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1. Introduction 

It is well recognized that Fourier’s law of heat conduction Tλ= − ∇q  with q the heat 

flux vector,  the temperature gradient and λ the heat conductivity is only valid at low 

frequencies and large space scales. To cope with high frequency processes, Fourier’s 

law has been generalized by Cattaneo (1948) into the non-steady form  

                                                       
,T

t
τ λ
∂

+ = − ∇
∂

q
q                 (1.1)                      

wherein τ designates the heat flux relaxation time. Cattaneo’s relation reduces to 

Fourier’s law in the limit of vanishing values of τ. However, Cattaneo’s equation is not 

able to describe highly non-local effects characterizing small scale systems. To account 

for non-localities, a generalization has been proposed by Guyer and Krumhansl (1966a, 

1966b) who derived the following equation on the basis of the kinetic theory: 

         

2 2( 2 . )T l
t

τ λ
∂

+ = − ∇ + ∇ + ∇∇
∂

q
q q q ,   (1.2)                                   

the quantity l stands for the mean free path of the heat carriers, namely phonons; non-

locality is expressed though the second order space derivatives in q and q.                                         

The objective of this work is to describe transient heat conduction at micro and nano 

scales based on Extended Irreversible Thermodynamics (Lebon et al 2008, Jou et al 

2010). The main idea underlying this theory is to elevate the fast variables, like the heat 

flux, to the status of independent variables at the same level as the slow variables like 

energy, or temperature. In the next section, it is shown that the Cattaneo and Guyer-

Krumhansl equations can be directly derived from the Extended Thermodynamics 

formalism. In the present paper, it is assumed that heat propagation is governed by two 

kinds of phonons: ballistic and diffusive ones. The idea is not new and was essentially 

initiated by G. Chen (2001, 2002) who proposed a so-called “ballistic-diffusion model” 

mixing kinetic theory and macroscopic considerations. In contrast, our approach is 

purely macroscopic and rests on the assumption that the motion of the diffusive 

phonons is governed by Cattaneo’s equation while the ballistic phonons, which are 

dominant when the dimensions of the system are equal or smaller than the mean free 

path of the phonons, will obey Guyer-Krumhansl’s relation. 

The paper will run as follows. In Section 2, the main ingredients of Extended 

Irreversible Thermodynamics are recalled; in particular, it is shown under which 

conditions, the Cattaneo and Guyer-Krumhansl equations can be derived from this 

formalism. The ballistic-diffusion model is analyzed in Section 3 and is applied in 

Section 4 to the problem of transient heat conduction in nano films. The numerical 

results are analyzed and compared with these provided by Fourier’s, Cattaneo’s, and 

more recent descriptions by Joshi and Majumdar 1993, Chen 2002, Alvarez and Jou 

2010.  General conclusions are drawn in Section 5. 
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2. Brief review of Extended Irreversible  Thermodynamics 

The main idea underlying Extended  Irreversible Thermodynamics (EIT) is to consider 

the dissipative fluxes, like the flux of heat in heat transport problems, as independent 

basic variables, on the same footing as the classical variables like energy, or 

temperature. Elevating the dissipative fluxes to the status of independent variables 

amounts to introduce memory and non-local effects into the formalism. It is also 

assumed that there exists a non-equilibrium entropy s depending on the whole set of 

variables, including the fluxes. In the particular case of heat conduction, s is assumed to 

be a function of the internal energy u and the heat flux vector q: 

                     s= s (u, q),                                                     (2.1)                      

with s and u denoting quantities measured per unit volume. The entropy s obeys a time 

evolution equation of the form 

                                                         0s ss
. ,

t

∂
+∇ = σ ≥

∂
J ,                             (2.2)                                  

wherein J
s
 denotes the entropy flux vector,  σ

s
  the rate of entropy production per unit 

volume, a positive definite quantity according to the second law of thermodynamics. 

