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Nomenclature

Lettres grecques

A
r

Strike ($)

Erreur standard

Vecteur source

Matrice de raideur

Changement de variable pour la résolution de I’équation de Black et Scholes
Loi normale de moyenne X et d’écart-type o

Nombre de noeuds dans un maillage aux éléments finis

Nombre de points d’intégration

Vecteur des conditions de Neumann

Résidu

Taux d’intérét sans risque (%)

Prix de 'action sous-jacente ($)

Barriére inférieure d’une option double barriere ($)

Barriére supérieure d'une option double barriere ($)

Temps (années)

Maturité (années)

Changement de variable pour la résolution de ’équation de Black et Scholes
Forme générale de la solution d'une équation aux dérivées partielles

Forme approchée de la solution d'une équation aux dérivées partielles
Valeur de l'option ($)

Processus de Wiener

Poids de Gauss

Changement de variable pour la résolution de ’équation de Black et Scholes

Suite de nombres aléatoires

Delta d’une option

Gamma d’une option



Vega d’une option

Rho d’une option

Axe unitaire de 1’élément parent

Points de Gauss

Changement de variable pour la résolution de ’équation de Black et Scholes
Valeur de la fonction de forme associée au noeud 7 au point x

Valeur d’un portefeuille ($)

Volatilité ($)

Trend



Chapitre 1
Introduction

Les équations aux dérivées partielles sont omniprésentes dans le domaine des sciences.
Les équations de Navier-Stokes en mécanique des fluides [10], les équations de Maxwell en
électromagnétisme [11], I’équation de Fourier en conduction de chaleur [5] ou 'équation de

Fick en diffusion [4] n’en sont que quelques exemples.

En finance, ’équation de Black et Scholes est certainement ’équation aux dérivées par-
tielles la plus connue. Elle permet de calculer le prix d’options européennes sur actions, mais
est également a la base de modeles plus complexes tels que les modeles a volatilité stochas-
tique, les modeles avec sauts, les modeles d’options sur taux d’intérét ou de change, tous le

domaine des options exotiques, les options sur plusieurs sous-jacents,. . .

La résolution des équations aux dérivées partielles est un domaine des mathématiques
tres ancien et pourtant toujours en plein développement. Si, dans certaines conditions, des
solutions analytiques existent a ces équations, il est la plupart du temps nécessaire de re-

courir a des méthodes numériques de résolution des que la complexité du probleme augmente.

Parmi les méthodes numériques de résolution des équations aux dérivées partielles, la mé-
thode des éléments finis s’est affirmée des son invention comme une méthode de premier choix.
Elle présente en effet plusieurs avantages tels que 1'utilisation de maillages non-structurés (ce
qui permet de résoudre les modeles sur des géométries complexes), 'utilisation de polynémes
d’interpolation d’ordre non limité (ce qui permet d’obtenir de bonnes approximations de so-
lutions parfois tres complexes), ou encore la capacité de gérer un grand nombre de conditions

aux limites différentes.



La complexité de la méthode des éléments finis, comparée par exemple a la méthode des
différences finies, fait qu’elle a longtemps été réservée a des domaines tres spécifiques tels que
la résistance des matériaux ou la mécanique des fluides. Cependant, ses avantages indéniables
poussent de plus en plus de scientifiques de toutes disciplines a dépasser les difficultés d’ap-
prentissage pour évaluer ce que la méthode des éléments finis peut leur apporter. La finance

ne fait pas exception.

Dans ce travail, la méthode des éléments finis sera appliquée a quelques problemes cou-
rants des mathématiques financiéres. Quand ce sera possible, les résultats obtenus seront
comparés a ceux fournis par une méthode largement utilisée en finance, la méthode de Monte-
Carlo. L’objectif n’est évidemment pas d’étre exhaustif, mais de tenter de dégager les forces

et les faiblesses de la méthode pour ce qui est du domaine des mathématiques financieres.



Chapitre 2

Etat de la question

2.1 Le modele de Black et Scholes

Le modele le plus connu de pricing d’options a été présenté par Black et Scholes [1]. Ce

modele est basé sur les hypotheses suivantes :

1. Le sous-jacent de I'option évolue suivant un mouvement brownien géométrique ;

dS = pSdt + o SdW (2.1)

2. Le taux d’intérét sans risque r est constant ;

3. Les échanges se font de maniere continue et sans frais de transactions;
4. Le marché est sans opportunité d’arbitrage ;

5. Les ventes a découvert sont permises.

Le prix d’une option sur un sous jacent décrit par I'équation 2.1 est une fonction de S et

de t. En appliquant le lemme d’Ito il est obtenu :

oV (5V 1 52V oV
dV = S+ 252 dt + —oSdW 2.2
(55“ Bt " (552) T (22)

ou dV et dS sont des changements infinitésimaux de la valeur de I’option et du sous-jacent
sur I'incrément de temps dt. Pour en incrément de temps court mais non infinitésimal At,

les équations 2.1 et 2.2 deviennent :

AS = puSAt + o SAW (2.3)
% 5V 1 2 , 02V %
AV = (55’”5 + — & S 5S2> At + %USAW (2.4)



Le but est maintenant de trouver un portefeuille contenant une certaine quantité d’options
et de sous-jacents rendant ce portefeuille sans risque, c’est-a-dire faisant disparaitre les termes

AW dans les équations ci-dessus. Ce portefeuille est composé d’une position courte sur
I'option et de I'achat de ‘;—‘é sous-jacents. La valeur Il de ce portefeuille est

5V
=555V (2.5)

Une équation décrivant un petit changement de valeur de ce portefeuille peut étre écrite
a partir des équations précédentes :

59 (2.6)
oV 1, ,0%V

Y (A Xt N 2,
<§t+205582> t (2.7)

Comme ce portefeuille est sans-risque, il doit rapporter le méme montant qu’un placement
de II sur un actif sans risque.

All = rIIAt (2.8)
%
= S—V | At 2.9
, ( v ) (29)
Et en égalant les deux expressions pour AlI
(5V 1 2 2(52V B (5V
5V 1 9 252V ov
°r - _ 2.11
ot o5 052 <V oS S) ( )
La forme finale du modeéle de Black et Scholes est obtenue
5V 5262 1 52\/ 1% B

L’équation 2.12 est une équation aux dérivées partielles dont la forme est appelée "équation
d’advection-diffusion-reaction" car elle présente

— Un terme d’advection ou encore de transport rS%Y
. . 2

— Un terme de diffusion 0252124

— Un terme de réaction rV



Les équations d’advection-diffusion-reaction font I’objet de nombreuses publications dans
le domaine de I'analyse numérique, car dans certaines situations leur résolution s’avere tres

périlleuse.

Pour étre résolue, I’équation ci-dessus devra étre complétée par des conditions initiales

et des conditions aux limites.

Les conditions initiales sont les valeurs de V' au temps ¢ = 0. Dans le cas du pricing
d’options, les valeurs connues sont les pay-off de 'option a la maturité de celle-ci en fonction
des valeurs possibles du sous-jacent. Il apparait donc un premier probleme dans le sens ou
V est connu non en t = 0 mais en ¢t = T, cette forme d’équation est dénommée en anglais

comme étant backward in time.

Les conditions aux limites sont les valeurs de V' aux bornes du domaine étudié. Dans le
cas du pricing d’une option européenne, le domaine est unidimensionnel et consiste dans les
différentes valeurs possibles de S. La borne inférieur du domaine est S = 0 et a cet endroit
il peut étre supposé que V = 0. La borne supérieure est plus problématique car S n’est pas

borné a droite. Il sera vu plus tard comment s’affranchir de cette difficulté.

Dans la suite du texte, trois méthodes de résolution de I’équation 2.12 seront présentées.
Dans certaines situations (options simples), il est possible de transformer 1’équation 2.12 en
une forme semblable a I’équation de la chaleur, et d’en tirer une solution analytique. Cette

approche sera présentée dans la section 2.2.

Quand une solution analytique n’est pas disponible, des méthodes numériques doivent
étre envisagées afin d’obtenir des solutions approchées du probleme. La section 2.3 présen-
tera la méthode de Monte-Carlo, qui est une méthode probabiliste basée sur la génération de

"chemins" pris par le sous-jacent a ’aide de I'équation 2.1.

