Optimization of flexible components in reciprocating engines with cyclic dynamic loading

E. Tromme, O. Brüls, P. Duysinx
LTAS - Aerospace and Mechanics Department
University of Liège
OUTLINE

- Introduction & Motivations
- Finite element approach of multibody system dynamics
- Formulation of the flexible multibody system optimization problem
- Numerical applications
- Conclusion & Perspectives
INTRODUCTION
Evolution of virtual prototyping

- Finite Element Method: Structural analysis of components
- Multibody System: Mechanism of rigid bodies
- Flexible Multibody Systems: System approach (MBS) & structural dynamics (FEM)

Courtesy of SAMTECH
Evolution of virtual prototyping

- Structural optimization
- Mechanism synthesis
- Optimization of flexible components in multibody systems:
Motivations

- Optimization of flexible components in multibody system dynamics
 - Define realistic dynamic loadings
 - Take care of the coupling between large overall rigid-body motions and deformations

- Common approach: Equivalent static loads approach + Rigid (or component mode approach) MBS
 - Component interactions are ignored
 - Global vibration behavior and modeling of high frequency loadings are poor

- Here « Fully Integrated Method »
 - MBS approach based on non-linear FEM (SAMCEF Mecano)
 - Coupling with optimization (Boss Quattro)
Goals of this work

- Investigation on the formulation of the MBS optimization problems under dynamic loading
 - The formulation is critical for these types of problem
 ➔ Convergence, robustness, stability, ...

 ➔ Understanding the physical meaning of the problem and elaborate an appropriate formulation
 ➔ Choice of dynamic constraints
FINITE ELEMENT APPROACH OF MULTIBODY SYSTEM DYNAMICS
EQUATION OF FEM-MBS DYNAMICS

- Motion of the flexible body (FEM) is represented by absolute nodal coordinates \(q \) (Geradin & Cardona, 2001)

- Dynamic equations of multibody system

\[
M\ddot{q} = g(\dot{q}, q, t) = g^{\text{ext}} - g^{\text{int}}
\]

- Subject to kinematic constraints of the motion

\[
\Phi(q, t) = 0
\]

- Solution based on an augmented Lagrangian approach of total energy

\[
\begin{bmatrix}
M\ddot{q} + B^T (k\lambda + p\Phi) = g(\dot{q}, q, t) \\
k\Phi(q, t) = 0
\end{bmatrix} \quad B = \frac{\partial \Phi}{\partial q}
\]

\[q'(0) = q'_0 \text{ and } \dot{q}'(0) = \dot{q}_0 \]
TIME INTEGRATION

- The set of nonlinear DAE solved using the generalized-α method by Chung and Hulbert (1993)
- Define pseudo acceleration \mathbf{a}:

$$(1 - \alpha_m)\mathbf{a}_{n+1} + \alpha_m \mathbf{a}_n = (1 - \alpha_f)\ddot{\mathbf{q}}_{n+1} + \alpha_f \ddot{\mathbf{q}}_n$$

- Newmark integration formulae

$${\dot{\mathbf{q}}}_{n+1} = {\dot{\mathbf{q}}}_n + h(1 - \gamma)\mathbf{a}_n + h\gamma \mathbf{a}_{n+1}$$

$$\mathbf{q}_{n+1} = \mathbf{q}_n + h{\dot{\mathbf{q}}}_{n+1} + h^2(1/2 - \beta)\mathbf{a}_n + h\beta \mathbf{a}_{n+1}$$

- Solve iteratively the dynamic equation system (Newton-Raphson)

$$\begin{bmatrix}
M\Delta\ddot{\mathbf{q}} + C_t\Delta\dot{\mathbf{q}} + K_t\Delta\mathbf{q} + \mathbf{B}^T\Delta\lambda = \Delta\mathbf{r} \\
\mathbf{r} = M\ddot{\mathbf{q}} - \mathbf{g} + \mathbf{B}^T\lambda
\end{bmatrix}$$
FORMULATIONS OF FLEXIBLE MULTIBODY SYSTEM OPTIMIZATION PROBLEM
General form of the optimization problem

- Design problem is cast into a mathematical programming problem

\[
\min_{\mathbf{x}} g_0(\mathbf{x})
\]

\[\begin{align*}
&\text{s.t. } \quad g_j(\mathbf{x}) \leq \bar{g}_j, \quad j = 1, \ldots, m \\
&\quad \underline{x}_i \leq x_i \leq \bar{x}_i, \quad i = 1, \ldots, n
\end{align*}\]