Since the  global velocity of the material is supposed to be equal to zero, partial  and  

material time derivatives are identical. It is well known that Fourier’s law can directly  

be derived from  the  classical  theory  of   irreversible processes based on the local 

equilibrium hypothesis and developed, among others, by Onsager (1931), Prigogine 

(1961) and De Groot and Mazur (1962). To illustrate  the  range of  application  of  EIT, 

we now show that Cattaneo’s and Guyer-Krumhansl’s equations enter naturally into the 

framework of this formalism. In differential form, relation (2.1) takes the form 

                                    

s s u s
. .

t u t t

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂

q

q
                  (2.3)                   

Define as usually the non-equilibrium temperature by T 
-1

= ∂s /∂u and assume moreover 

that ∂s/∂q = -α(T)q with  α(T)  a material coefficient allowed to depend on T, the minus 

sign being introduced for convenience and non-linear contributions in q being omitted; 

substitution of these expressions in (2.3) yields 

        

1s u
T . .

t t t

−∂ ∂ ∂
= −α

∂ ∂ ∂

q
q                   (2.4)    

The time derivative ∂u/∂t is given by the first law of thermodynamics, which for rigid 

heat conductors at rest and absence of internal heat sources, reads as 

                                                       

u
.

t

∂
= −∇

∂
q .         (2.5)       

Our next task is to formulate the time-evolution equation of q, as shown below, simple 

forms are provided by Cattaneo’s and (or) Guyer- Krumhansl’s equations. 
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2.1  The Cattaneo equation.  

Making use of (2.5), relation (2.4) writes as 

                         1s
. .( T ).

t T t
α−∂ ∂

= −∇ + ∇ −
∂ ∂

q q
q                    (2.6) 

By comparison with the general expression (2.2) of the evolution equation for s, one 

obtains for J
s 
and σ

s
 the following results respectively: 

                                      
1     0s s, .( T )

T t

− ∂
= σ = ∇ −α ≥

∂

q q
J q .       (2.7) 

The simplest way to ensure the positiveness of σ
s
 is to assume a linear relation between 

the flux q and the so-called thermodynamic force represented by the terms between 

parentheses: 

            

1  .T
t

−∂
α −∇ = −µ
∂

q
q ,         (2.8) 

wherein µ is a positive definite coefficient. It is also shown within the general 

framework of EIT (Jou et al 2010) that α ≥0 to comply with the concavity property of 

entropy. By introducing the notation                                                                                                                        

                                                   α/µ=τ,       1/µT²=λ                                                    (2.9) 

one recovers from expression (2.8) the familiar form of Cattaneo’s equation, namely     

                                                   

T
t

τ
∂

+ = −λ∇
∂

q
q ,                            (2.10)           

with τ designating the relaxation time of the heat flux and λ the positive heat 

conductivity, both quantities are generally depending on the temperature.  

2.2 The Guyer-Krumhansl equation.  

It is observed that expression (2.7a) of the entropy flux J
s
 is the same as in classical 

irreversible thermodynamics (i.e. the heat flux divided by the temperature). When non-

localities become important, it is natural to expect that J
s 
will in addition depend on the 

gradients of q. In that respect and without loss of generality, we find justified to write J
s
 

in the following form involving terms in ∇q and : 

                                                2s ( . . )
T

= + γ ∇ + ∇
q

J q q q q ,                                        (2.11)           

wherein γ is a coefficient to be identified later on, the factor 2 in the last term is not 

essential but has been introduced to recover Guyer-Krumhansl’s kinetic equation. 

Starting from relation (2.2) and replacing ∂s/∂t and  J
s
  by  their expressions (2.4) and 

(2.11) respectively, it is found that 
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  1 2 2 2 0s . T . [ . : . ( . ) ( . )( . )]
t

− ∂
σ = ∇ −α + γ ∇ +∇ ∇ + ∇ ∇ + ∇ ∇ ≥

∂

q
q q q q q q q q q q ,        (2.12) 

or, reassembling the terms containing the factor q, 

        1 2 2 2 s .[ T ( . )] ( : ( . )( . )).
t

− ∂
σ = ∇ −α + γ ∇ + ∇∇ + γ ∇ ∇ + ∇ ∇

∂

q
q q q q q q q            (2.13)                                  

The simplest way to guarantee that the entropy production is positive definite is to 

assume that there exists a linear relationship between the flux q and its conjugated force 

represented by the terms enclosed in the brackets and  that γ is a positive factor; as a 

consequence, one is led to 

                1 21
2        0[ T ( . )], ,

t
α γ γ

µ

− ∂
= ∇ − + ∇ + ∇∇ ≥

∂

q
q q q                     (2.14)              

wherein µ  is a positive  phenomenological coefficient. Introducing the identifications  

                                         µ=1/ λT²,   α/µ=τ,   γ/µ=l²,                (2.15)            

one finds back Guyer-Krumhansl’s original law 

                                     2 2 2T l ( . ),
t

τ
∂

+ = −λ∇ + ∇ + ∇∇
∂

q
q q q                (2.16)             

while the entropy production takes the form 

       

2 2

2 2
2 0s q l

[ : ( . )( . )] ,
T T

σ = + ∇ ∇ + ∇ ∇ ≥
λ λ

q q q q                          (2.17)            

positivity of σ
s
 demands that the heat conductivity λ be positive definite. The derivation 

of the Guyer-Krumhansl equation given here is new and presents the advantage to be 

rather simple; it exhibits also clearly that not only Cattaneo’s but also Guyer-

Krumhansl’s relation can been derived by assuming that the entropy s depends, besides 

the classical variable u, of only one extra flux variable, the heat flux vector q. 