La section 2.4 présentera la méthode des éléments finis, qui est une méthode moderne
de résolution des équations aux dérivées partielles basée sur une approximation polynomiale
définie par morceaux de la solution de I’équation 2.12.

2.2 Résolution analytique du modele de Black et Scholes

Les changements de variables suivants peuvent étre appliqués a 1’équation 2.12 [6] :



V =e T y(z, 1) (2.13)

2M
2
M=r-— % (2.15)
2M S
r=s <log <E> 4 M(T - t)> (2.16)
(2.17)
I’équation devient alors :
u  du
-7 2.1
ox? 0T (2.18)

qui est connue comme étant 1’équation de la chaleur. Dans le cas d’un call européen, le

pay-off final (S — K)* devient, par le changement de variable :

o2
u(z,0) = Ee®2M — F (2.19)

et la solution de I'équation est

u(z,7) = EN ( f2_7> =7 _EN (\/9;_7> (2.20)

ou

7'0'2

* = — 2.21
Tt=T o (2.21)
en repassant par les variable initiales, la solution analytique de I'équation de Black et

Scholes dans le cas d’un call européen est obtenue :

V = SoN(dy) — Ee "I N(d,) (2.22)

. (2 +(r+ %) (T —1t)
e oI —t

dy=dl —ovT —t (2.24)

(2.23)
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2.3 Résolution par la méthode de Monte-Carlo du mo-
dele de Black et Scholes

La méthode de Monte-Carlo est une des techniques les plus générales pour le pricing d’op-
tions [13]. Le principe de la méthode est essentiellement d’utiliser la loi des grands nombres

pour évaluer 'espérance des gains a maturité de 'option.

La loi des grands nombres stipule que si Y, est une séquence de variables aléatoires

identiquement distribuées et indépendantes, la relation suivante est valide

.1 X
Aim = jzl Y; = E(Y) (2.25)

Si le sous-jacent évolue selon un brownien géométrique, des "chemins' possibles de sa
valeur au cours du temps peuvent étre générés a partir de la solution de 1’équation 2.1

(obtenue apres changement de mesure de probabilité vers la mesure risque neutre)

S(t) = Soe(T—%0'2)t+U\/ZN(O,1) (2.26)

La méthode de Monte-Carlo consiste donc a générer des nombres aléatoires selon une dis-
tribution normale, les insérer dans ’équation 2.26 et calculer la valeur du pay-off & maturité
de l'option. En répétant cette opération un grand nombre de fois, la moyenne des valeurs
obtenues va converger vers ’espérance des pay-off, qu’il suffira d’actualiser pour obtenir le

prix initial de ’option.
L’erreur sur la valeur obtenue est d’ordre 0(\/%), ce qui impose l'utilisation d’un grand

nombre de données (généralement plusieurs millions) pour obtenir une solution acceptable.

L’erreur sur le résultat obtenu avec la génération de n "chemins' peut étre évaluée par la

ES— \/z (2.27)

ou FS est I'erreur standard de la solution et o est la variance des solutions obtenues.

relation

Les avantages de la méthode de Monte-Carlo sont certainement :
— sa simplicité ;

— sa facilité d’'implémentation ;

11



— sa grande généralité (pratiquement tous les types d’options peuvent étre pricés de cette

maniere).

Ses inconvénient sont :

— sa faible vitesse de convergence. Elle impose la génération d'un tres grand nombre de
"chemins" du sous-jacent pour obtenir des solutions précises, ce qui se traduit par des
temps de calcul relativement longs ;

— elle ne permet pas de calculer de maniere directe les grecques de 'option.

2.4 Résolution par la méthode des éléments finis du
modele de Black et Scholes

2.4.1 Idées générales

La méthode des éléments finis peut-étre caractérisée par les 3 principes suivants [8] :

1. Le domaine de la solution est représentés comme un ensemble de sous-domaines appelés

éléments finis.

2. Sur chaque élément, la solution est représentée par une combinaison linéaire de poly-
nomes et de parametres indéterminés. Les relations entre les parametres sont établies

a partir de I’équation aux dérivées partielles a résoudre.

3. Les relations algébriques de tous les éléments sont assemblées dans le modele global,

qui se matérialise en un systeme linéaire a résoudre.

Dans cette revue bibliographique, les principales étapes de la méthode des éléments finis
seront décrites dans le cas de la résolution de I’équation de la chaleur (équation 2.28), en
régime stationnaire. L’application de la méthode au pricing d’options sera présentée dans la

partie résultats de ce travail.

o0 [ ou
—5 (a&) +cu=f O<z<L (2.28)

2.4.2 Approximation aux éléments finis

Le domaine (0,L) du probléme consiste en tous les points entre x = 0 et x = L, ces deux
valeurs étant les frontiéres du domaine. Dans la méthode des éléments finis, le domaine (0,L)
est décomposé en un certain nombre d’intervalles appelés éléments finis. Chacun de ceux-ci

est de longueur h, et est localisé entre les points x = x, et x = x;, qui sont les coordonnées

12



des frontieres de I'élément selon 'axe x.

Dans la méthode des éléments finis, une solution approchée uj, de la solution u de 1’équa-

tion 2.28 sur 'élément e est recherchée sous la forme :

uj, =y u§ei(x) (2.29)

ou ¢¢(x) sont des fonctions a sélectionner, u$ sont des constantes a déterminer telles que
I’équation 2.29 satisfasse I’équation 2.28 ainsi que les conditions aux limites spécifiées et n

est le nombre de noeuds dans le domaine.

En introduisant 1’équation 2.29 dans I’équation 2.28, il peut étre défini un résidu généra-

lement non nul :

0 [ ouj . e
“52 (a S ) +cu, —f=R (2.30)

L’objectif est de déterminer les valeurs des constantes u telles que ce résidu soit nul sur
I’élément. Plusieurs variantes de la méthode des éléments finis existent selon la facon dont

cette condition est exprimée. La méthode de Galerkin [7] consiste a écrire :

(2.31)

=

/mb ¢¢(x)Rede =0 i=1,2,...

2.4.3 Obtention de la forme faible

Quelques modifications doivent étre apportées a 1’équation 2.31 afin d’obtenir le méme

degré de différentiation pour les fonctions uj, et ¢f.

L’équation 2.31 peut s’écrire :

T o ouj, .
0= /xa o5 <_5:U (a S ) + cuy, — f> dx (2.32)
par intégration par partie cette équation devient :
w (¢S dus Sug 1™
— i Cul — e — g 92
0 /xa <a Sz ox + cofuyg, qﬁzf) dx lqﬁza S L«a (2.33)

duy,
dx

ou le terme [¢fa rb, représente ce qui est appelé les conditions de Neumann du
Ta

N N . . , N . . . ous .
m ir valeurs im vari i ndaire a—= aux limi u
systeme, c’est a dire des valeurs osées a la variable dite secondaire a4 aux limites d

13



domaine. Ces conditions sont également appelées naturelles car elles apparaissent naturel-
lement dans la forme aux éléments finis, contrairement aux conditions de type Dirichlet qui

seront présentées plus tard.

2.4.4 Fonctions d’interpolation

Le choix des fonctions d’interpolation, appelées aussi fonctions de forme n’est pas ano-
din, et seuls les 2 types de fonction les plus simples et aussi les plus populaires seront présentés

icl.

Les plus simples des fonctions d’interpolation sont définies par 2 polynémes du premier
degré associés a chaque noeud de 1’élément. Des lors, 'approximation uj, de la solution u

devient :

2

uj (@) = @i (@)uf + dy(x)us = Y ¢f(2)u] (2.34)

=1

ou uf = u¢ et uy = uy sont les valeurs nodales de uj, et les fonctions ¢ sont définies par

Tp — X
°(x) = 2.35
() = = (235)
r—2x
5(x) = - 2.36
)= " (2.36)

Il peut étre remarqué que les fonctions de forme satisfont a la propriété :

i P5(r) =1 (2.37)

De la méme maniere, uj peut étre approximé par des polynémes du second degré.

up(x) = ¢5(x)uf + o5 (x)us + ¢3(x)us =

J

o5 (x)us (2.38)

3
=1

ot u§ = uf (x1) , u§ = uf(x2) et u§ = uf (v3) avec Ty = T, To = T, + & et 3 = ;.

