models
are, however, too complex to be used in empirical applications.
There is as yet no agreement regarding the best stochastic return-generating model. The general
conclusion, however, seems to be that stock returns are approximately uncorrelated, but not
independent, and described by distributions with fatter tails. One of the most recently proposed class of
return-generating process in the literature that can capture the temporal dependence of stock-return
series is the class of autoregressive conditional heteroscedastic processes introduced by Engle (1982)
and its generalized version by Bollerslev (1986). These processes allow for volatility clustering, that is,
large changes are followed by large changes, and small by small, which has long been recognized as an
important feature of stock-returns behavior. Empirical studies showed indeed that such processes are
successful in modeling various time series (see, for example, French, Schwert, and Stambaugh 1987;
Baillie and Bollerslev 1989; Hsieh 1989; Baillie and DeGennaro 1990).
In this paper, we show whether such models can adequately describe the stock-price behavior of
Pacific-B asin capital markets. To that end, we have selected seven countries: Australia, Hong Kong,
Japan, Korea, New Zealand, Singapore, and Thailand. The study of stock-price behavior in these
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markets is interesting for it can provide further evidence in favor of or against the use of this type of
model to describe stock-price behavior. The structure of the paper is as follows. The second section
presents the data and the third section examines the statistical properties of the return series. In the
fourth section, we apply an autoregressive model to the return series. The fifth section concerns the
presentation and estimation of autoregressive conditional heteroscedastic processes. Conclusions
follow in the last section.

The data

For this study, we selected the indices of seven stock markets in the Pacific-Basin rim. The daily
market indices were collected from DATASTREAM for the period January 1, 1980 to September 30,
1990, and they are the All Ordinary Shares (Australia), the Hang Seng Index (Hong Kong), the Nikkei
Down Jones (Japan), the Barclays Industrial (New Zealand), the Straits Times (Singapore), the
Composite (South Korea), and the Bangkok Book Club (Thailand). The daily returns of these market
indices are continuously compounded, they are calculated as the difference in logarithm of the index
value for two consecutive days, Rt=log(Pt)-log(Pt-1).

Statistical analysis

This section contains a detailed analysis of the distributional and time-series properties of the stock-
market-indices returns in the sample. A range of descriptive statistics are presented in Table 1, as well
as the maximized likelihood function value when a normal distribution is imposed on data. The results
confirm the well-known fact that daily stock returns are not normally distributed, but are leptokurtic
and skewed, whatever the country concerned. All distributions are negatively highly skewed, indicating
that they are nonsymmetric, and they all exhibit a high level of kurtosis, meaning they are more peaked
and have fatter tails than normal distributions. In order to test the hypothesis whether returns are strict
white noise, that is, random walk, the Box-Pierce test statistics up to lag 25 are calculated and
presented in the table.

Table 1.   Sample Statistics on Daily-Returns Series
Australia Hong Kong Japan Korea New Zealand   I Singapore Thailand

Returns statistics
Sample size 2685 2645 2607 2615 2631 2665 2573

Mean (x 103) .3758 .4335 .4454 .6173 .5338 .3473 .5642

T(mean = 0) 1.6734 1.0946 2.2741 2.4763 2.4860 1.3366 2.4784

Variance (x 103 ) .1354 .4148 .1000 .1625 .1213 .1799 .1333

Skewness -5.9885 -4.0017 -1.6467 -.9357 -1 .9180 -3.1190 -1 .2128
Kurtosis 144.0611 72.1474 33,9016 16.9507 27.7900 47.9978 17,2857
Log-Likelihood 10615.4 8977.1 10702.4 10100.8 10547.2 10158.1 10193.1

First order ,1207 .0235 .0604 .0744 .1595 .1600 .2438

autocorrelation (.0489) (.0579) (.0668) (.0314) (.0539) (.0947) (.0636)

Q(25) 189.12 57.13 91.94 48.31 248.78 135.88 296.81

Q*(25) 36.58 23.85 29.89 31.86 55.54 26.05 41.18
Note:   The tests statistically significant at the 5% level are underlined Numbers in parentheses are
heteroscedasticity-consistent standard errors.