3. The ballistic-diffusion model 

Micro and nano materials are characterized by the property that the ratio of the mean 

free path l of the heat carriers and the mean dimension L of the system, the Knudsen 

number Kn = l/L, is comparable or larger than unity. In the present work, we assume the 

coexistence of two kinds of heat carriers: diffusive phonons which undergo multiple 

collisions within the core of the system and ballistic phonons originating at the 

boundaries and experiencing mainly collisions with the walls. This model is called the 

ballistic–diffusion one and was initially introduced by Chen (2001). The main point 

underlying Chen’s approach is to split the distribution function f into two parts f = fb+fd, 

subscripts b and d referring to ballistic and diffusive phonons respectively. 
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Subsequently, the internal energy and the heat flux are decomposed into a ballistic and a 

diffusive component in such a way that 

        u = ub+ud,   q= qb+qd.        (3.1)                

The construction of the present model proceeds in three steps. 

Step 1. Definition of the space of state variables. According to the decomposition (3.1) 

of u and q, the state variables are selected as follows: 

 i) the couple ud , qd  to account for the diffusive behaviour of the heat carriers; 

ii) the couple ub , qb to provide a description of  the ballistic motion of the carriers. 

For future use, we introduce also the diffusive and ballistic quasi-temperatures Td and Tb 

defined respectively by Td = ud /cd and Tb = ub / cb, where cd and cb denote the heat 

capacities per unit volume and are positive quantities to guarantee stability of the 

equilibrium state. Admitting that the heat capacities are equal so that cd = cb = c, and 

defining the total quasi-temperature by T= u/c, it is verified that T= Td+Tb.  Although 

the quantities Td, Tb, and T bear some analogy with the classical definition of the 

temperature, it should however be realized that, strictly speaking, these quantities do not 

represent temperatures in the usual sense but must  be considered as a measure of the 

internal energies, this justifies the use of the terminology “quasi-temperature”. 

 Step 2. Establishment of the evolution equations. After having defined the sate 

variables, one must specify their behaviour in the course of time and space. The 

evolutions of the internal energies ud and ub are governed by the classical energy 

balance laws 

                                
   d b

d d b b

u u
- . r ,     - . r ,

t t

∂ ∂
= ∇ + = ∇ +

∂ ∂
q q

                            (3.2)                    

 

while the total internal energy, u = ud+ub, satisfies the first law of thermodynamics (2.5), the  

quantities  rd, and  rb, designate  source  terms  which may  be  either  positive  or negative.  In 

virtue  of  the  first law (2.5),  one has to satisfy  rd + rb = 0  in absence of energy sources, so 

that rd = - rb. Based on kinetic theory considerations (Chen 2001, 2002), it is shown that 

                                                          ,b b br = -u τ                    (3.3)               

the sign minus indicates that ballistic carriers can be converted into  diffusive ones  but 

that the inverse is not possible, τb is the relaxation time of the ballistic energy flux qb.  

It remains to derive the evolution equation for the fluxes. Concerning the 

diffusive phonons, it is assumed that they satisfy Cattaneo’s equation to cope with their 

high frequency properties, i.e. 

             

d
d d d T ,

t
τ λ

∂
+ = − ∇

∂

q
q

                         (3.4)                     
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wherein the relaxation time τd and the heat conductivity coefficient λd  are  positive quantities to 

meet the requirements of stability of equilibrium and positivity of the entropy production 

respectively (Lebon et al 2008, Jou et al  2010). However, expression (3.5) is not able to 

describe the ballistic regime which is mainly influenced by non-local effects as most of the 

ballistic carriers cross the system without experiencing collisions except with the boundaries. As 

shown before, this situation is satisfactorily described through Guyer-Krumhansl’s equation 

                                     