Les fonctions L sont définies par

14



. T — T T — 1§

— 2.39
i) (mf = x2> (fﬂ? - w3> 2
. T — x5 T — x5

= 2.40
. T — 29 T — x5

= 241

Il peut étre remarqué que 'utilisation de fonctions de forme quadratiques impose 1'utili-

sation d’un noeud supplémentaire sur I’élément, placé ici au centre de l'intervalle [x,, z3).

La forme générale de la solution approchée de 1’équation aux dérivées partielles, pour un

degré n, est donc donnée par :
up () =) ¢5(x)uj (2.42)
j=1

2.4.5 Modéle aux éléments finis

En remplacant I’équation 2.42 dans I’équation 2.33, n équations algébriques de la forme

suivante sont obtenues :

n

0= Kju—ff—Q  i=12....n (2.43)
j=1
ou :

K{, = /xb a%5 + eSS | dx (2.44)

AN dx ox LA '
fo= [ porde (2.45)

SUET™

e = |g¢ 2.4

o= osl] (240

Au final, la méthode des éléments finis se réduit donc a un systeme linéaire de forme :

[Klin = f+@ (2.47)

15



ou [K] est la matrice des coefficients, appelée parfois matrice de raideur, uj, est le vecteur

des inconnues, f est le vecteur source et () est le vecteur des contraintes de Neumann.
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Chapitre 3

Objectifs du travail

L’objectif principal de ce travail est d’appliquer la méthode des éléments finis au pricing
d’options, et d’étudier ses avantages et ses inconvénients par rapport a la méthode de Monte-
Carlo.

Dans un premier temps, la dérivation compléte d’'un modele aux éléments finis pour la
résolution de I’équation de Black et Scholes dans le cas d’options européennes classiques sera
présentée. Ce paragraphe permettra de décrire de maniere précise les étapes nécessaires a la
résolution d’une équation d’advection-diffusion-reaction en régime transitoire par la méthode

des éléments finis.

Le paragraphe suivant sera dédié a ’application pratique du modele développé précédem-
ment. Le prix d’options européennes sur 'action Google pour deux maturités différentes et
différents prix d’exercice seront établis par la méthode de Monte-Carlo et la méthode des élé-
ments finis. Cette étape permettra de comparer les propriétés de convergence et de précision
de ces deux méthodes, ainsi que leurs besoins respectifs en temps de calcul. Les prix obtenus
seront également comparés a ceux obtenus a partir de la solution analytique de ’équation de

Black et Scholes ainsi qu’aux prix pratiqués sur le marché.

Les grecques sont des parametres importants des options. Elles interviennent aussi bien
dans les stratégies de couverture que de trading, et a ce titre il est indispensable d’en ob-
tenir des valeurs précises. L’application de la méthode des éléments finis & ce domaine sera
explicitée. La méthode sera appliquée au calcul des grecques pour les options sur 'action
Google présentées au chapitre précédent. Dans le cas des options européennes classiques, des

solutions analytiques existent pour ces différents parametres, ce qui permettra de vérifier la

17



précision des résultats obtenus.

La derniére partie de ce travail consistera a appliquer la méthode des éléments finis au
pricing d’options exotiques. Il sera montré comment certaines de ces options peuvent étre
pricées en modifiant les conditions aux limites de 1’équation de Black et Scholes. Les options
exotiques étant tradées over the counter, il n’est pas possible de se baser sur des prix de
marché pour vérifier 'exactitude du modele. Les résultats seront donc comparés a d’autres

solutions publiées dans la littérature.

18



Chapitre 4

Développement de la discrétisation
aux éléments finis du modele de Black
et Scholes

4.1 Formulation du probleme

L’équation de Black et Scholes pour un call européen de maturité T et de strike E est

donnée par :

Vo L,V 6V
V(S,T) = maz(0,S — E) (4.2)
V(0,1) = 0 (4.3)

Un probleme particulier lié a la résolution de cette équation est que le domaine de réso-
lution est non-borné. En effet, aucune limite supérieure n’est pour l'instant donnée a S. La
méthode des éléments finis étant développée pour des domaines bornés (Il existe une méthode
appelée éléments infinis [2, 3|, qui ne sera pas abordée ici), celui-ci devra donc étre tronqué.

Plusieurs solutions existent :

1. Plus l'option devient in-the-money, plus sa valeur se rapproche de celle du sous-jacent
a laquelle on enleve la valeur actualisée du strike. Cela revient a choisir une valeur de

S assez grande S,,,, pour laquelle il est fixé :

V(‘Smamv t) - Sma:c - Ee_r(T_t) (44)
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2. Il peut également étre postulé que pour des valeurs de S assez élevées, la valeur de

I'option évolue au méme rythme que le sous-jacent, ce qui revient a écrire :

OV (Smaz,t)
08

3. Une derniere possibilité est d’imposer la dérivée seconde de la valeur de I'option égale

~1 (4.5)

a zéro pour des valeurs de S assez élevées :

52V (Smaz, t)
552

Dans ce travail, seule la premiere méthode sera utilisée, de part sa simplicité d’implé-

=0 (4.6)

mentation.

4.2 Discrétisation spatiale du probléeme

En remplacant la dérivée temporelle %/ par 1, les dérivées premieres et secondes respec-
tivement par u et u, et en remplacant les coefficients de I'équation 4.1 par les paramétres
ag, a1 et aq, celle-ci peut s’écrire de facon générale :

W= agu + ayu + agu+ f (4.7)

qui peut se réécrire !

’

i = (agu) + (a1 — ap)u’ + agu + f (4.8)

En remplacant u par sa forme approchée wuy,, un résidu peut étre calculé :

!’ ’

R = (aquy,) + (a1 — ag)uy, + agup + f — 1 (4.9)

Et la minimisation de ce résidu par la méthode de Galerkin donne :

/ " p;Rdx =0 1=1,2,...,N (4.10)
OU Tyin €t Tmae sont les bornes de 1’élément. En remplagant R par son expression il est
obtenu
1. apu’ = (aou’) — aé)u/
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min

/ "0 [(aou) + (@ — ag)uy + ayup + [ —1ip]de =0 i=12.. N (411

Le premier terme de I'intégrale peut étre intégré pour obtenir I’équation suivante

Tmazx

/ n.m di(aguy,) dx = [daguy]=mes — s aguy

Tmin =
min

(4.12)

ou le premier terme s’annule entre éléments adjacents et ne subsiste que pour les élé-

Apres ces modifications, I’équation 4.11 devient :

/ TTLaz [¢ &(]Uh ¢z( )u;l — @azuh — ¢Zf + ¢1uh} dr =0 1= 1, 2, -

dans laquelle u;, peut étre remplacé par sa définition pour donner :

max

2| et

j=1

uﬁZUx

= [ "gifdr i=1,2....n

Tmin

(10616 — (a1 = a3)n6, — aa165) do|

min

ou sous forme matricielle

[Ali + [Bli = Q

4.3 Discrétisation temporelle du probleme

ments frontieéres dans le cas ou des conditions aux limites de type Neumann sont définies.
Etant donné qu’il a été décidé en 4.1 d’utiliser des conditions aux limites de type Dirichlet
(V(szny ) =0et V(Smaza ) -

la formulation.

Smaz — Ee*T(T*t)), ce terme est tout simplement éliminé de

N (4.13)

(4.14)

(4.15)

Le systeme 4.15 ne peut étre résolu a ce stade, car sont inconnues les valeurs de u mais
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aussi de leurs dérivées temporelles . Tout comme la discrétisation spatiale, la méthode de dis-
crétisation temporelle consistera a diviser le domaine [0, 7] en un certain nombre d’intervalles
de temps pour lesquels le systeme pourra étre résolu. L’algorithme de résolution consistera

donc a parcourir le domaine temporel d’intervalle en intervalle en utilisant a chaque étape



les solutions obtenues a ’étape précédente.