 This is a joint test that the first k autocorrelation coefficients are zero. Under the null hypothesis, that

the sample autocorrelations are not asymptotically correlated, the Box-Pierce statistic, Q = n ∑ik=

ρ(i)2 has chi-square distribution with k degrees of freedom, where p(i) is the i-th autocorrelation. The
values of Q are all significant at the 5% level for all countries. This implies that the null hypothesis of
strict white noise is rejected, reflecting a rather long range of dependency in the returns series.
However, it can be questioned whether this test accounts for the full probability distribution of the
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returns series since heteroscedasticity can lead to the underestimation of the standard error, √1/n, of
each sample, and therefore to the overestimation of the t- and chi-square statistics. Diebold (1987)
provides a heteroscedasticity-consistent estimate of the standard error for the i-th sample
autocorrelation coefficient:

(1)

where γR2(i) is the i-th sample autocovariance of the square data and σ is the sample standard
deviation of the data. These adjusted standard errors are presented in Table 1 under their respective
autocorrelation coefficients. It can be seen that only four autocorrelation coefficients are statistically
different from zero, whereas they are all significant, except that of Hong Kong, when√1/n is used as
standard error.
Using the adjusted standard errors, Diebold proposed an adjusted Box-Pierce statistic:

(2)

which is asymptotically chi-square distributed with k degrees of freedom, under the null hypothesis of
no serial correlation in the data. The values of Q* which are presented in Table 1 are much lower than
the nonadjusted ones. They are significant at the 5% level for New Zealand only. So, even after
adjusting for heteroscedasticity, there remains some significant long-term serial correlation in the series
of returns for this country. A comparison between the values of Q and Q* suggests that the rejection of
serial independence using Q, based on the standard testing procedure, is due to the presence of
heteroscedasticity in the returns series. However, the fact that the first lag autocorrelation is significant
for six countries implies the rejection of white noise, that is, uncorrected process. Therefore, we have to
eliminate the serial correlation in the return series before searching for appropriate models that could
account for heteroscedasticity in the returns. One way to do this is to apply Autoregressive Moving
Average (ARMA) models.
AUTOREGRESSIVE MODELS
The class of univariate ARMA models might adequately represent the behavior of the stock returns. In
our case, an AR(1) model appears to fit returns series best.

(3)
The estimates of the above regression model for each country are presented in Table 2. In order to
observe whether the residuals εt obtained from Equation (3) are uncorrected, we applied the same tests
for normality and serial correlation as for the returns series. As before, the values of the autocorrelation
coefficients and their respective standard errors adjusted for heteroscedasticity are presented in Table 2.
The first order autocorrelation coefficient for all countries is not significantly different from zero, based
on both adjusted and nonadjusted standard errors. The estimate of φi is statistically significant, except
for Hong Kong. The Dickey-Fuller test for unit roots indicates that is significantly less than one. The
series of returns appear to follow a stationary random walk. As far as the assumption of normality of
the residuals is concerned, it can be rejected. The residual series appear to be leptokurtic and skewed.
The comparison between values of Q and Q* is interesting in that while the former indicates significant
serial correlation up to iag 25, the latter always rejects the presence of serial correlation. This shows
that after controlling for heteroscedasticity, the AR(1) transformation of the returns provides an uncor-
related series.
Table 2.   The Autoregressive Model

Australia Hong Kong Japan Korea New Zealand Singapore Thailand

.0003 .0004 .0004 .0006 .0004 .0003 .0004

1.4593 1.0581 2.1339 2.6604 2.1058 1.1355 1.9529
.1207 .0235 .0603 .0745 .1595 .1600 .2438
6,2999 1.2127 3.1887 3.9613 8.2838 8,3646 12.7488

Fuller's test 2360.8 2582.6 2449.4 2420.6 2211.4 2238.5 1945.7

Residuals statistics
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Mean (x 103) .0000 .0000 .0000 .0000 .0000 .0000 .0000

t(mean = 0) .0000 .0000 .0000 .0000 .0000 .0000 .0000

Variance (x 103 ) .1335 .4147 .0997 .1500 .1182 .1754 .1254

Skewness -5.7520 -.39343 -1.4590 .0687 -1.4676 -2,3729 -.7438
Kurtosis 140.3135 69.6704 34.1775 4,8406 25,9706 44.7506 16.6906

First order .0045 .0004 .0055 .0186 -.0015 -.0107 -.0119

autocorrelation (.0621) (.0599) (.0717) (.0316) (.0628) (.1061) (.0602)

Q(25) 136.35 54.98 83.19 40.13 126.73 40.96 85.75

Q*(25) 27.24 23.31 28.97 30.41 30.74 17.20 18.48
Note:   Statistical tests significant at the 5% level are underlined. Numbers in parentheses are
heteroscedasticity-consistent standard errors.

Thus, it can be concluded that the residuals series is uncorrelated, but still exhibit heteroscedasticity.