2 2( 2 . ),b
b b b b b bT l

t
τ λ
∂

= − ∇ + ∇ + ∇∇
∂

q
  +  q q q

                            (3.5) 

lb is the mean free path of the ballistic phonons, the terms involving the space derivatives of the 

heat flux vector account for the non-local effects and are important when the spatial scale of 

variation of the heat flux is comparable to the mean free path of the heat carriers. From the 

kinetic point of view, Guyer and Krumhansl have shown that τb can be identified with the 

collision time τR of the resistive phonons collisions  (non-conserving momentum collisions), and 

that l²b =(1/5) v² τR τN   with v the mean velocity of phonons and τN the collision time of normal 

(momentum conserving) phonons collisions. Let us also mention that the relaxation times, the 

mean free paths and the heat conductivities are not independent but according to the phonon 

theory kinetic, they are related by 

                                           
1 12 2
    ,   =   

33
c v c v

d d d b b b
λ τ λ τ=                                              (3.6)      

wherein  vd,= ld /τd  and vb = lb /τb designate the mean velocity of the diffusive and 

ballistic phonons, respectively. Expressions (3.2), (3.4) and (3.5) provide the basic set of 

the eight scalar evolution equations for the eight unknowns ud , ub ,qd  and qb.  

 

Step3.Elimination of the fluxes qd and qb...This operation is easily achieved and is shown 

in the appendix. Assuming that all the transport coefficients are constant, one is led to 

the two second-order linear coupled differential equations : 

                      

2
2

2
) ,d d b

d d b b b d d d

u u u
τ + -(τ / τ ) - (1 / τ )u = (λ / c u

t t t

∂ ∂ ∂
∇

∂ ∂ ∂                         (3.7)            

              
2

2 2

2
.[ (1 / ) ].b b b

b b b b b b b b b

u u u
τ + 2 + u / τ = (λ / c ) u + 3l u

t t t
τ

∂ ∂ ∂
∇ ∇ + ∇

∂ ∂ ∂
∇          (3.8)                                                      

 Expressions (3.7) and (3.8) are the key relations of our model. Setting τd=τb=τ,  λd=λb =λ,  

cd=cb=c, making use of the energy balance(3.2b) for the ballistic phonons, one recovers directly 

Chen’s basic result from expression (3.7), namely 

 

                                       
2

2

2

d d
b d

u u
τ + + . = (λ / c ) u ,

t t

∂ ∂
∇ ∇

∂ ∂
q                     (3.9)                                            

this relation differs from the telegraph equation by the presence of the term b.∇ q . In 

Chen’s formalism, the heat flux vector qb has been obtained by using the kinetic 

definition of the heat flux and by solving Boltzmann’s equation. Here, we do not refer 

to a kinetic approach but solve the problem exclusively at the macroscopic level.  It 
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should also be underlined that our model is more general than Chen’s who introduced, 

without any justification, the simplifying assumptions that τd = τb.  Moreover, Chen 

remains silent about the signs of τi , λi and ci (i=d, b).  

4. Application: transient temperature distribution in thin films 

The foregoing model will be applied to the study of transient heat conduction in a one 

dimensional thin film of thickness L which may be of the same order of magnitude or 

even smaller than the mean free path l of the phonons. Heat capacity and heat 

conductivity are assumed to be constant and to take the same values for the diffusive 

and ballistic phonons, internal energy sources are absent (r=0). Initially, the system is at 

uniform energy u0 or, using an equivalent terminology, at the “quasi-temperature” T0 

related to u0 by u0= cT0. The lower surface z=0 is suddenly brought at t=0 to the “quasi- 

temperature” T1 = T0 + ∆T, while the upper surface z=L is kept at “quasi-temperature” 

T0.  For further purpose, we introduce the Knudsen numbers Kni = li /L (i=d, b) which, 

in virtue of expression (3.6), can be given the more general form  

 
2 2( ) 3 /i iKn cLλτ= , (i=d, b).                  (4.1) 

 

Having in mind numerical solutions, it is convenient to use dimensionless quantities   

             

[ ]

* / ,  * / ,   [ ( )] / ,  =[ ( )] / ,

                                 ( ) / ,

b d d d b bt t z z L u u z L c T u u z L c T

u cT z L c T

τ θ θ

θ

= = = − = ∆ − = ∆

= − = ∆
              (4.2)             