De nombreuses formes de discrétisation temporelle existent, et présentent des propriétés
différentes. Le domaine est trop vaste pour étre étudié dans le cadre de ce travail, et seules les
principales implications du choix seront présentées. Un schéma de discrétisation temporelle

se caractérise par trois éléments importants :

1. Son caractére explicite ou implicite : les schémas explicites sont nommés de cette fagon
car les solutions aux temps n+1 y sont donnés en fonction des solutions aux temps n.
Ces schémas présentent le gros avantage de ne pas nécessiter de résolution de systeéme
linéaire, et donc d’économiser une grosse quantité de temps de calcul. Les schémas im-
plicites expriment par contre les solutions aux temps n+1 non seulement en fonction des
solutions aux temps n, mais également en fonction des valeurs des autres noeuds aux
temps n+1, ce qui impose la résolution a chaque pas de temps d’un systeme d’équations

de taille égale au nombre de noeuds du domaine.

2. Sa stabilité : certains schémas (de maniére générale les schémas explicites), imposent
des restrictions quant a la taille des pas de temps utilisés. Pour des pas de temps su-
périeurs aux limites autorisées, les erreurs de calcul s’additionnent et meénent a des
solutions completement erronées. Le gain de temps réalisé par 'utilisation d’un schéma
explicite (en ne résolvant pas de systéme d’équation a chaque pas de temps) peut donc

étre perdu par l'obligation d’utiliser des pas de temps extrémement petits.

3. Sa convergence : la précision de la solution dépend fortement du degré de raffinement
de la disctrétisation spatiale, mais aussi temporelle. La vitesse avec laquelle la précision
obtenue augmente quand le pas de temps diminue est appelée la propriété de conver-

gence du schéma temporel.

Dans ce travail, le schéma dit de Crank-Nickolson sera utilisé. C’est un schéma impli-

cite inconditionnellement stable présentant de bonnes propriétés de convergence.

Dans ce schéma, le systeme 4.15 est remplacé par le suivant :

(4.16)

L) = (@ — [Blii)y — (@ — [BliD) s
Ar VTl 9

qui se ramene a un systeme linéaire classique de type :

[A]
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M)z =1b (4.17)

4.4 Remarques sur la forme du systeme linéaire

Les fonctions de forme n’étant définies qu’élément par élément, les seuls éléments non-nuls
de la ligne i du systeme d’équations obtenu correspondent aux noeuds k appartenant au méme
élément que le noeud i. Les matrices obtenues par la méthode des éléments finis comportent
donc un grand nombre d’éléments nuls. Ce type de matrice est appelé matrice creuse. La
taille de stockage nécessaire et la complexité algorithmique des opérations matricielles pour
ce type de matrice sont fortement réduits par rapport a ceux obtenus pour des matrices

pleines.

4.5 Remarques sur le calcul des intégrales

Les coefficients des matrices obtenues par la méthode des éléments finis sont exprimés
sous la forme d’intégrales. La précision des résultats dépendra fortement de la précision avec
laquelle ces intégrales seront calculées. S’il est possible de calculer de fagon analytique les
intégrales correspondantes a chaque coefficient, cette facon de faire est trés peu utilisée en
pratique. En effet, le code obtenu serait entierement dédié a un type de probleme, et devrait
étre presque entierement réécrit pour chaque petite modification du modele a résoudre. Des
méthodes numériques d’intégration sont donc le plus souvent utilisées, et particulierement la
méthode des quadratures de Gauss.

Dans cette méthode, soit a évaluer l'intégrale suivante

/Q fla)da (4.18)

Cette intégrale, qui est définie sur un domaine quelconque (les dimensions de 1’élément
ne sont pas définies), est ramenée a une intégrale sur un élément parent par un changement

de coordonnées

f(z)dx = 1 f(x(e))é—xdez 1 g(€)de (4.19)
Qe -1 de

-1

et la méthode des quadratures de Gauss est définie de la maniere suivante

Nint

[ sle)e = > gle)W, (4.20)
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ol N,y est le nombre de points de Gauss, € sont les points de Gauss et W, sont les poids
associés. Des tables sont disponibles donnant les valeurs de ces points de Gauss et poids en

fonction de I'ordre des fonctions a intégrer.

Les exemples précédents, donnés en une dimension, se généralisent facilement aux cas a

plusieurs dimensions.

4.6 Remarques sur les conditions aux limites

Au stade du systeme 4.17, aucune restriction n’est encore imposée aux valeurs de u aux
noeuds x = 0 et x = S,,4,. L’algorithme suivant permet de contraindre le systéme tout en

préservant le caractere symétrique de la matrice M [19].

Soit a imposer la k-ieme valeur de u a la valeur Ty, :

1. On multiplie la k-ieéme colonne de la matrice M par la valeur T}, et on la soustrait au

vecteur B ;

2. La k-iéme ligne et la k-ieme colonne de M sont remplacées par une ligne et une colonne

de zéros;
3. Le terme My, est remplacé par 1;

4. La composante By est remplacée par Tj.
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Chapitre 5

Application de la méthode des
éléments finis au pricing d’options

européennes

5.1 Présentation du cas étudié

La méthode des éléments finis sera appliquée dans ce chapitre au pricing d’options euro-
péennes sur 'action Google, cotées le 20 et le 21 janvier 2011. Les prix historiques de I'action
Google ont été trouvés sur le site internet Google Finance [18], et les prix des options asso-
ciées sur la base de données en ligne CBOE [17]. Le taux sans risque en Dollars a été quant

a lui trouvé sur le site de la réserve fédérale américaine [16].
La figure 5.1 présente I’évolution du prix journalier de cloture de I'action Google entre le

21 juin 2010 et le 19 janvier 2011. A partir de ces prix, la volatilité annuelle des rendements

est évaluée a 29,4 % . Le taux sans risque en Dollars au 20 janvier 2011 était de 0,18%.
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FI1GURE 5.1 — Evolution du prix journalier de cléture de I'action Google entre le 21 juin 2010
et le 19 janvier 2011
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5.2 Présentation des codes de calcul

Dans ce chapitre, les prix d’options call a un mois et un an sur l'action Google au 20

janvier 2011 seront calculés par la méthode de Monte-Carlo et des éléments finis.

Ces deux méthodes ont été implémentées en C++ en utilisant le paradigme de la pro-

grammation orientée objet [12].

La génération des nombres aléatoires pour la méthode de Monte-Carlo a été réalisée a
'aide des librairies Boost [15].

Les codes aux éléments finis ont été réalisés avec 'aide des libraires Getfem-++ [14], ces
dernieres fournissent des interfaces permettant I'import/export de maillages dans différents
formats, différentes méthodes d’intégration, des procédures génériques pour la constructions
des matrices, des solveurs directs et itératifs pour la résolution de systémes d’équations

linéaires,. . .

5.3 Etude de la convergence de la méthode des élé-

ments finis

Plusieurs parametres influence la précision avec laquelle la solution de I’équation de Black

et Scholes est approchée par la méthode des éléments finis :
1. Le nombre d’éléments utilisés sur le domaine ;
2. Le degré des polynomes d’interpolation utilisés ;
3. La valeur de S,,,, utilisée pour tronquer le domaine ;

4. La taille des pas de temps utilisés.

Augmenter le nombre d’éléments, utiliser un degré de polynéme élevé, prendre une valeur
de S, élevée et un pas de temps le plus petit possible sont autant de solutions permet-
tant d’améliorer la précision de la méthode. Cependant, toutes ces approches s’accompagnent
également d’une augmentation significative du temps de calcul nécessaire a la résolution du

modele.

Dans cette section, ces différents "leviers" permettant d’améliorer la précision de la mé-

thode seront comparés des points de vue de leur convergence et de leur codt de calcul. La
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convergence est étudiée en réalisant un graphique donnant la précision obtenue en fonction
des valeurs du parametre étudié (toutes choses restant égales par ailleurs). Le cotit de calcul
est quand a lui estimé par le temps de calcul CPU nécessaire a la résolution du modele en

fonction des valeurs du parametre étudié (toutes choses restant égales par ailleurs).

L’option modele considérée dans les prochaines sections sera une option call européenne
sur l'action Google, de maturité 1 an et cotée le 20 janvier 2011. La précision sera estimée

en calculant la norme L2 de 'erreur de la maniére suivante :

1. Un maillage de 10000 éléments entre S = 0 et S = 5,4, est réalisé;

2. La solution analytique de I'équation de Black et Scholes est utilisée pour calculer le

prix de 'option sur chaque point du maillage ;
3. La solution approchée obtenue par éléments finis est interpolée sur le nouveau maillage
a l'aide de I’équation

Uz) = ZTZ(ZE) U; (5.1)

=1

4. La norme L2 peut ensuite étre calculée grace a I’équation

=1

12— Jiwe,i U, (5.2)

ou U.; et U,,; sont respectivement les solutions par éléments finis et analytique de

I’équation de black et Scholes au noeud .