Conditional heteroscedastic models

Various models have been developed to account for the presence of heteroscedasticity in stock-returns
and market models (see Morgan 1976; Giaccoto and Ali 1982). While these models concentrate on
unconditional heteroscedasticity, we use Engle's Autoregressive Conditional Heteroscedastic (ARCH)
model, which focuses on conditional volatility movements. It is interesting to note that, according to
Diebold, Im, and Lee (1988), the presence of ARCH effect appears to be generally independent of
unconditional heteroscedasticity. Excess kurtosis observed in both returns and residuals series can be
related to conditional heteroscedasticity, that is, its presence can be due to a time-varying pattern of the
volatility. ARCH models and its extensions have been successfully applied, for instance, in foreign
exchange markets by Baillie and Bollerslev (1989) and Hsieh (1989), and in stock markets by Akgiray
(1989) and Baillie and De Gennaro (1990). The ARCH process imposes an autoregressive structure on
the conditional variance which permits volatility shocks to persist over time. In this process, the
conditional error distribution is normal, with a conditional variance that is a linear function of past
squared innovations. The model, denoted by ARCH(p), is the following:

(4)

with p > 0; αi > 0, i = 0,..., p, and where Ω, is the information set of all information through time t, and
the εt are obtained from a linear regression model. An important extension of the ARCH model is the
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) process of Bollerslev (1986),
denoted by GARCH(p.q). In this model, the linear function of the conditional variance includes lagged
conditional variances as well. Equation (4) in the case of a GARCH model becomes:

(5)

where also q ≥ 0 and βj≥ 0,j=1,. .., q.
Before estimating (G)ARCH models, it is useful to test for the presence of ARCH properties on the
returns series. This is the object of the next subsection.

Testing for ARCH Presence

In an ARCH process, the variance of a time series depends on past squared residuals of the process.
Therefore, the appropriateness of an ARCH model can be tested by means of a LM test, that is, by
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regressing the squared residuals against a constant and lagged squared residuals (Engle 1982).

(6)

Under the null hypothesis of no ARCH process, the coefficient of determination R2 can be used to

obtain the test statistic TR2 which is distributed as a chi-square with i degrees of freedom. This LM test
has been applied to our series up to lag 5 for all the seven returns series. The values we obtained for the

TR2 are reported in Table 3.

Table 3.   LM Test Statistic
Lags Australia Hong Kong Japan Korea New Zealand Singapore Thailand

ARCH (1) 30.32 73.09 369.74 461.78 378.13 1065.21 617.39

ARCH (2) 32.48 73.11 373.98 480.38 381.33 1068.83 654.98
ARCH (3) 49.81 76.75 407.92 486.51 396.53 1087.83 809.87
ARCH (4) 55.64 76.69 408.53 486.69 590.12 1090.96 813.77
ARCH (5) 61.34 76.85 411.58 490.91 591.99 1104.42 819.67

Note:   A11 LM test statistics for ARCH (p) are significant at the 1% level.

 They are all statistically significant at the 1% level, which strongly indicates the presence of an ARCH
process in the series.

Estimating (G)ARCH Models

The parameters of a (G)ARCH model are obtained through a maximum likelihood estimation. Given
the return series and initial values of el and hl for l=0,..., r and with r = max(p,q), the log-likelihood
function we have to maximize for a normal distribution is the following:

(7)

where T is the number of observations; ht, the conditional variance, is defined by Equations (4)

and (5) for the ARCH and GARCH models respectively; and εt2 are the residuals obtained from the
appropriate linear regression model according to the country in consideration.
As the values of p and q have to be prespecified in the model, we tested several combinations of p and
q. The values of the maximized likelihood functions for all pairs of p and q are presented in Table 4.

We also calculated the generalized likelihood ratioof the maximized likelihood functions under the null hypothesis, that is, the normal distribution, and the various alternate hypothesis. Under the null hypothesisLRis chi-square distributed with degrees of
freedom equal to the difference in the number of parameters under the two hypotheses. Table 4 gives
the values of the LR test for each model. It can be observed that the value of the LR test for all
(G)ARCH models is statistically significant at the 1% level, which means that all of these models are
more likely to fit the data than is the normal distribution. In order to distinguish between an
improvement in the likelihood function due to a better fit and an improvement due to an increase in the

number of parameters, we also calculated Schwarz's order-selection criterion,  whereKis the number of parameters in the model.
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order-selection criterion,  where K is the number of parameters in the model.

Table 4.   Maximum Log Likelihoods for (G)ARCH Models
Model p,q Log

Likelihood
LRTest Schwarz Criterion Log Likelihood LRTest Schwarz Criterion Log Likelihood LR Test Schwarz Criterion

Australia Hong Kong Japan

Normal — 10615.45 8977.12 10702.39

ARCH (1,0) 11189.30 1147.70 -22375.17 9282.45 610.66 -18561.47 11119.54 834.30 -22235.66

ARCH (2,0) 11230.27 1229.64 -22453.68 9408.03 861.82 -18804.21 11275.02 1145.26 -22543.21

ARCH (3,0) 11235.82 1240.74 -22461.35 9456.68 959.12 -18903.09 11297.50 1190.22 -22584.75

GARC
H

(1,1) 11254.02 1277.14 -22501.18 9607.39 1260.54 -19207.93 11336.41 1268.04 -22665.99

GARC
H

(2,1) ... ...