 

with ,  d bθ θ  and  ( )d bθ θ θ= + designating the non-dimensional energy (or temperature) 

associated to the ballistic, diffusive and total energy respectively. The corresponding 

evolution equations (3.7) and (3.8) take now the form 
 

 
2 2 2 2

2 2 2
( ) 0

* * 3 * *

d d b b d d
b

b

Kn Kn

Kn t t z t

θ θ θ θ
θ

∂ ∂ ∂ ∂
− − + − =

∂ ∂ ∂ ∂
,                       (4.3)              

 

          
      

2 2 3
2 2

2 2 2

10
2 3 0

* * 3 * * *

b b b
b b b bKn Kn

t t z z t

θ θ θ
θ θ

∂ ∂ ∂ ∂
+ − − + =

∂ ∂ ∂ ∂ ∂
.       (4.4)                 

                           
 

Initial conditions. At t=0, the sample is at uniform temperature T0 which implies that 

the total energy is given by u(z, 0) = ud(z, 0)+ ub(z, 0)= cT0. But it is reasonable to 

suppose that at short times, the ballistic phonons are dominant so that the initial energy 

will be essentially of ballistic nature leading to ub(z, 0) =cT0, or in dimensionless 

notation : 

                                       θb(z*, 0) =0,         θd(z*, 0)=0.                   (4.5)               
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Throughout the sample, at time t=0, the heat flux q is also zero; as a consequence  of 

the energy balance (2.5), it is checked that initially 0( z*,t*) t*θ∂ ∂ = , this result remains, 

in particular, satisfied under the assumptions 

           
00

0         0d b
t*t*

( z*,t*) ( z*,t*)
, .

t* t*

θ θ
==

∂ ∂
= =

∂ ∂
                        (4.6)                      

Boundary conditions. The formulation of the boundary conditions is a more delicate 

problem. Their importance has to be underlined because in nano materials, their 

influence is felt throughout the whole system. To satisfy the conditions θ(0,t*)=1 and  

θ(1,t*) =0 , the simplest tentative would be to suppose that, at z*=0, θb(0, t*)=1 

together with θd(0,t*) =0 while  at  z*=1,  the temperature of both the ballistic and 

diffusive constituents would be zero. However, such expressions are too simple and do 

not, in particular, cope with temperature jumps due to thermal boundary resistance as 

discussed in several papers (Swartz and Pohl 1989, Joshi-Majumdar 1993, Chen 2002, 

Navqi and Waldenstrom 2005). This is the reason why we have considered the 

following boundary conditions for the ballistic carriers: 

                                   0      1 0*

b b( ,t ) a, ( ,t*)θ θ= =                      (4.7)                     

The quantity a which represents the temperature jump of the ballistic phonons at the 

face z*=0 at t*=0, is taken equal to ½. This value may be understood statistically: since 

the temperature boundary condition at z*=0 actually represents an internal energy 

boundary condition, it can be said that the ballistic phonons which are generated at the 

heated face are formed, by half of the carriers at the initial internal energy θb=0 and the 

other half at the value θb=1 corresponding to the energy at the face where the 

temperature is suddenly increased.. This result is confirmed by Chen (2002) who was 

able to determine the explicit expression of θb (z*, t*) by solving Boltzmann’s equation 

from which results that indeed θb(0, t*) =1/2, at the heated boundary z*=0. A posteriori, 

it is shown later on that this value leads to results which match satisfactory well with 

other different approaches. Concerning the diffusive carriers, we assume with Chen 

(2002), that both of the interfaces are black phonons emitters and absorbers, implying 

that the boundaries are made of incident diffusive carriers only. Combining Cattaneo’s 

equation and Marshak’s boundary condition (Modest 1993) for black body thermal 

radiation, one obtains (Chen 2002) 

at z=0,1:              
2

2

2

3

d d d
d d

b

Kn
Kn

Kn t* z*

θ θ
θ

∂ ∂
+ = ±

∂ ∂
,                   (4.8)        

the positive and negative signs at the right hand side correspond to the lower z*=0 and 

upper z*=1 faces respectively,  the factor (Knd/Knb)²  is not present in Chen’s 

developments because of  his hypothesis of equality of relaxation times. 

Discussion of the results 
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In a first stage, we have assumed that Knb =Knd =Kn because it is wanted to check the 

validity of our model by comparing with previous different approaches. In particular, 

we have compared our results with those of Joshi and Majumdar (1993) who solved 

Boltzmann’s equation of phonon’s radiative transfer (EPRT model), Chen’s (2001, 

2002) ballistic-diffusive model and Alvarez and Jou (2010) who used a modified 

Fourier law with a heat conductivity depending on the Knudsen number. A modified 

version of Alvarez and Jou’s work was recently proposed by Xu and Hu (2011) who 

based their analysis on a coarse graining of Boltzmann equation. In addition, for the 

sake of completeness, we have solved the hyperbolic Cattaneo and the parabolic Fourier 

equations for the identical geometry and boundary conditions. 