5.3.1 Nombre d’éléments

Dans cette section, I’évolution de la convergence et du cotlit de calcul de la méthode
des éléments finis en fonction du nombre d’éléments utilisé sera étudiée. Afin de mettre en
évidence I'impact du nombre d’éléments, les autres parametres ayant une influence sur les
résultats obtenus seront constants et de :

— Nombre de pas de temps = 1000

— Simaz = 5000

— Ordre des polynémes = 1

La figure 5.2 présente I’évolution de la norme L2 de 'erreur ainsi que le temps de calcul

CPU nécessaire a la résolution du modele pour un nombre d’éléments variant entre 10 et 1000.
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FIGURE 5.2 — Evolution de la norme L2 de l'erreur et du temps de calcul en fonction du
nombre d’éléments utilisés.

Comme attendu, I'erreur diminue avec 'augmentation du nombre d’éléments tandis que
le temps de calcul augmente. La norme L2 ne diminue plus de maniere significative quand le
nombre d’éléments est supérieur a 500, tandis que le temps de calcul augmente lui logiquement

de facon constante.

5.3.2 Degré des polyndmes d’interpolation

Afin d’étudier 'impact du degré des polyndémes d’interpolation sur la convergence et le
cotit de calcul de la méthode des éléments finis, les parameétres utilisés sont les suivants :

— Nombre de pas de temps = 1000

— Siaz = 5000

Le prix de I'option est ensuite calculé a ’aide de polyndomes d’interpolation d’ordre 2,
en faisant varier le nombre d’éléments entre 10 et 1000. La figure 5.3 présente les résultats
obtenus. L’allure générale est identique au cas de I'utilisation de polynoémes d’ordre 1, mais
la comparaison des 2 méthodes permet d’identifier des différences. En effet, si la précision
augmente de maniere plus rapide avec des polynomes d’ordre élevé, il en est de méme pour
le temps de calcul. Pour la suite de ce travail, il a été choisi d’utiliser des polynémes d’ordre

1 avec un nombre d’éléments égal a 500. La raison en est que la précision obtenue avec ces
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parametres ne peut pas étre améliorée de fagon significative, méme en augmentant 1’odre des
polyndémes ou le nombre d’éléments, et que le temps de calcul nécessaire avec ces parametres

est inférieur a celui demandé par 'utilisation de polynémes d’ordre 2 pour la méme précision.

1000 ‘ ‘ 150

—Ordre 1 — Norme L2
---Ordre 2 - Norme L2
Ordre 1 - Temps CPU
--'Ordre 2 - Temps CPU !
800 ~ =120

600 e -190

Norme L2 ($
Temps CPU (s)

|
300 400 500 600 700 800 900 1080
Nombre d’éléments

FI1GURE 5.3 — Evolution de la norme L2 de l'erreur et du temps de calcul en fonction du
nombre d’éléments utilisés en utilisant des polynémes d’ordre 1 et 2.
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5.3.3 Valeur de 5,,,.

Pour un nombre d’éléments égal a 500, des polyndémes d’interpolation égaux a 1 et un
nombre de pas de temps égal a 1000, la figure 5.4 présente la convergence et le cotit de calcul

de la méthode des éléments finis pour des valeurs de S,,,, variant entre 1000 et 5000.
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FIGURE 5.4 — Evolution de la norme L2 de l'erreur et du temps de calcul en fonction de la
valeur de S,z

Il peut étre observé que la norme L2 de I'erreur n’évolue plus pour des valeurs de S,,q. >
2500%, qui sera donc la valeur utilisée pour les simulations suivantes. Le temps de calcul
n’est quant-a-lui pas influencé par ce parametre, puisqu’il n’influence ni la taille du systeme

linéaire a résoudre a chaque étape (le nombre d’éléments est fixé), ni le nombre de pas de
temps.
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5.3.4 Taille des pas de temps

La figure 5.5 présente I'évolution de la convergence et du cotit de calcul de la méthode

des éléments finis pour des nombres de pas de temps variant entre 10 et 1000.
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FIGURE 5.5 — Evolution de la norme L2 de l'erreur et du temps de calcul en fonction du
nombre de pas de temps utilisé.

Le temps de calcul augmente de fagon linéaire avec le nombre de pas de temps, la norme
L2 peut quant-a-elle étre considérée comme constante pour un nombre de pas de temps > 300,

c’est la valeur de ce parametre qui sera utilisée pour les simulations suivantes.

5.4 Comparaison de la méthode des éléments finis et
de la méthode de Monte-Carlo

En utilisant les parametres déterminés précédemment, la méthode des éléments finis est
comparée a la méthode de Monte-Carlo pour le pricing d’options call européennes de diffé-
rents strikes et maturités.

Les résultats obtenus sont comparés sur base des criteres suivants :
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— La précision, qui sera estimée par le pourcentage d’erreur de prévision par rapport a la
solution analytique;

— Le temps de calcul nécessaire.

Les prix observés pour le marché sont également renseignés pour chacune des ces options.

Les tableaux 5.1 et 5.2 présentent respectivement les résultats obtenus pour des options de
maturité 1 an et 1 mois. Pour des options de maturité d'un an, la précision de la méthode des
éléments finis est systématiquement meilleure que celle de la méthode de Monte-Carlo, pour
un temps de calcul CPU réduit d’un facteur 30. Par contre, pour une maturité d’un mois, la
précision de la méthode des éléments finis est nettement inférieure a celle de la méthode de
Monte-Carlo. Le temps de calcul CPU est quant-a-lui toujours a ’avantage de la premiere.
Pour comprendre ce phénomene, il faut observer a la figure 5.6 'allure de la solution de
I’équation de Black et Scholes pour les deux maturités considérées. Il est clairement visible
que la solution pour une maturité d’'un mois présente une convexité plus forte que celle pour
la maturité d’un an. Des lors, il est nécessaire d’affiner la réponse obtenue par la méthode des
éléments finis, par exemple en augmentant ’ordre d’intégration ou en utilisant un maillage
plus fin. A titre d’exemple, le tableau 5.3 présente les mémes calculs, mais en utilisant un
ordre d’intégration de 2 et 1000 éléments. La précision obtenue avec la méthode des éléments
finis devient en moyenne meilleure que celle obtenue par la méthode de Monte-Carlo, tout
en nécessitant un temps de calcul 4 fois inférieur. Les résultats obtenus autour du strike,
ou la convexité de la solution est la plus forte, sont d’une précision semblable pour les deux

méthodes.
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TABLE 5.1 — Comparaison des prix (en Dollars) donnés par la solution analytique, la méthode
de Monte-Carlo, la méthode des éléments finis et le marché pour une option européenne call
de maturité 1 an sur 'action Google, le 20 janvier 2011. Les chiffres entre parentheses sont
les temps de calcul en temps CPU.

