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1. Introduction

It is well recognized that Fourier’s law of heat conduction ¢=-AVT with ¢ the heat
flux vector, VT the temperature gradient and A the heat conductivity is only valid at low

frequencies and large space scales. To cope with high frequency processes, Fourier’s
law has been generalized by Cattaneo (1948) into the non-steady form

oq
L 4g=—AVT, 1.1
o (L.1)

wherein 7 designates the heat flux relaxation time. Cattaneo’s relation reduces to
Fourier’s law in the limit of vanishing values of 7. However, Cattaneo’s equation is not
able to describe highly non-local effects characterizing small scale systems. To account
for non-localities, a generalization has been proposed by Guyer and Krumhansl (1966a,
1966b) who derived the following equation on the basis of the kinetic theory:

r%+q:—/1VT+lz(V2q+2VV.q), (1.2)

the quantity / stands for the mean free path of the heat carriers, namely phonons; non-
locality is expressed though the second order space derivatives in V‘¢ and VV.q.

The objective of this work is to describe transient heat conduction at micro and nano
scales based on Extended Irreversible Thermodynamics (Lebon et al 2008, Jou et al
2010). The main idea underlying this theory is to elevate the fast variables, like the heat
flux, to the status of independent variables at the same level as the slow variables like
energy, or temperature. In the next section, it is shown that the Cattaneo and Guyer-
Krumhansl equations can be directly derived from the Extended Thermodynamics
formalism. In the present paper, it is assumed that heat propagation is governed by two
kinds of phonons: ballistic and diffusive ones. The idea is not new and was essentially
initiated by G. Chen (2001, 2002) who proposed a so-called “ballistic-diffusion model”
mixing kinetic theory and macroscopic considerations. In contrast, our approach is
purely macroscopic and rests on the assumption that the motion of the diffusive
phonons is governed by Cattaneo’s equation while the ballistic phonons, which are
dominant when the dimensions of the system are equal or smaller than the mean free
path of the phonons, will obey Guyer-Krumhansl!’s relation.

The paper will run as follows. In Section 2, the main ingredients of Extended
Irreversible Thermodynamics are recalled; in particular, it is shown under which
conditions, the Cattaneo and Guyer-Krumhansl equations can be derived from this
formalism. The ballistic-diffusion model is analyzed in Section 3 and is applied in
Section 4 to the problem of transient heat conduction in nano films. The numerical
results are analyzed and compared with these provided by Fourier’s, Cattaneo’s, and
more recent descriptions by Joshi and Majumdar 1993, Chen 2002, Alvarez and Jou
2010. General conclusions are drawn in Section 5.



2. Brief review of Extended Irreversible Thermodynamics

The main idea underlying Extended Irreversible Thermodynamics (EIT) is to consider
the dissipative fluxes, like the flux of heat in heat transport problems, as independent
basic variables, on the same footing as the classical variables like energy, or
temperature. Elevating the dissipative fluxes to the status of independent variables
amounts to introduce memory and non-local effects into the formalism. It is also
assumed that there exists a non-equilibrium entropy s depending on the whole set of
variables, including the fluxes. In the particular case of heat conduction, s is assumed to
be a function of the internal energy u and the heat flux vector ¢:

s=s (u, q), (2.1)

with s and u denoting quantities measured per unit volume. The entropy s obeys a time
evolution equation of the form

@JrV.JS =0"20,, (2.2)

ot
wherein J° denotes the entropy flux vector, ¢° the rate of entropy production per unit
volume, a positive definite quantity according to the second law of thermodynamics.
Since the global velocity of the material is supposed to be equal to zero, partial and
material time derivatives are identical. It is well known that Fourier’s law can directly
be derived from the classical theory of irreversible processes based on the local
equilibrium hypothesis and developed, among others, by Onsager (1931), Prigogine
(1961) and De Groot and Mazur (1962). To illustrate the range of application of EIT,
we now show that Cattaneo’s and Guyer-Krumhansl’s equations enter naturally into the
framework of this formalism. In differential form, relation (2.1) takes the form