GARC
H

(1,2) 11254.90 1278.90 -22499.51 11332.60 1260.42 -22654.95

GARC
H

(2,2) ... ... ...

Korea New Zealand Singapore

Normal — 10100.83 10547.19 10158.10

ARCH (1,0) 10321.09 440.52 -20638.76 11004.27 914.16 -22005.12 10621.23 926.26 -21239.03

ARCH (2,0) 10380.84 560.02 -20754.84 11048.89 1003.40 -22090.94 10660.65 1005.10 -21314.45

ARCH (3,0) 10388.54 575.42 -20766.83 11086.93 1079.48 -22163.60 10719.01 1121.82 -21427.74

GARC
H

(1,1) 10414.98 628.30 -20823.12 11153.47 1212.56 -23000.10 10731.55 1146.90 -21456.25

GARC
H

(2,1) 10408.48 615.30 -20806.71 ... ...

GARC
H

(1,2) 10408.80 615.94 -20807.35 11160.24 1226.10 -22300.22 10727.16 1138.12 -21444.04

GARC
H

(2,2)

Thailand

Normal __ 10193.08

ARCH (1,0) 11049.69 1713.22 -22095.97

ARC
H

(2,0) 11244.75 2103.34 -22482.68

ARC
H

(3,0) 10805.81 1225.46 -21601.39

GAR (1,1) 11534.78 2683.40 -23062.74
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CH
GAR
CH

(2,1) ...

GAR
CH

(1,2) 11529.41 2672.66 -23048.59

GAR
CH

(2,2) ...

Note:   ... indicates where the optimization routine failed.

Table 5.   Model Estimates
New

Australia Hong Kong Japan Korea Zealand Singapore Thailand

.6516 1.3718 .7769 .4324 .6516 .6887 -.0908
4.3213 5.3079 5.9698 2.1753 4.3213 3.6294 -.9716
.3488 .0909 .1182 .0680 .3488 .2475 .2292
16.5473 4.3779 4.9872 2.9247 16.5473 10.8812 10.8484

α1(thousands) .0052 .0102 .0046 .0149 .0052 .0180 .0011

t(α1) 5.7262 6.1830 5.6141 6.1588 5.7262 7.7949 5.3935

α1 .2281 .2281 .3003 .2133 .2281 .1183 .2366

t(α1) 9.5348 14.2678 10.6646 8.2473 9.5348 9.5651 10.3057

β1 .7451 .7769 .6927 .7062 .7451 .6554 .7644

t(β1) 29.9080 59.4841 25.5277 22.6403 29.9079 21.6986 40.1522

α1 + β1 0.9732 1.0000 0.993 0.9195 0.9732 0.7737 1.0000

Note:   t-statistics significant at the 5% level arc underlined.

 According to this criterion, the model with the lowest SIC value fits the data best. The SIC values are
reported in Table 4. The GARCH(1,1) model has the lowest SIC values for all countries. Table 5

contains the results of the model best fitting the series of returns for each country. The sum ofin the conditional

variance equations measures the persistence of the volatility. Engle (1982) and Bollerslev (1986) have
shown that if this sum is equal to one, the GARCH process becomes an integrated GARCH or
IGARCH process. Such an integrated model implies the persistence of a forecast of the conditional
variance over all future horizons and also an infinite variance of the unconditional distribution of εt.
Therefore, a restricted test on the sum of the parameters must be carried out. We calculated the sum of
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the parameters for the appropriate (G) ARCH models. They are respectively 0.9732, 0.993, 0.9195, 0.9732, and 0.7737 for Australia, Japan, Korea, New Zealand, and Singapore. They are less than unity, though rather close to one for most of them, which indicates a long persistence of shocks in volatility. As for Hong Kong and Thailand, the sum of the α1 and β1 was greater than one. This indicates that the series are not stationary and an integrated model is more appropriate, that is, the

conditional variance follows an integrated process. The IGARCH(1,1) model has therefore been
estimated for these two countries.

Conclusions

This paper examines the return properties of seven Pacific-Basin stock markets. It provides empirical
support that the class of autoregressive conditional hetero-scedasticity models is generally consistent
with the stochastic behavior of daily stock returns. Descriptive statistics and normality tests reveal that
the distribution of returns is not normal, whatever the country concerned. It has further been shown that
the residuals obtained after applying an AR(1) model, which accounts for the presence of first-order
autocorrelation in the returns, exhibit nonnormality and heteroscedasticity. Then we tested various
models belonging to the class of autoregressive conditional heteroscedasticity models. Among them the
GARCH(1,1) fits the data best for Australia, Japan, Korea, New Zealand, and Singapore, and the
IGARCH(1,1) for Hong Kong and Thailand.
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