Strike | Marché | Analytique | Monte-Carlo Erreur Eléments-finis Erreur
500 153,8 148,201 148,160 (135,609) | 0,027952 % 148,206 (4,09) 0,00302189 %
510 144,75 140,977 140,936 (135,262) | 0,0291415 % | 140,982 (4,06) 0,00366402 %
540 123,5 120,680 120,639 (134,885) | 0,0339987 % | 120,689 (4,03) 0,00684363 %
550 115,0 114,381 114,340 (134,693) | 0,0357378 % | 114,391 (4,06) 0,00862017 %
580 98,0 96,893 96,854 (134,766) | 0,0401916 % | 96,9095 (4,02) 0,0172215 %
590 90,0 91,529 91,491 (136,483) | 0,0418161 % | 91,5483 (4,04) 0,021045 %
600 84,0 86,394 86,357 (134,978) | 0,0437543 % | 86,4159 (4,03) 0, 0249643 %
610 78,8 81,485 81,448 (134,762) | 0,0463770 % | 81,5086 (4,03) 0,0285443 %
620 74,0 76,798 76,761 (135,725) | 0,0489003 % | 76,8221 (4,03) 0,0312817 %
625 72,8 74,536 74,536 (135,945) | 0,0499597 % 74,524 (4,03) —0,0164183 %
630 69,0 72,328 72,291 (134,876) | 0,0511072 % | 72,3517 (4,02) 0,0327176 %
635 66,11 70,173 70,136 (134,886) | 0,0521586 % | 70,1614 (4,03) —0,0165838 %
640 65,53 68,070 68,034 (134,427) | 0,0532193 % | 68,0925 (4,03) 0, 032566 %
645 61,60 66,019 65,984 (135,921) | 0,0541049 % | 66,0094 (4,02) —0,0152095 %
650 61,47 64,020 63,984 (135,368) | 0,0549343 % | 64,0393 (4,05) 0,0308145 %
660 56,20 60,170 60,136 (134,821) | 0,0564767 % | 60,1866 (4,02) 0,0277501 %
665 56,3 58,319 58,285 (135,743) | 0,0573997 % | 58,3136 (4,03) | —0,00871047 %
670 53,25 56,516 56,482 (135,374) | 0,0585349 % 56,529 (4,04) 0, 0238909 %
680 48,63 53,050 53,018 (135,043) | 0,0605617 % | 53,0605 (4,05) 0,0198427 %
690 45,62 49,767 49,736 (134,783) | 0,0633188 % | 49,775 (4,04) 0,0161367 %
700 42,0 46,660 46,629 (139,751) | 0,0665936 % | 46,666 (4,09) 0,0131084 %
710 39,0 43,722 43,691 (136,433) | 0,0704098 % | 43,7269 (4,08) 0,0108599 %
720 36,4 40,947 40,916 (135,526) | 0,0752807 % | 40,9509 (4,05) 0,00930285 %
730 33,3 38,328 38,297 (134,024) | 0,0811396 % | 38,3311 (4,05) 0,00824512 %
740 30,2 35,858 35,827 (135,737) | 0,0864107 % | 35,8608 (4,07) 0,00747902 %
750 25,8 33,631 33,501 (135,641) | 0,0904122 % | 33,5332 (4,04) 0,00683662 %
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TABLE 5.2 — Comparaison des prix (en Dollars) donnés par la solution analytique, la méthode
de Monte-Carlo, la méthode des éléments finis et le marché pour une option européenne call
de maturité 1 mois sur 'action Google, le 20 janvier 2011. Les chiffres entre parentheses sont
les temps de calcul en temps CPU.

Strike | Marché | Analytique | Monte-Carlo Erreur Eléments-finis Erreur
590 34,5 37,632 37,624 (136,055) | 0,0225596 % | 37,6154 (4,17) | —0,0446411 %
595 30,2 34,112 34,103 (136,102) | 0,0248684 % | 34,1259 (3,91) 0,0416853 %
600 26,4 30,781 30,772 (133,777) | 0,0274281 % | 30,7657 (3,96) | —0,0480665 %
605 22,8 27,646 27,638 (135,151) | 0,0300650 % | 27,6625 (3,91) 0,0604765 %
610 19,1 24,713 24,705 (135,036) | 0,0322981 % | 24,6988 (3,89) | —0,0561074 %
615 16,2 21,984 21,977 (135,917) | 0,0347544 % 22,002 (3,91) 0,081113 %
620 13,52 19,461 19,454 (135,861) | 0,0385582 % | 19,4467 (3,92) | —0,0736862 %
625 10,97 17,142 17,135 (135,237) | 0,0428098 % | 17,1592 (3,91) 0,101446 %
630 8,70 15,023 15,016 (135,942) | 0,0461614 % | 15,0069 (3,91) —0,107752 %
635 7,00 13,099 13,093 (135,41) | 0,0486541 % 13,115 (3,91) 0,11894 %
640 5,48 11,364 11,358 (134,852) | 0,0524303 % | 11,3446 (3,89) —0,167655 %
645 4,2 9,807 9,802 (134,314) | 0,0584245 % | 9,82015 (3,92) 0,131205 %
650 3,2 8,420 8,415 (134,133) | 0,0681372 % | 8,39801 (3,91) —0,265667 %
655 2,45 7,192 7,187 (140,04) | 0,0784029 % | 7,20208 (3,92) 0, 136857 %
660 1,75 6,111 6,106 (134,309) | 0,087942 % | 6,08589 (3,89) —0,417814 %
665 1,43 5,166 5,161 (134,563) 0,10005 % 5,17326 (3,91) 0,13687 %
670 1,08 4,345 4,339 (135,271) | 0,119192 % 4,31659 (3,9) —0, 645222 %
675 0,70 3,634 3,630 (134,942) 0,13926 % 3,63987 (3,9) 0, 136668 %
680 0,58 3,026 3,021 (134,526) | 0,153515 % 2,99601 (3,91) —0,976363 %
685 0,45 2,506 2,501 (134,437) | 0,174225 % 2,50926 (3,91) 0, 149404 %
690 0,35 2,064 2,060 (134,585) | 0,192281 % 2,03441 (3,91) —1,45077 %
695 0,31 1,692 1,689 (135,219) | 0,214072 % 1,69574 (3,91) 0,201159 %
700 0,25 1,380 1,377 (141,969) | 0,238728 % 1,35109 (3,89) —2,12522 %
710 0,15 0,905 0,902 (143,065) | 0,305286 % | 0,877064 (3,91) —3,0839 %
720 0,11 0,582 0,579 (142,699) | 0,406767 % | 0,555931 (3,91) —4,45538 %
740 0,1 0,227 0,226 (135,164) | 0,662846 % | 0,206022 (3,94) —9,36031 %
750 0,06 0,138 0,137 (134,793) 0,671 % 0,119246 (3,94) —13,7324 %

35




stow T 30 ue T 9jumjewr op suorjdo sof anod so[oydg 10 yoe[g op uoryenbs, | op senbrjAreur suorn[og — 9°¢ AUNDIA

($) Jods
000} 006 008 002 009 00§ 00¥ 00€ 002 00+ 0
I I I I

—00}

—0S}

($) xud

— 08¢

—00€

siow |-  —{0SE

ue | —

, 00v

36



TABLE 5.3 — Comparaison des prix (en Dollars) donnés par la solution analytique, la méthode
de Monte-Carlo, la méthode des éléments finis avec maillage raffiné et le marché pour une
option européenne call de maturité 1 mois sur ’action Google, le 20 janvier 2011. Les chiffres
entre parentheses sont les temps de calcul en temps CPU.