 In Figs. 1 to 3 are represented the non-dimensional temperature profiles for 

different Kn values (Kn=0.1; 1 and 10) versus the distance at different times. To 

emphasize the specific roles of the two constituents, we have made explicit the 

contributions of the total, ballistic and diffusive components. The region close to the hot 

side is mainly dominated by the ballistic component contribution which decreases with 

space while the diffusive one is increasing up to a maximum, after which one observes a 

descent towards zero, the descent is the steepest as Kn becomes smaller. As expected, 

the influence of the ballistic constituent becomes more important as Kn is increased 

while the role of the diffusive one is dominant for small and intermittent Kn’s and is 

growing with time.. This observation reflects the conversion of the ballistic internal 

energy into the diffusive one as time is going on. It is also shown that for Kn=10, the 

steady state is reached rather soon (after t*=1) and is decreasing linearly with space (see 

Fig. 3). The results are in qualitative accord with the aforementioned formalisms with 

however small discrepancies at small times (t*<0.1) especially for Kn =10. To avoid 

overloaded graphs, we have deliberately not plotted the results of the EPRT, Chen, 

Alvarez-Jou models as they are very close to ours. It is concluded that our description 

matches the results derived from various points of view, ranging from macroscopic, 

microscopic and mixed micro-macro approaches. Note also that for increasing values of 

Kn (especially Kn = 10), a temperature jump is observed at the cold face. This indicates 

that the ballistic part exhibits a strong wall resistance not only at the hot but also at the 

cold face (especially at large Kn’s, see Fig. 3).  The small bump just before the 

temperature jump is caused by numerical errors due to the abrupt temperature change.  

It is clearly seen that both Cattaneo and Fourier descriptions lead to unrealistic 

results. Neither of these models predicts the temperature jumps at the boundary, 

moreover, they yield overestimated values for the temperature profiles as they do not 

integrate the specific properties of heat transport at nano scales, this particularly true at 

large Kn’s. This is not surprising as Cattaneo and Fourier laws give rise to an 

overestimated heat conductivity (Zhang 2007, Alvarez-Jou 2008). As  observed in Figs. 

2.b and 3.a,  the Cattaneo equation exhibits  a temperature discontinuity, propagating as 

a attenuating wave, the attenuation being due to the diffusion; at large  time values, both 

Cattaneo’s and Fourier’s limits show the same linear behaviour with respect to the 

spatial coordinate (see Figs. 1c, 2c, 3c). 
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Fig.1. Non-dimensional temperature) profiles θ (z*, t*) as a function of distance z*=z/L at 

different times t*= t/τb  (t* = 1, 10 and 100 respectively) for Knd = Knb = Kn = 0.1. The 

respective contributions of the ballistic, diffusive and total temperatures are shown and 

compared to the ones obtained from Cattaneo’s and Fourier’s equations. 
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Fig. 2. Non-dimensional temperature profiles θ (z*,t*) as a function of distance z*=z/L at 

different times t*= t/τb (t* = 0.1, 1 and 10) for Knd = Knb = Kn = 1. The respective 

contributions of the ballistic, diffusive and total temperatures are shown and compared to the 

ones obtained by Cattaneo’s and Fourier’s equations. 

a: t* = 1 b: t* = 10 

c: t* = 100 

a: t* = 0.1 b: t* = 1 

c: t* = 10 
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Fig. 3. Non-dimensional temperature profiles θ(z*,t*) as a function of distance z*=z/L at 

different times t*= t/τ b (t* = 0.1, 1 and 10) for Knd = Knb = Kn = 10. The respective 

contributions of the ballistic, diffusive and total temperatures are shown and compared to the 

ones obtained by Cattaneo’s and Fourier’s equations. 

To better apprehend the specific contributions of the ballistic and diffusive 

constituents when the corresponding relaxation times  are unequal, we have in a second 

step considered different values of Knd  and Knb. To be explicit, we have fixed Knd =0.1 

with Knb taking the values 1 and 10. The results which are plotted on Figs. 4 and  5  

exhibit the same general tendency as in the case of equal Kn values with the ballistic 

contribution being dominant at the z*=0 heated face while the diffusive carriers tends to 

play a more important role at the cold face z*=1 as time and Knb are becoming larger. 