Os _0Osou, Os O

2z + =4 (2.3)
ot Ouot og ot

Define as usually the non-equilibrium temperature by 7’ = 85 /ou and assume moreover
that 0s/0q = -a(T)q with a(T) a material coefficient allowed to depend on 7, the minus
sign being introduced for convenience and non-linear contributions in ¢ being omitted;
substitution of these expressions in (2.3) yields

os .., 0u oq
—=1T" ——aq.—. 2.4
ot ot 1 ot @4)
The time derivative ou/0t is given by the first law of thermodynamics, which for rigid
heat conductors at rest and absence of internal heat sources, reads as

ou _

—=-Vgq. 2.5
Py q (2.5)

Our next task is to formulate the time-evolution equation of ¢, as shown below, simple
forms are provided by Cattaneo’s and (or) Guyer- Krumhansl’s equations.



2.1 The Cattaneo equation.
Making use of (2.5), relation (2.4) writes as

Os q o 0q

—=-V.=+q. (VT —a—). 2.6
Py e ( az) (2.6)
By comparison with the general expression (2.2) of the evolution equation for s, one

obtains for J* and ¢' the following results respectively:
F=4 &g —a)>0. .7)
T Ot

The simplest way to ensure the positiveness of ¢’ is to assume a linear relation between
the flux ¢ and the so-called thermodynamic force represented by the terms between
parentheses:

aa—q—V.T'lz—uq , (2.8)

ot
wherein u is a positive definite coefficient. It is also shown within the general
framework of EIT (Jou et al 2010) that o >0 to comply with the concavity property of
entropy. By introducing the notation

/=T, 1uT*=) 2.9

one recovers from expression (2.8) the familiar form of Cattaneo’s equation, namely

r@+q:—kVT, (2.10)
ot
with 7 designating the relaxation time of the heat flux and A the positive heat
conductivity, both quantities are generally depending on the temperature.

2.2 The Guyer-Krumhans! equation.

It is observed that expression (2.7a) of the entropy flux J° is the same as in classical
irreversible thermodynamics (i.e. the heat flux divided by the temperature). When non-
localities become important, it is natural to expect that J* will in addition depend on the
gradients of ¢. In that respect and without loss of generality, we find justified to write J*
in the following form involving terms in Vg and V.g:

J' = %+y(q.Vq +2V.q), @.11)

wherein y is a coefficient to be identified later on, the factor 2 in the last term is not
essential but has been introduced to recover Guyer-Krumhansl’s kinetic equation.
Starting from relation (2.2) and replacing 0s/0t and J° by their expressions (2.4) and
(2.11) respectively, it is found that



o= q.VT_1 —-a q.%+ y[q.qu +Vq:Vq+2qV(V.q)+2(V.q)(V.q)] =20, (2.12)
or, reassembling the terms containing the factor ¢,
6’ =q.[VT"' —a%+y(vzq+2vv.q)] +v(Vq:Vg+2(Vq)(Vg)). (2.13)

The simplest way to guarantee that the entropy production is positive definite is to
assume that there exists a linear relationship between the flux ¢ and its conjugated force
represented by the terms enclosed in the brackets and that y is a positive factor; as a
consequence, one is led to

q:%[VT1—a%+7/(vzq+2vv.q)], 720, (2.14)

wherein u is a positive phenomenological coefficient. Introducing the identifications
u=1/1T? ou=t, yu=_ (2.15)

one finds back Guyer-Krumhansl’s original law

r%‘fw =-AVT+1*(V’q+2VV.q), (2.16)

while the entropy production takes the form
2 2

s q )
= + Vq:Vqg+2(V.q)(V. >0, 2.17
o = ”2[ q:Vq+2(Vq)(Vaq)] (2.17)

positivity of ¢° demands that the heat conductivity A be positive definite. The derivation
of the Guyer-Krumhansl equation given here is new and presents the advantage to be
rather simple; it exhibits also clearly that not only Cattaneo’s but also Guyer-
Krumhansl’s relation can been derived by assuming that the entropy s depends, besides
the classical variable u, of only one extra flux variable, the heat flux vector 4.