Strike | Marché | Analytique | Monte-Carlo Erreur Eléments-finis Erreur
590 34,5 37,632 37,624 (136,055) | 0,0225596 % 37,6313 (38) —0,00223749 %
595 30,2 34,112 34,103 (136,102) | 0,0248684 % | 34,1098 (37,94) | —0,00548966 %
600 26,4 30,781 30,772 (133,777) | 0,0274281 % | 30,7769 (37,94) —0,0118662 %
605 22,8 27,646 27,638 (135,151) | 0,0300650 % | 27,6396 (37,99) —0, 0224625 %
610 19,1 24,713 24,705 (135,036) | 0,0322981 % 24,7036 (38) —0,037081 %
615 16,2 21,984 21,977 (135,917) | 0,0347544 % | 21,9725 (37,78) —0,0531816 %
620 13,52 19,461 19,454 (135,861) | 0,0385582 % | 19,4482 (38,06) —0,0660266 %
625 10,97 17,142 17,135 (135,237) | 0,0428098 % | 17,1297 (38,16) —0,0707049 %
630 8,70 15,023 15,016 (135,942) | 0,0461614 % | 15,0133 (38,05) —0,0650657 %
635 7,00 13,099 13,093 (135,41) | 0,0486541 % | 13,0927 (38,13) —0,0512603 %
640 5,48 11,364 11,358 (134,852) | 0,0524303 % | 11,3598 (37,94) —0,0344345 %
645 4,2 9,807 9,802 (134,314) | 0,0584245 % | 9,80536 (37,93) —0,0196345 %
650 3,2 8,420 8,415 (134,133) | 0,0681372 % | 8,41959 (37,94) | —0,00944441 %
655 2,45 7,192 7,187 (140,04) | 0,0784029 % | 7,19196 (38,03) | —0,00378649 %
660 1,75 6,111 6,106 (134,309) | 0,087942 % | 6,11135 (38,12) | —0,00121896 %
665 1,43 5,166 5,161 (134,563) 0,10005 % 5,16618 (38,1) —0,000259832 %
670 1,08 4,345 4,339 (135,271) | 0,119192 % 4,34462 (38,1) | 3,71762 % 107° %
675 0,70 3,634 3,630 (134,942) 0,13926 % 3,63491 (38,17) 0,000115043 %
680 0,58 3,026 3,021 (134,526) | 0,153515 % | 3,02555 (38,19) 0,000134486 %
685 0,45 2,506 2,501 (134,437) | 0,174225 % 2,50552 (38,2) 0,000142356 %
690 0,35 2,064 2,060 (134,585) | 0,192281 % | 2,06436 (38,13) 0,000152057 %
695 0,31 1,692 1,689 (135,219) | 0,214072 % | 1,69234 (38,28) 0,000164572 %
700 0,25 1,380 1,377 (141,969) | 0,238728 % | 1,38043 (38,18) 0,000183864 %
710 0,15 0,905 0,902 (143,065) | 0,305286 % | 0,904975 (38,26) | 0,000254582 %
720 0,11 0,582 0,579 (142,699) | 0,406767 % | 0,581858 (38,13) | 0,000393127 %
740 0,1 0,227 0,226 (135,164) | 0,662846 % 0,2273 (38,25) 0,00103827 %
750 0,06 0,138 0,137 (134,793) 0,671 % 0,13823 (38,26) 0,00165492 %
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Les différences entre les prix observés sur les marchés et les prix donnés par le modele de
Black et Scholes peuvent étre importante, surtout pour les options largement in-the-money
ou out-of-the-money. Cela s’explique par I'aspect "Skew" de la courbe de volatilité de I'option
de maturité un an (figure 5.7) qui devient un "smile" pour 'option de maturité un mois (figure
5.8). Le modele de Black et Scholes ne permet pas de rendre compte de tels phénomenes,

seule I'utilisation de modeles a volatilité stochastique permet de le faire.
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FIGURE 5.7 — Volatilité implicite de I'option call de maturité 1 an sur 'action Google en
fonction du strike
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FI1GURE 5.8 — Volatilité implicite de 'option call de maturité 1 mois sur I'action Google en
fonction du strike
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Chapitre 6

Application de la méthode des

éléments finis au calcul des grecques

6.1 Introduction

Il est possible de construire une équation aux dérivées partielles pour chaque grecque en

différentiant I’équation 2.12 par rapport a la variable correspondante p;.

5[0V, 18V 6V -
6.2 Développement de I’équation du Delta (A)
5 [6V .18V % B
&g[&+052652+(r—D)SS—7‘V]—0 (6.2)
GV 1,6 [0tV 5 [.0V] 6
COA 1 L[ 0N ,82A N
0N L, ,18A _SA b 0N
== —{-0‘52(532—{—7"55 rA+(r D)A—I—US(SS—O (6.5)
Opérateur de Black et Scholes sur A
(6.6)

L’équation 6.5 est donc I'équation aux dérivées partielles exprimant 1'évolution de la

valeur du A de 'option en fonction du temps et de la valeur du sous-jacent. Les conditions
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aux limites de I’équation doivent également étre modifiées selon l'option considérée. Les

conditions initiales dans le cas d’un call européen sont :

) 1 S>F
A(S,T) = —max(S — E,0) = (6.7)
05 0 S<E

Pour S =0, A =0, et pour S = S0z, A = % [S — Ee""(T_t)} =1.

6.3 Deéveloppement des équations des autres grecques

Les équations aux dérivées partielles décrivant I'évolution des différentes grecques en
fonction de la valeur du sous-jacent et du temps peuvent étre obtenues de la méme maniere.

Les paragraphes suivant présenterons les formes finales de ces équations.

6.3.1 Gamma (')

o0, ,18T 4D , .00,
o ~0 ST T 42(r — D)T + 20255 + 0T = .
5t+052§s2+r85 rI"+2(r ) —1—0555—1—0 0 (6.8)
Opérateur de Black et Scholes sur I'
6.3.2 Vega (v)
ov 5ol 0%V ov o

Opérateur de Black et Scholes sur v

Cette équation comprend I' dans ses variables, il faut donc la résoudre en parallele avec

I’équation 6.8.

6.3.3 Theta (O)

50, ,18%0 50 B

Opérateur de Black et Scholes sur ©
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6.3.4 Rho (p)

8p 5 018 op % _

Opérateur de Black et Scholes sur p

Cette équation doit étre résolue en parallele avec I’équation 2.12

6.4 Applications

Les tableaux 6.1 et 6.2 présentent les valeurs de delta obtenues pour les options de matu-
rités d'un an et de un mois pour différents strikes, données par la méthode des éléments finis
et la solution analytique. L’erreur varie entre 0,1 % et 5%, avec une erreur maximale pour
les options proche de la monnaie. Ce comportement s’explique aisément sur base de la figure
6.1, qui présente la solution analytique du calcul de Delta pour les 2 options at-the-money. Il
est clairement visible qu’autour du spot la pente de la solution est tres forte, ce qui impose
I'utilisation d’un maillage plus fin a cet endroit si une précision plus élevée est nécessaire.
L’avantage de la méthode des éléments est qu’il est tout a fait possible d’utiliser un maillage
extrémement fin dans certaines parties du domaine ou la solution varie plus fortement, et un

maillage plus grossier ailleurs.

1 \
—1an
09~ ---1mois
0.8
0.7—
0.6~
S
© 0.5
a
0.4
0.3~
0.2
01—
0 ! ! L L. ! ! I I
0 100 200 300 400 500 600 700 800 900 1000

Spot ($)

F1GURE 6.1 — Valeurs de Delta en fonction du spot pour les options de maturité 1 an et 1
mois
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TABLE 6.1 — Comparaison des valeurs de Delta données par la solution analytique et la
résolution par la méthode des éléments finis de I’équation de Black et Scholes pour une
option européenne call de maturité 1 an sur I'action Google, le 20 janvier 2011. Les chiffres

entre parentheses sont les temps de calcul en temps CPU.

Strike | Eléments-finis Analytique Erreur
500 0,821666 0,822405 (36,8) | 0,0899667 %
510 0,803552 0,804321 (36,8) | 0,0957501 %
540 0,745361 0,746202 (36,91) | 0,112955 %
550 0,72493 0,725789 (36,95) | 0,118593 %
580 0,661625 0,662519 (36,97) | 0,135054 %
590 0,640112 0,641011 (36,81) | 0,140361 %
600 0,618518 0,619419 (36,79) | 0,145567 %
610 0,596915 0,597813 (36,94) | 0,150513 %
620 0,57537 0,570631 (37,3) | —0,823627 %
625 0,564639 0,536799 (36,82) | —4,93059 %
630 0,553947 0,547245 (36,8) | —1,20984 %
635 0,5433 0,546128 (36,83) | 0,520591 %
640 0,532706 0,533645 (36,83) | 0,176278 %
645 0,522171 0,523047 (36,94) | 0,167732 %
650 0,511702 0,512572 (36,98) | 0,169937 %
660 0,490988 0,491844 (37,11) | 0,17446 %
665 0,480753 0,481603 (37,01) | 0,176677 %
670 0,470608 0,47145 (37,08) | 0,178864 %
680 0,450605 0,45143 (37,05) | 0,183149 %
690 0,431016 0,431823 (37,03) | 0,187314 %
700 0,411873 0,412661 (37,12) | 0,19136 %
710 0,393204 0,393972 (37,06) | 0,195288 %
720 0,375034 0,375781 (37,02) 0,1991 %
730 0,357382 0,358107 (37,04) | 0,202797 %
740 0,340264 0,340966 (37,03) | 0,20638 %
750 0,323692 0,324371 (37,02) | 0,209851 %

42




TABLE 6.2 — Comparaison des valeurs de Delta données par la solution analytique et la
résolution par la méthode des éléments finis de I’équation de Black et Scholes pour une
option européenne call de maturité 1 mois sur I'action Google, le 20 janvier 2011. Les chiffres

entre parentheses sont les temps de calcul en temps CPU.