- Provides a general and robust framework to the solution procedure

- Efficient solver:
 - Sequential Convex Programming (Gradient based algorithm)
 - GCM (Bruyneel et al. 2002)
Sensitivity analysis

- Gradient-based optimization methods require the first order derivatives of the responses

- Finite differences (Boss Quattro)

\[
\frac{\partial f}{\partial x} \approx \frac{f(x + \delta x) - f(x)}{\delta x}
\]

Perturbation of design variable
Additional call to MBS code
⇒ Boss Quattro task manager

- Semi-analytical approach

\[
\frac{\partial \mathbf{r}}{\partial x} \approx \frac{\mathbf{r}(x + \delta x) - \mathbf{r}(x)}{\delta x}
\]

\[
\frac{\partial \Phi}{\partial x} \approx \frac{\Phi(x + \delta x) - \Phi(x)}{\delta x}
\]
Design variables

- Sizing variables: Plate thickness, bar and beams cross sections, lumped properties (stiffness, mass, etc.)

- Shape variables: Geometrical parameters of flexible body shape

- Topology: Pseudo density variables, e.g. SIMP $E = \mu^3 E^\circ$ (Bruls et al. 2007)

BUT NOT
- Synthesis variables of mechanisms (Hansen, 2002)
- Links and joints connectivity (Kawamoto et al. 2004)
Formulation (1)

- Ensure a certain rigidity/precision:
 Generally, a formulation based on the *Maximization of the stiffness* or the *Minimization of the compliance*. Under dynamic loading:

 \[C_{(i)}(x, t) = \int_{V_E} \varepsilon^T(x, t) D \varepsilon(x, t) \, dV \]

- For mechanical systems, an averaged compliance of all bodies estimated over a sufficiently long integration time \(T \) has been suggested. (Brüls et al., 2007)

 \[\overline{C}(x) = \frac{1}{T} \int_0^T \sum_i C_{(i)}(x, \tau) \, d\tau \]

- Advantage: quantity always positive
- Results: not so conclusive
Formulation (2)

- Better to work with a more specific formulation to the treated problem
 - Depends on the mechanism and on design considerations

- Comparison with an ideal behavior (if known)
 - A function Δl measures the difference

$$\Delta l (x, t_i) \leq \Delta l_{max}, \quad \forall \ i = 1, \ldots, n$$

- Can be considered as a constraint or as the objective function
Formulation (3)

- Definition of the function Δl:
 - Ideal behavior: $r_{\text{rigid}}(t)$
 - Actual behavior: $r(t)$

- A basic definition

$$\Delta l(x, t) = r(x, t) - r_{\text{rigid}}(t)$$

- Advantages:
 - Precise knowledge of the difference at each time step
 - High level of control on the design

- BUT

 - Large number of constraints \Rightarrow Complex optimization problem
Formulation (4)

- Function Δl: not a trivial definition
- Example: “The tip of a robot have to follow a desired trajectory”

→ Influences the convergence
→ Need to be investigated
Formulation (5)

- Negative and positive values for the function Δl
- Only positive values – The distinction is not important
- Mathematical treatment: Norm 2

\[\| \Delta l(x, t) \|^2 = \| r(x, t) - r_{rigid}(t) \|^2 \]
Introduction (6)

- Local formulation towards global formulation
- Mathematical treatments can reduce the large number of constraints

Max function

\[\Delta l(x, t) \leq \Delta l_{max} \text{ becomes } \max_t \Delta l(x, t) \leq \Delta l_{max} \]

- Non-smooth function
- Control level on the design is decreased
- BUT only 1 constraint
Formulation (7)

- An averaged function over the time T

$$\Delta l(x, t) \leq \Delta l_{max} \text{ becomes } \frac{1}{T} \int_0^T \| r(x, t) - r_{rigid}(t) \|^2 \, dt \leq \Delta l_{max}$$

- Loose control of instantaneous difference
- Relation between mean square deviation and max deviation?
 - How to define Δl_{max}
Formulation (8)

- The stresses defined on elements

\[\sigma(x, P, t_i) \leq \sigma_{max}, \quad \forall \ i = 1, \ldots, n \text{ and } \forall \ P \in V_E. \]

- The number of stress constraints =
 Number of elements * Number of time steps
 \(\Rightarrow \) VERY LARGE number

- Need to reduce this number of constraints
NUMERICAL APPLICATIONS
Connecting rod optimization

- The link between the piston and the crankshaft in a combustion engine.

- During the exhaust phase, the connecting rod elongates which can destroy the engine.
 ➔ Collision between the piston and the valves.