3. The ballistic-diffusion model

Micro and nano materials are characterized by the property that the ratio of the mean
free path / of the heat carriers and the mean dimension L of the system, the Knudsen
number Kn = I/L, is comparable or larger than unity. In the present work, we assume the
coexistence of two kinds of heat carriers: diffusive phonons which undergo multiple
collisions within the core of the system and ballistic phonons originating at the
boundaries and experiencing mainly collisions with the walls. This model is called the
ballistic—diffusion one and was initially introduced by Chen (2001). The main point
underlying Chen’s approach is to split the distribution function finto two parts f'= f,+fz,
subscripts b and d referring to ballistic and diffusive phonons respectively.



Subsequently, the internal energy and the heat flux are decomposed into a ballistic and a
diffusive component in such a way that

u=uptug, q=qptqa. (3.1
The construction of the present model proceeds in three steps.

Step 1. Definition of the space of state variables. According to the decomposition (3.1)
of u and ¢, the state variables are selected as follows:

1) the couple u4, g4 to account for the diffusive behaviour of the heat carriers;
ii) the couple u;, g5 to provide a description of the ballistic motion of the carriers.

For future use, we introduce also the diffusive and ballistic quasi-temperatures 7, and 7
defined respectively by T; = uy /cq and T}, = uy / ¢p, where ¢ and ¢, denote the heat
capacities per unit volume and are positive quantities to guarantee stability of the
equilibrium state. Admitting that the heat capacities are equal so that ¢; = ¢, = ¢, and
defining the total quasi-temperature by 7= wu/c, it is verified that 7= T,+T;. Although
the quantities 7, 7, and 7 bear some analogy with the classical definition of the
temperature, it should however be realized that, strictly speaking, these quantities do not
represent temperatures in the usual sense but must be considered as a measure of the
internal energies, this justifies the use of the terminology “quasi-temperature”.

Step 2. Establishment of the evolution equations. After having defined the sate
variables, one must specify their behaviour in the course of time and space. The
evolutions of the internal energies u,; and u;, are governed by the classical energy
balance laws

Ouy _ -Vagq,+r,, aau” =-Vg,+r1,
t

ot (3.2)

while the total internal energy, u = u,+u,, satisfies the first law of thermodynamics (2.5), the
quantities 7, and r,, designate source terms which may be either positive or negative. In
virtue of the first law (2.5), one has to satisfy r, + 7, = 0 in absence of energy sources, so
that r; = - r,. Based on kinetic theory considerations (Chen 2001, 2002), it is shown that
r=-u, /T, (3.3)
the sign minus indicates that ballistic carriers can be converted into diffusive ones but
that the inverse is not possible, 7, is the relaxation time of the ballistic energy flux g,.

It remains to derive the evolution equation for the fluxes. Concerning the
diffusive phonons, it is assumed that they satisfy Cattaneo’s equation to cope with their
high frequency properties, i.e.