Strike | Eléments-finis Analytique Erreur
500 0,821666 0,822405 (36,8) | 0,0899667 %
510 0,803552 0,804321 (36,8) | 0,0957501 %
540 0,745361 0,746202 (36,91) | 0,112955 %
550 0,72493 0,725789 (36,95) | 0,118593 %
580 0,661625 0,662519 (36,97) | 0,135054 %
590 0,640112 0,641011 (36,81) | 0,140361 %
600 0,618518 0,619419 (36,79) | 0,145567 %
610 0,596915 0,597813 (36,94) | 0,150513 %
620 0,57537 0,570631 (37,3) | —0,823627 %
625 0,564639 0,536799 (36,82) | —4,93059 %
630 0,553947 0,547245 (36,8) | —1,20984 %
635 0,5433 0,546128 (36,83) | 0,520591 %
640 0,532706 0,533645 (36,83) | 0,176278 %
645 0,522171 0,523047 (36,94) | 0,167732 %
650 0,511702 0,512572 (36,98) | 0,169937 %
660 0,490988 0,491844 (37,11) | 0,17446 %
665 0,480753 0,481603 (37,01) | 0,176677 %
670 0,470608 0,47145 (37,08) | 0,178864 %
680 0,450605 0,45143 (37,05) | 0,183149 %
690 0,431016 0,431823 (37,03) | 0,187314 %
700 0,411873 0,412661 (37,12) | 0,19136 %
710 0,393204 0,393972 (37,06) | 0,195288 %
720 0,375034 0,375781 (37,02) 0,1991 %
730 0,357382 0,358107 (37,04) | 0,202797 %
740 0,340264 0,340966 (37,03) | 0,20638 %
750 0,323692 0,324371 (37,02) | 0,209851 %
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La méthode de Monte-Carlo ne permet pas de calculer les valeurs des grecques de maniere
aussi directe. La seule possibilité est d’approximer les dérivées de la maniere suivante :
6f(z) _ fle+h)—flz—h)

5. 50 (6.12)

Ce qui donne par exemple, pour le calcul du Delta de I'option européenne de maturité 1

an et de strike a 625 $, en utilisant une valeur de h de 1% :

75,0645 — 73,9355
2

Soit une erreur de -0,025% et un temps de calcul de 338 s. Deux remarques peuvent étre

A —

=0, 5645 (6.13)

formulées :
— le temps de calcul nécessaire est tres élevé, puisqu’il a fallu calculer 2 prix d’options
européennes ;
— la méthode de Monte-Carlo ne donne la valeur du Delta que pour une valeur de sous-
jacent, alors que la méthode des éléments finis la donne pour toutes les valeurs de

sous-jacent comprises dans Uintervalle [0,5,,4z]-
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Chapitre 7

Application de la méthode des
éléments finis au pricing des options

exotiques

7.1 Introduction

Dans ce chapitre, la méthode des éléments finis sera appliquée au pricing d’options
exotiques particulieres, les options barrieres. Ces derniere sont des options dites "chemin-
dépendantes" ou "path-dependent" en anglais, c’est-a-dire que leur valeur finale dépend de
I’évolution réelle de la valeur du sous-jacent entre le moment de I’émission de l'option et
sa maturité. Il peut étre défini des options knock-in et knock-out. Les options barrieres
knock-in ont une valeur nulle tant que le sous-jacent n’a pas atteint une valeur égale a celle de
la barriere. A 'inverse, les options knock-out ne valent plus rien une fois que le sous-jacent a
atteint une valeur égale a celle de la barriere. Une option possédant deux barrieres est appelée
double barrier option. L’équation décrivant ’évolution de la valeur d’une telle option est

identique a celle d’une option européenne classique, seules les conditions aux limites varient.

oV o on 102V oV B

V(S,T) =max(0,S — E) (7.2)
V(S,,t) =0 (7.3)
V(S4,t) =0 (7.4)

ou Sy et S, sont respectivement les valeurs des barrieres inférieure et supérieure de ’option.
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7.2 Obtention du modele aux éléments finis

L’obtention de la forme aux éléments finis du probleme est identique a celle obtenue pour

le pricing d’options européennes, seule le stade des conditions aux limites differe.

7.3 Démarche

Les options a deux barrieres étant échangées over-the-counter, il n’est pas possible d’en

trouver des prix sur des bases de données telles que Bloomberg.
Afin de pouvoir valider les résultats obtenus avec le code développé dans ce travail, un

exemple tiré d'un livre récent [9] sera reproduit avec le code développé ici et les résultats qui

en seront tirés seront comparés a ceux de ’auteur.

7.4 Résultats

Les parametres de 1'option étudiée sont présentés au tableau 7.1.

TABLE 7.1 — Parametres de 'option barriere

Prix d’exercice ($) | 100
Limite basse ($) | 75
Limite haute ($) | 130

Taux d’'intérét (%) | 10

Volatilité (%) 20

Maturité (années) | 1

A la figure 7.1 est présentée la solution obtenue pour le prix de 'option. Le prix est nul
pour des valeurs de sous-jacent égales aux barrieres, et maximales pour des valeurs égales au
strike.

Le prix pour une valeur de sous-jacent de 100 $ obtenu avec le code développé dans ce
travail est de 3,53137 $. Le prix obtenu dans la littérature pour cette option est de 3,52533
$, soit une différence de 0,17 %.
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Chapitre 8

Conclusions

Dans ce travail, la méthode des éléments finis a été appliquée a quelques problemes clas-

siques des mathématiques financieres. Ont été étudié : le calcul des prix d’options euro-

péennes, le calcul des valeurs de Delta de ces options ainsi que le calcul du prix d’options

exotiques particulieres que sont les options a deux barrieres.

Quand cela a été possible, les résultats obtenus ont été comparés a une méthode large-

ment utilisée dans le domaine des mathématiques financieres, la méthode de Monte-Carlo.

La méthode des éléments finis & montré plusieurs avantages :

1.

Car elle est basée sur la résolution de I'équation de Black et Scholes, et non sur une
génération de "chemins' comme la méthode de Monte-Carlo, elle fournit en un seul
calcul les résultats souhaités pour toutes les valeurs de spot comprises dans le domaine
considéré. La méthode de Monte-Carlo ne fournit quant-a-elle un résultat que pour la

valeur de spot utilisée comme origine des chemins considérés ;

. Elle permet d’affiner facilement la solution obtenue si nécessaire, soit en réduisant la

taille des éléments utilisés, soit en élevant le degré des polyndémes d’interpolation ;

. Elle permet de calculer de maniere directe les valeurs des grecques d'une option, ce que

la méthode de Monte-Carlo ne permet de faire que d’une maniére grossiere ;

. Elle permet de résoudre I’équation de Black et Scholes pour certaines options parti-

culieres, telles que les options a deux barrieres, en ne modifiant qu’'une seule ligne du
programme de calcul (concernant les conditions aux limites du domaine). Le pricing
d’une telle option par la méthode de Monte-Carlo nécessite la réécriture d’une part plus

importante du programme original.
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La méthode des éléments finis présente également des inconvénients :

1. Elle est plus complexe que la plupart des autres méthodes, telles que la méthode de

Monte-Carlo ou la méthode des différences finies;

2. L’implémentation de la méthode des éléments finis requiert de bonnes compétences en
informatiques et en algorithmique. Un programme de calcul aux éléments finis repré-
sente également un nombre de lignes de code beaucoup plus important que pour les

autres méthodes ;

3. La méthode des éléments finis est une méthode de résolution d’équations aux dérivées
partielles. Elle n’est donc utilisable que si le probléeme peut s’écrire sous la forme d’une
ou de plusieurs équations, avec des conditions aux limites définies. Certains problemes
de la finance ne peuvent s’écrire de cette maniere, et requierent donc l'utilisation de

méthodes plus robustes telles que la méthode de Monte-Carlo.

En résumé, quand son application est possible, la méthode des éléments finis est certaine-
ment d'une grande utilité de part la grande précision qu’elle peut atteindre avec un temps de
calcul réduit. Par contre, la méthode de Monte-Carlo reste indispensable a la résolution de

problemes qui ne peuvent étre formulés sous la forme d’une équation aux dérivées partielles.
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