We notice also that the peak  in the diffusive distribution (see Fig. 1.c) is disappearing. 

It is not surprising to observe that the diffusive contribution becomes minute at large 

Knb /Knd ratios (see fig.5 for which Knb/Knd=100). We note also that at these values, the 

distribution of the temperature is practically linear and reaches quickly its stationary 

value after t*=1, indeed, calculated curves at t*=10 indicate no change. 
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a: t* = 0.1 b: t* = 1 

c: t* = 10 

a: t* = 0.1 b: t* = 1 
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Fig.4. Non-dimensional temperature profiles θ(z*,t*) as a function of distance z*=z/L at 

different times t*= t/τb (t* = 0.1, 1 and 10) for Knd = 0.1 and Knb = 1. The respective 

contributions of the ballistic, diffusive and total temperatures are shown.   
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Fig.5. Non-dimensional temperature profiles θ(z*,t*) as a function of distance z*=z/L at 

different times t*= t/τb (t* = 0.1 and 1 ) for Knd = 0.1 and Knb = 10. The respective 

contributions of the ballistic, diffusive and total temperatures are shown. 

Final comments and conclusion 

A thermodynamic description of transient heat transport at nano scales based on 

Extended Irreversible Thermodynamics is proposed. The problem is important in the 

context of nano-electronics and heat transport in new materials. The model is original 

and purely macroscopic.  The central assumption of the present work is that, contrary to 

previous approaches, the set of variables, namely the internal energy and the energy flux 

is split into contributions of diffusive and ballistic nature.  Heat transport is viewed as a 

two-fluid diffusion-reaction process with ballistic particles converting into diffusive 

ones. The latter are obeying a Cattaneo equation while the behaviour of the ballistic 

phonons is governed by a Guyer-Krumhansl relation.This choice is motivated by the 

property that non-local effects are dominating in ballistic collisions.  

The most important results of the present work are embodied in the differential 

equations (4.2) and (4.3) describing the behaviour of the diffusive and ballistic internal 

energies, These relations have been derived after elimination of the ballistic and 

diffusive heat fluxes from the basic set of  time-evolution equations constituted by the 

balance of energies, Cattaneo and Guyer-Krumhnsl’s equations. The choice of the initial 

and boundary conditions is inspired by earlier works by several authors (Joshi and 

Majumdar 1993, Chen 2001, Alvarez and Jou 2010). 

c: t* = 10 

a: t* = 0.1 b: t* = 1 



14 

 

  One of our objectives was to convince the reader of the flexibility and wide 

range of applicability of Extended Irreversible Thermodynamics. It is shown that a 

rather simple model is able to cope with much of the results derived from more 

sophisticated approaches. It should however be kept in mind that the present work rests 

on several simplifying assumptions: for instance, from a fundamental point of view, 

questions may be raised about the definition of temperature at nano-scales. To 

circumvent this problem, in our analysis, temperature was understood as a measure of 

internal energy, the quantities θd and θb of the diffusive and ballistic components must 

therefore be understood as quasi- temperatures, defined as a measure of the 

corresponding energies ud and ub to which they are related by the simple expressions 

θd=ud /c, θb =ub/c with c designating the heat capacity. Moreover, our approach is 

restricted to the linear domain as all non-linear contributions are omitted. In addition, 

coupling between diffusive and ballistic heat fluxes has been neglected. It should be 

realized that the formalism discussed above represents only a first step towards a more 

elaborate description of heat transport at micro- and nano-scales. In particular, it is 

expected that higher order fluxes (the flux of the heat flux, the flux of the flux of the 

heat flux,…) (Jou et al 2010) should be introduced from the start to cope with the 

particulate behaviour of heat carriers at short wave lengths, but the difficulty is then the 

physical interpretation of these new variables coupled to the complexity of the 

mathematical formalism. The selection of the most appropriate set of state variables 

remains an open problem. Finally, as shown in the previous section, the establishment 

of appropriate boundary conditions remains a delicate task. In that respect, recent works 

(Jou et al 2010, Jou et al 2011) describe interesting and original prospective. 

In spite of the above limitations, application of the model to the problem of 

transient heat conduction in materials with thickness of the order of magnitude of the 

mean free path of heat carriers has led to satisfactory results. Indeed, after comparison 

with earlier results derived from several works based on completely different 

approaches, one has obtained results exhibiting a qualitative accord.  