Ty aaﬂ"'qd =-4,VT,
t (3.4)



wherein the relaxation time 7, and the heat conductivity coefficient 4; are positive quantities to
meet the requirements of stability of equilibrium and positivity of the entropy production
respectively (Lebon et al 2008, Jou et al 2010). However, expression (3.5) is not able to
describe the ballistic regime which is mainly influenced by non-local effects as most of the
ballistic carriers cross the system without experiencing collisions except with the boundaries. As

shown before, this situation is satisfactorily described through Guyer-Krumhansl’s equation

7, % + g, =—-AVT +12(Vq, +2VV.q,), s

Iy is the mean free path of the ballistic phonons, the terms involving the space derivatives of the
heat flux vector account for the non-local effects and are important when the spatial scale of
variation of the heat flux is comparable to the mean free path of the heat carriers. From the
kinetic point of view, Guyer and Krumhansl have shown that 7, can be identified with the
collision time 7z of the resistive phonons collisions (non-conserving momentum collisions), and
that /2, =(1/5) v’ 1z v with v the mean velocity of phonons and 7y the collision time of normal
(momentum conserving) phonons collisions. Let us also mention that the relaxation times, the
mean free paths and the heat conductivities are not independent but according to the phonon
theory kinetic, they are related by

)

3 v Ty
wherein v;= Il; /z; and v, = [, /7, designate the mean velocity of the diffusive and
ballistic phonons, respectively. Expressions (3.2), (3.4) and (3.5) provide the basic set of
the eight scalar evolution equations for the eight unknowns u,, us,qs and gp.

A, =

% A

1 2
bzgcvb 7 (3.6)

Step3. Elimination of the fluxes q, and ¢5. This operation is easily achieved and is shown
in the appendix. Assuming that all the transport coefficients are constant, one is led to
the two second-order linear coupled differential equations :

daud+aud (t,/ b) b (1/t,)u, =@, /c,)Vu,,
— (3.7)
0? 0
T, 6;lh +2 autb ‘u, /t,= (% /c, )Vu, WV, ] 38

Expressions (3.7) and (3.8) are the key relations of our model. Setting r,=7,=1, A,=1, =1,
c;~cy=c, making use of the energy balance(3.2b) for the ballistic phonons, one recovers directly

Chen’s basic result from expression (3.7), namely

o’u,  Ou
— 4 +=d Vg = /c )Vu,, 3.9
72 ot q, = ( ) d (3.9)
this relation differs from the telegraph equation by the presence of the term V.4, . In
Chen’s formalism, the heat flux vector g, has been obtained by using the kinetic
definition of the heat flux and by solving Boltzmann’s equation. Here, we do not refer
to a kinetic approach but solve the problem exclusively at the macroscopic level. It
7



should also be underlined that our model is more general than Chen’s who introduced,
without any justification, the simplifying assumptions that 7; = 7,. Moreover, Chen
remains silent about the signs of 7;, 4; and ¢; (i=d, b).

4. Application: transient temperature distribution in thin films

The foregoing model will be applied to the study of transient heat conduction in a one
dimensional thin film of thickness L which may be of the same order of magnitude or
even smaller than the mean free path / of the phonons. Heat capacity and heat
conductivity are assumed to be constant and to take the same values for the diffusive
and ballistic phonons, internal energy sources are absent (#=0). Initially, the system is at
uniform energy uy or, using an equivalent terminology, at the “quasi-temperature” 7}
related to uy by uy= cTy. The lower surface z=0 is suddenly brought at =0 to the “quasi-
temperature” 7; = T + AT, while the upper surface z=L is kept at “quasi-temperature”
Ty. For further purpose, we introduce the Knudsen numbers Kn; = [; /L (i=d, b) which,
in virtue of expression (3.6), can be given the more general form

(Kn,))* =34t/ cl?,  (i=d, b). 4.1)
Having in mind numerical solutions, it is convenient to use dimensionless quantities

t*=t/r,, z¥*=z/L, 6,=[u, —u,(z=L)]/cAT, 6,=[u—u,(z=L)]/cAT, 4.2)
9=[u—cT(z:L)]/cAT, '
with 0,, 6, and 6 (=0, +6,) designating the non-dimensional energy (or temperature)

associated to the ballistic, diffusive and total energy respectively. The corresponding
evolution equations (3.7) and (3.8) take now the form