- Minimization of the elongation
Modeling of the connecting rod

- 7 shape parameters: \[x = [D_1 \ D_2 \ R_1 \ R_2 \ R_3 \ R_4 \ R_5]^T \]

- Simulation of a single complete cycle as the behavior is cyclic (720°)
- Rotation speed 4000 Rpm
- Gas pressure taken into account.
Shape optimization - elongation

- The value of the function Δl is given by a distance indicator element.

- Only the elongation is important.

- Therefore, the problem for the definition of the function is simplified!
Shape optimization – elongation

Local formulation

\[
\min_x m(x) \\
\text{s.t. } k(\Delta l(x, t_i) \leq \Delta l_{max}) \\
\text{with } i = 1, \ldots, \text{nbr time step}
\]

- Convergence in a stable and monotonous way
- High control level on the design
- Large number of constraints but convergence
Shape optimization – elongation
Local formulation

\[
\min_x m(x)
\]

\[
s.t. \quad k(|\Delta l(x, t_i)| \leq \Delta l_{max})
\]

with \(i = 1, \ldots, \text{nbr time step} \)

- Faster convergence
- Definition of \(\Delta l_{max} \) do not correspond to the maximum elongation but to the maximum contraction.
Shape optimization – elongation
Global formulation

\[
\min_{\mathbf{x}} m(\mathbf{x})
\]

\[
\text{s.t. } k \left(\max_{t_i} [\Delta l(\mathbf{x}, t_i)] \leq \Delta l_{\text{max}} \right)
\]

with \(i = 1, \ldots, \text{nbr time step} \)

- Similar convergence, stability and monotony
- Max form.: good convergence despite the non-smooth character
- Mean form.: Difficulty to define the bound
Shape optimization - stress

- Stress constraints at each time step:
 - 80400 stress constraints!

- Connecting rod: critical instant when the explosion occurs ⇒ Selection of this critical instant for the stress constraints

- Test of two meshes
 - Coarse mesh: 600 stress constraints
 - Fine mesh: 3832 stress constraints
 ⇒ How does the optimization process react?
Shape optimization - stress

\[
\min_x m(x) \\
\text{s.t. } \sigma(x, P, t_{\text{crit}}) \leq \sigma_{\text{max}}
\]

with \(\forall P \in V_E \)

- Coarse mesh: stable and monotonous convergence
- Fine mesh:
 - Oscillations
 - Violation of the stress constraints during the optimization
 - Heavier as the stresses are better captured
Shape optimization - stress

\[
\min \sigma(x, P, t_{\text{crit}})
\]

\[
s.t. \quad m(x) \leq m_{\text{max}}
\]

with \(\forall P \in V_E \)

- Similar problem if it is well translated (right bounds...)
- Coarse mesh non stable and non monotonous convergence but it converges
- Fine mesh: not able to increase the stresses in order to respect the mass constraint.

Violation of the constraints
Shape optimization – stress
Unfeasible starting point

- Feasible or unfeasible starting point
 - All the previous cases have a feasible starting point because gradient-based algorithm have more facilities to converge.

→ Observation: The convergence of the optimization process with an unfeasible starting point can be conclusive if the process is at least stable and monotonous with a feasible starting point.
CONCLUSIONS
Conclusions

- The formulation of the optimization process is a key point to obtain convergence.

- The method has been extended to a more realistic application.

- Despite that a Max function is non-smooth, it seems to be a good formulation. Oral and Ider (1997) also used a non-smooth function and they concluded: "It has been shown that the piecewise-smooth nature of this equivalent constraint does not cause a deficiency in the optimization process."

- Averaged formulations give a good convergence but they are not suitable: difficulties to define the bounds and non accurate control on the design.

- Stress constraints have been included in the optimization process due to the identification of a critical time.
Perspectives

- Mixed formulations including global (average) constraints and some time step constraints

- Dynamic stress constraints when a critical time does not exist.

- Improve algorithms for dynamic problems!
 - Structural approximations: local / global: trust regions?
 - Reliability and robustness when starting from unfeasible design points

- Other design criteria for time domain analysis of dynamic systems.
THANK YOU VERY MUCH FOR YOUR ATTENTION
Emmanuel TROMME
Automotive Engineering
Aerospace and Mechanics Department
of University of Liège

Chemin des Chevreuils, 1 building B52
4000 Liège Belgium

Email: emmanuel.tromme@ulg.ac.be
Tel: +32 4 366 91 73
Fax: +32 4 366 91 59