The present study is supported  by a project of collaboration between Wallonie-Bruxelles and 

Quebec under grant 06-809 (period 2009-2011). Discussions on an earlier version with 

professors A. Valenti (University of Catania) and A. Palumbo (University of Messina) were 

highly appreciated. Useful comments by professors P.C. Dauby and Th. Desaive (Liege 

University) are also acknowledged. 

 

Appendix: derivation of equations (3.7) and (3.8) 

Application of operator ∇.  on  Cattaneo’s equation (3.4) and use of Td=ud/ cd   yields    

                 d t d d d d d.( ) . ( / c ) ²uτ λ∇ ∂ = −∇ − ∇q q ,      (A.1)            

wherein t∂ denotes the time derivative. Moreover, the balance of the total energy 

(2.5) can be written in the form  
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d t b t d t b b. u . u u .∇ = −∂ −∇ = −∂ − ∂ −∇q q q .       (A.2)            

After differentiating (A.2) with respect to time and substituting in (A.1), one is led to 

2 (A3)d t d b d t b d d d d b t d t b d d d( u u ) .( ) . ( / c ) ²u . u u ( / c ) ²u ,τ τ λ λ− ∂ + − ∇ ∂ = −∇ − ∇ =∇ + ∂ + ∂ − ∇q q q

 

wherein d.∇ q has been eliminated by means of (A.2). We now eliminate 2
d t buτ ∂  by 

taking the time derivative of (3.2b) with b b br u / τ= − and we multiply this equation by 

dτ , the result is 

  2
d t b d t b d b t bu .( ) ( / ) uτ τ τ τ∂ = − ∇ ∂ − ∂q .       (A.4)  

Substituting this result in (A.3) and replacing in the right-hand side of (A.3) the two 

terms b b. u∇ + &q  by b bu / τ− in virtue of (3.2b), we finally find back (3.7) after multiplying  

by  (-1): 

         2
dd t t d d b t b b b d d du u ( / ) u u / ( / c ) ²uτ τ τ τ λ∂ + ∂ − ∂ − = ∇ .     (A.5)  

To derive expression (3.8), we start from the time derivative of the energy 

balance (3.2b), which multiplied by bτ , takes the form 

2
b t b b t b t b

u .( ) uτ τ∂ = − ∇ ∂ − ∂/q .       (A.6)          

To eliminate the term t b.( )∇ ∂ q , we will use Guyer-Krumhansl’s equation (3.6) to which 

we apply operator .∇ , from which follows that 

                 2 2b t b b b b b b b b.( ) . ( / c ) ²u l ( . ² ² . )τ λ∇ ∂ +∇ = − ∇ + ∇∇ + ∇ ∇q q q q .    (A.7)  

After substitution of (A.7) in (A.6) and use of (3.2b) to eliminate b.∇ q , one obtains, after 

some elementary arithmetic, relation (3.8), namely  

      2 22 3 1b t b t b b b b b b b t b b bu u u / ( / c ) ²u l .[ ( u ) ( / ) u ]τ τ λ τ∂ + ∂ + = ∇ + ∇ ∇ ∂ + ∇ .    (A.8)  
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Figure captions 

Fig.1.  Non-dimensional energy (temperature) profiles θ(z*,t*) as a function of distance 

z*= z/L at different time t*= t/τb (t*= 1, 10 , 100) for Knd = Knb =Kn= 0.1. The 

respective contributions of  the ballistic (………) , diffusive  (----------) and total ( 

__________)  temperatures are shown. 

 

Fig.2.  The same temperature profiles as in Fig. 1 for Knd=Knb= 1. The contribution of 

the  diffusive temperatures is perceptibly decreased compared to the case Kn=0.1. 

 

Fig. 3.   The same temperature profiles as in Figs.1 and 2  for Knd =Knb= 10. The 

diffusive component is considerably reduced and the total temperature is characterized 

by a quasi linear decrease with a temperature jump at each boundary . 

 

Fig.4.  Ballistic, diffusive and total temperature distributions  θ versus distance z* for 

different times t* and Knudsen numbers Knd= 0.1, Knb=1. 

 

Fig.5.  The same as in fig. 4 but for Knd=0.1, Knb = 10. Profiles are quasi linear and the 

steady state is reached very rapidly after t*=1. Similar curves were obtained for Kn= 

=1, Kn=100 and have not been represented. 

 

 