Kn, 0’60, 00, Kn, 8’0, 00
L et a0 =0, (43)
Kn, ot ot 3 0z ot

&6, ,06, 10

+2 2 00, g O
ot* ar* 3

Kn® . —
b oz *? " oz * op*

0,+6, =0. (4.4)

Initial conditions. At t=0, the sample is at uniform temperature 7 which implies that
the total energy is given by u(z, 0) = uy(z, 0)+ up(z, 0)= cTy. But it is reasonable to
suppose that at short times, the ballistic phonons are dominant so that the initial energy
will be essentially of ballistic nature leading to up(z, 0) =cT) or in dimensionless
notation :

Op(z*, 0) =0, Oa(z*, 0)=0. (4.5)



Throughout the sample, at time 7=0, the heat flux ¢ is also zero; as a consequence of
the energy balance (2.5), it is checked that initially 06( z* t*)ot* = 0, this result remains,

in particular, satisfied under the assumptions

00,(z*t*)
ot*

) 00,(=%1%)
=0 T

o=0. (4.6)

Boundary conditions. The formulation of the boundary conditions is a more delicate
problem. Their importance has to be underlined because in nano materials, their
influence is felt throughout the whole system. To satisfy the conditions 6(0,t*)=1 and
0(1,t*) =0 , the simplest tentative would be to suppose that, at z*=0, 6,0, t*)=1
together with 6,(0,t*) =0 while at z*=], the temperature of both the ballistic and
diffusive constituents would be zero. However, such expressions are too simple and do
not, in particular, cope with temperature jumps due to thermal boundary resistance as
discussed in several papers (Swartz and Pohl 1989, Joshi-Majumdar 1993, Chen 2002,
Navqi and Waldenstrom 2005). This is the reason why we have considered the
following boundary conditions for the ballistic carriers:

0,00, )=a, 6,(1,19=0 (4.7)

The quantity a which represents the temperature jump of the ballistic phonons at the
face z*=0 at t*=0), is taken equal to ’%. This value may be understood statistically: since
the temperature boundary condition at z*=( actually represents an internal energy
boundary condition, it can be said that the ballistic phonons which are generated at the
heated face are formed, by half of the carriers at the initial internal energy 6,=0 and the
other half at the value 6,=/ corresponding to the energy at the face where the
temperature is suddenly increased.. This result is confirmed by Chen (2002) who was
able to determine the explicit expression of 6, (z*, t*) by solving Boltzmann’s equation
from which results that indeed 8,(0, t*) =1/2, at the heated boundary z*=0. A posteriori,
it is shown later on that this value leads to results which match satisfactory well with
other different approaches. Concerning the diffusive carriers, we assume with Chen
(2002), that both of the interfaces are black phonons emitters and absorbers, implying
that the boundaries are made of incident diffusive carriers only. Combining Cattaneo’s
equation and Marshak’s boundary condition (Modest 1993) for black body thermal
radiation, one obtains (Chen 2002)

2
f”g Ztiiwd =i§Knd% (4.8)
n,

atz=0,1: s
oz*

the positive and negative signs at the right hand side correspond to the lower z*=0 and
upper z*=] faces respectively, the factor (Kn,/Knp)? 1is not present in Chen’s
developments because of his hypothesis of equality of relaxation times.

Discussion of the results



In a first stage, we have assumed that Kn, =Kn, =Kn because it is wanted to check the
validity of our model by comparing with previous different approaches. In particular,
we have compared our results with those of Joshi and Majumdar (1993) who solved
Boltzmann’s equation of phonon’s radiative transfer (EPRT model), Chen’s (2001,
2002) ballistic-diffusive model and Alvarez and Jou (2010) who used a modified
Fourier law with a heat conductivity depending on the Knudsen number. A modified
version of Alvarez and Jou’s work was recently proposed by Xu and Hu (2011) who
based their analysis on a coarse graining of Boltzmann equation. In addition, for the
sake of completeness, we have solved the hyperbolic Cattaneo and the parabolic Fourier
equations for the identical geometry and boundary conditions.

In Figs. 1 to 3 are represented the non-dimensional temperature profiles for
different Kn values (Kn=0.1; 1 and 10) versus the distance at different times. To
emphasize the specific roles of the two constituents, we have made explicit the
contributions of the total, ballistic and diffusive components. The region close to the hot
side is mainly dominated by the ballistic component contribution which decreases with
space while the diffusive one is increasing up to a maximum, after which one observes a
descent towards zero, the descent is the steepest as Kn becomes smaller. As expected,
the influence of the ballistic constituent becomes more important as Kn is increased
while the role of the diffusive one is dominant for small and intermittent Kn’s and is
growing with time.. This observation reflects the conversion of the ballistic internal
energy into the diffusive one as time is going on. It is also shown that for Kn=10, the
steady state is reached rather soon (after #*=1) and is decreasing linearly with space (see
Fig. 3). The results are in qualitative accord with the aforementioned formalisms with
however small discrepancies at small times (¢¥<0.1) especially for Kn =10. To avoid
overloaded graphs, we have deliberately not plotted the results of the EPRT, Chen,
Alvarez-Jou models as they are very close to ours. It is concluded that our description
matches the results derived from various points of view, ranging from macroscopic,
microscopic and mixed micro-macro approaches. Note also that for increasing values of
Kn (especially Kn = 10), a temperature jump is observed at the cold face. This indicates
that the ballistic part exhibits a strong wall resistance not only at the hot but also at the
cold face (especially at large Kn’s, see Fig. 3). The small bump just before the
temperature jump is caused by numerical errors due to the abrupt temperature change.

It is clearly seen that both Cattaneo and Fourier descriptions lead to unrealistic
results. Neither of these models predicts the temperature jumps at the boundary,
moreover, they yield overestimated values for the temperature profiles as they do not
integrate the specific properties of heat transport at nano scales, this particularly true at
large Kn’s. This is not surprising as Cattaneo and Fourier laws give rise to an
overestimated heat conductivity (Zhang 2007, Alvarez-Jou 2008). As observed in Figs.
2.b and 3.a, the Cattaneo equation exhibits a temperature discontinuity, propagating as
a attenuating wave, the attenuation being due to the diffusion; at large time values, both
Cattaneo’s and Fourier’s limits show the same linear behaviour with respect to the
spatial coordinate (see Figs. 1c, 2c, 3c).

10
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Fig.1. Non-dimensional temperature) profiles 8 (z* t*) as a function of distance z*=z/L at
different times ¢t*= t/z, (t* = 1, 10 and 100 respectively) for Kn, = Kn, = Kn = 0.1. The
respective contributions of the ballistic, diffusive and total temperatures are shown and
compared to the ones obtained from Cattaneo’s and Fourier’s equations.
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different times t*= t/r, (¢* = 0.1, 1 and 10) for Kn, = Kn, = Kn = 1. The respective
contributions of the ballistic, diffusive and total temperatures are shown and compared to the
ones obtained by Cattaneo’s and Fourier’s equations.
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To better apprehend the specific contributions of the ballistic and diffusive
constituents when the corresponding relaxation times are unequal, we have in a second
step considered different values of Kn,; and Kn,. To be explicit, we have fixed Kn, =0.1
with Kn, taking the values / and /0. The results which are plotted on Figs. 4 and 5
exhibit the same general tendency as in the case of equal Kn values with the ballistic
contribution being dominant at the z*=( heated face while the diffusive carriers tends to
play a more important role at the cold face z*=1/ as time and Kn, are becoming larger.
We notice also that the peak in the diffusive distribution (see Fig. 1.c) is disappearing.
It is not surprising to observe that the diffusive contribution becomes minute at large
Kny, /Kng ratios (see fig.5 for which Kny/Kng=100). We note also that at these values, the
distribution of the temperature is practically linear and reaches quickly its stationary
value after *=1, indeed, calculated curves at #*=1/0 indicate no change.
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Fig.4. Non-dimensional temperature profiles f(z*¢*) as a function of distance z*=z/L at
different times t*= t/z, (¢* = 0.1, 1 and 10) for Kn, = 0.1 and Kn, = 1. The respective
contributions of the ballistic, diffusive and total temperatures are shown.

o (1):(9) w0l Ballistic o (1):‘9) bepkop Balistc
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2 06 - 2 06 -
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g 04 g 04 1
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‘E 0.2 + -E 0.2 +
§ 0.1 + § 0.1 +
0.0 - - f ™ - Y = -+ - d 0.0 - - T ™ - Y = -+ - d
0O 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1
Nondimensional space coordinate Nondimensional space coordinate

Fig.5. Non-dimensional temperature profiles f(z*¢*) as a function of distance z*=z/L at
different times t*= t/z, (t* = 0.1 and 1 ) for Kn; = 0.1 and Kn, = 10. The respective
contributions of the ballistic, diffusive and total temperatures are shown.

Final comments and conclusion

A thermodynamic description of transient heat transport at nano scales based on
Extended Irreversible Thermodynamics is proposed. The problem is important in the
context of nano-electronics and heat transport in new materials. The model is original
and purely macroscopic. The central assumption of the present work is that, contrary to
previous approaches, the set of variables, namely the internal energy and the energy flux
is split into contributions of diffusive and ballistic nature. Heat transport is viewed as a
two-fluid diffusion-reaction process with ballistic particles converting into diffusive
ones. The latter are obeying a Cattaneo equation while the behaviour of the ballistic
phonons is governed by a Guyer-Krumhansl relation.This choice is motivated by the
property that non-local effects are dominating in ballistic collisions.

The most important results of the present work are embodied in the differential
equations (4.2) and (4.3) describing the behaviour of the diffusive and ballistic internal
energies, These relations have been derived after elimination of the ballistic and
diffusive heat fluxes from the basic set of time-evolution equations constituted by the
balance of energies, Cattaneo and Guyer-Krumhnsl’s equations. The choice of the initial
and boundary conditions is inspired by earlier works by several authors (Joshi and
Majumdar 1993, Chen 2001, Alvarez and Jou 2010).
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One of our objectives was to convince the reader of the flexibility and wide
range of applicability of Extended Irreversible Thermodynamics. It is shown that a
rather simple model is able to cope with much of the results derived from more
sophisticated approaches. It should however be kept in mind that the present work rests
on several simplifying assumptions: for instance, from a fundamental point of view,
questions may be raised about the definition of temperature at nano-scales. To
circumvent this problem, in our analysis, temperature was understood as a measure of
internal energy, the quantities 6, and 6, of the diffusive and ballistic components must
therefore be understood as quasi- temperatures, defined as a measure of the
corresponding energies u, and u; to which they are related by the simple expressions
Oi=uy /c, Oy =up/c with ¢ designating the heat capacity. Moreover, our approach is
restricted to the linear domain as all non-linear contributions are omitted. In addition,
coupling between diffusive and ballistic heat fluxes has been neglected. It should be
realized that the formalism discussed above represents only a first step towards a more
elaborate description of heat transport at micro- and nano-scales. In particular, it is
expected that higher order fluxes (the flux of the heat flux, the flux of the flux of the
heat flux,...) (Jou et a/ 2010) should be introduced from the start to cope with the
particulate behaviour of heat carriers at short wave lengths, but the difficulty is then the
physical interpretation of these new variables coupled to the complexity of the
mathematical formalism. The selection of the most appropriate set of state variables
remains an open problem. Finally, as shown in the previous section, the establishment
of appropriate boundary conditions remains a delicate task. In that respect, recent works
(Jou et al 2010, Jou et al 2011) describe interesting and original prospective.

In spite of the above limitations, application of the model to the problem of
transient heat conduction in materials with thickness of the order of magnitude of the
mean free path of heat carriers has led to satisfactory results. Indeed, after comparison
with earlier results derived from several works based on completely different
approaches, one has obtained results exhibiting a qualitative accord.

The present study is supported by a project of collaboration between Wallonie-Bruxelles and
Quebec under grant 06-809 (period 2009-2011). Discussions on an earlier version with
professors A. Valenti (University of Catania) and A. Palumbo (University of Messina) were
highly appreciated. Useful comments by professors P.C. Dauby and Th. Desaive (Liege

University) are also acknowledged.

Appendix: derivation of equations (3.7) and (3.8)
Application of operator V. on Cattaneo’s equation (3.4) and use of 7s=ug/ cs yields
tV(04,) ==V = (A4 /¢y )Vuy, (A1)

wherein 0, denotes the time derivative. Moreover, the balance of the total energy

(2.5) can be written in the form
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Vq,=-0u—-V.q,=—0u, —0,u,—V.q,. (A.2)
After differentiating (A.2) with respect to time and substituting in (A.1), one is led to

_Tdatz(ud +u, )—7,V.(0,9,)=-V.q,— (4 /c;)Vu; =V.q, +0u, +0u,—(4, /c,)Vu,, (A3)

wherein V.g,has been eliminated by means of (A.2). We now eliminate z,0;u, by
taking the time derivative of (3.2b) with 5, =—u, /7, and we multiply this equation by

7, , the result is
7, 00w, =—1,V.(0,4,) (7, /7, )0, . (A.4)

Substituting this result in (A.3) and replacing in the right-hand side of (A.3) the two
termsV.q, + ¢ by —u, / 7, in virtue of (3.2b), we finally find back (3.7) after multiplying

by (-1):
7,07 ua+0,u, —(7, /7, )ou, —u, /7, =(A,/c, )Vu,. (A.5)

To derive expression (3.8), we start from the time derivative of the energy
balance (3.2b), which multiplied by, , takes the form

,0iu, =—7,V.(0,4,)—O,u, . (A.6)

To eliminate the termV.(d,q, ), we will use Guyer-Krumhansl’s equation (3.6) to which

we apply operator V., from which follows that
T, V.(8,q,)+V.q,=—(A /c, Vu, +11(V.Nq,+2VV q, ). (A7)

After substitution of (A.7) in (A.6) and use of (3.2b) to eliminate V.¢, , one obtains, after
some elementary arithmetic, relation (3.8), namely

7,07, +20,u, +u, /T, =( A / ¢, )V2u, +3V.[V(0,u,)+(1/7, )Vu,].  (A.8)
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Figure captions

Fig.1. Non-dimensional energy (temperature) profiles (z* ¢*) as a function of distance

z*= z/L at different time t*= t/r, (¢t*= 1, 10, 100) for Kny; = Knp, =Kn= 0.1. The

respective contributions of the ballistic (......... ) , diffusive (---------- ) and total (
) temperatures are shown.

Fig.2. The same temperature profiles as in Fig. 1 for Kn;=Kn,= 1. The contribution of
the diffusive temperatures is perceptibly decreased compared to the case Kn=0.1.

Fig. 3. The same temperature profiles as in Figs.1 and 2 for Kn; =Kny= 10. The
diffusive component is considerably reduced and the total temperature is characterized
by a quasi linear decrease with a temperature jump at each boundary .

Fig.4. Ballistic, diffusive and total temperature distributions € versus distance z* for
different times #* and Knudsen numbers Kn,= 0.1, Kny=1.

Fig.5. The same as in fig. 4 but for Kn,;=0.1, Kn, = 10. Profiles are quasi linear and the

steady state is reached very rapidly after ¢*=/. Similar curves were obtained for Kn=
=1, Kn=100 and have not been represented.
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