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Nomenclature

E Strike ($)
ES Erreur standard
~f Vecteur source
[K] Matrice de raideur
M Changement de variable pour la résolution de l’équation de Black et Scholes
N(X̄, σ) Loi normale de moyenne X̄ et d’écart-type σ
n Nombre de noeuds dans un maillage aux éléments finis
nint Nombre de points d’intégration
~Q Vecteur des conditions de Neumann
R Résidu
r Taux d’intérêt sans risque (%)
S Prix de l’action sous-jacente ($)
Sd Barrière inférieure d’une option double barrière ($)
Su Barrière supérieure d’une option double barrière ($)
t Temps (années)
T Maturité (années)
u Changement de variable pour la résolution de l’équation de Black et Scholes
U Forme générale de la solution d’une équation aux dérivées partielles
Uh Forme approchée de la solution d’une équation aux dérivées partielles
V Valeur de l’option ($)
W Processus de Wiener
wl Poids de Gauss
x Changement de variable pour la résolution de l’équation de Black et Scholes
Y Suite de nombres aléatoires
Lettres grecques
∆ Delta d’une option
Γ Gamma d’une option
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ν Vega d’une option
ρ Rho d’une option
ε Axe unitaire de l’élément parent
εl Points de Gauss
τ Changement de variable pour la résolution de l’équation de Black et Scholes
φi(x) Valeur de la fonction de forme associée au noeud i au point x
π Valeur d’un portefeuille ($)
σ Volatilité ($)
µ Trend
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Chapitre 1

Introduction

Les équations aux dérivées partielles sont omniprésentes dans le domaine des sciences.
Les équations de Navier-Stokes en mécanique des fluides [10], les équations de Maxwell en
électromagnétisme [11], l’équation de Fourier en conduction de chaleur [5] ou l’équation de
Fick en diffusion [4] n’en sont que quelques exemples.

En finance, l’équation de Black et Scholes est certainement l’équation aux dérivées par-
tielles la plus connue. Elle permet de calculer le prix d’options européennes sur actions, mais
est également à la base de modèles plus complexes tels que les modèles à volatilité stochas-
tique, les modèles avec sauts, les modèles d’options sur taux d’intérêt ou de change, tous le
domaine des options exotiques, les options sur plusieurs sous-jacents,. . .

La résolution des équations aux dérivées partielles est un domaine des mathématiques
très ancien et pourtant toujours en plein développement. Si, dans certaines conditions, des
solutions analytiques existent à ces équations, il est la plupart du temps nécessaire de re-
courir à des méthodes numériques de résolution dès que la complexité du problème augmente.

Parmi les méthodes numériques de résolution des équations aux dérivées partielles, la mé-
thode des éléments finis s’est affirmée dès son invention comme une méthode de premier choix.
Elle présente en effet plusieurs avantages tels que l’utilisation de maillages non-structurés (ce
qui permet de résoudre les modèles sur des géométries complexes), l’utilisation de polynômes
d’interpolation d’ordre non limité (ce qui permet d’obtenir de bonnes approximations de so-
lutions parfois très complexes), ou encore la capacité de gérer un grand nombre de conditions
aux limites différentes.
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La complexité de la méthode des éléments finis, comparée par exemple à la méthode des
différences finies, fait qu’elle a longtemps été réservée à des domaines très spécifiques tels que
la résistance des matériaux ou la mécanique des fluides. Cependant, ses avantages indéniables
poussent de plus en plus de scientifiques de toutes disciplines à dépasser les difficultés d’ap-
prentissage pour évaluer ce que la méthode des éléments finis peut leur apporter. La finance
ne fait pas exception.

Dans ce travail, la méthode des éléments finis sera appliquée à quelques problèmes cou-
rants des mathématiques financières. Quand ce sera possible, les résultats obtenus seront
comparés à ceux fournis par une méthode largement utilisée en finance, la méthode de Monte-
Carlo. L’objectif n’est évidemment pas d’être exhaustif, mais de tenter de dégager les forces
et les faiblesses de la méthode pour ce qui est du domaine des mathématiques financières.
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Chapitre 2

Etat de la question

2.1 Le modèle de Black et Scholes

Le modèle le plus connu de pricing d’options a été présenté par Black et Scholes [1]. Ce
modèle est basé sur les hypothèses suivantes :

1. Le sous-jacent de l’option évolue suivant un mouvement brownien géométrique ;

dS = µSdt+ σSdW (2.1)

2. Le taux d’intérêt sans risque r est constant ;

3. Les échanges se font de manière continue et sans frais de transactions ;

4. Le marché est sans opportunité d’arbitrage ;

5. Les ventes à découvert sont permises.

Le prix d’une option sur un sous jacent décrit par l’équation 2.1 est une fonction de S et
de t. En appliquant le lemme d’Itô il est obtenu :

dV =
(
δV

δS
µS + δV

δt
+ 1

2σ
2S2 δ

2V

δS2

)
dt+ δV

δS
σSdW (2.2)

où dV et dS sont des changements infinitésimaux de la valeur de l’option et du sous-jacent
sur l’incrément de temps dt. Pour en incrément de temps court mais non infinitésimal ∆t,
les équations 2.1 et 2.2 deviennent :

∆S = µS∆t+ σS∆W (2.3)

∆V =
(
δV

δS
µS + δV

δt
+ 1

2σ
2S2 δ

2V

δS2

)
∆t+ δV

δS
σS∆W (2.4)
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Le but est maintenant de trouver un portefeuille contenant une certaine quantité d’options
et de sous-jacents rendant ce portefeuille sans risque, c’est-à-dire faisant disparaître les termes
∆W dans les équations ci-dessus. Ce portefeuille est composé d’une position courte sur
l’option et de l’achat de δV

δS
sous-jacents. La valeur Π de ce portefeuille est

Π = δV

δS
S − V (2.5)

Une équation décrivant un petit changement de valeur de ce portefeuille peut être écrite
à partir des équations précédentes :

∆Π = δV

δS
∆S −∆V (2.6)

= −
(
δV

δt
+ 1

2σ
2S2 δ

2V

δS2

)
∆t (2.7)

Comme ce portefeuille est sans-risque, il doit rapporter le même montant qu’un placement
de Π sur un actif sans risque.

∆Π = rΠ∆t (2.8)

= r

(
δV

δS
S − V

)
∆t (2.9)

Et en égalant les deux expressions pour ∆Π

−
(
δV

δt
+ 1

2σ
2S2 δ

2V

δS2

)
∆t = r

(
δV

δS
S − V

)
∆t (2.10)

δV

δt
+ 1

2σ
2S2 δ

2V

δS2 = r

(
V − δV

δS
S

)
(2.11)

La forme finale du modèle de Black et Scholes est obtenue

δV

δt
+ σ2S2 1

2
δ2V

δS2 + rS
δV

S
− rV = 0 (2.12)

L’équation 2.12 est une équation aux dérivées partielles dont la forme est appelée "équation
d’advection-diffusion-reaction" car elle présente :

– Un terme d’advection ou encore de transport rS δV
S
;

– Un terme de diffusion σ2S2 1
2
δ2V
δS2 ;

– Un terme de réaction rV
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Les équations d’advection-diffusion-reaction font l’objet de nombreuses publications dans
le domaine de l’analyse numérique, car dans certaines situations leur résolution s’avère très
périlleuse.

Pour être résolue, l’équation ci-dessus devra être complétée par des conditions initiales
et des conditions aux limites.

Les conditions initiales sont les valeurs de V au temps t = 0. Dans le cas du pricing
d’options, les valeurs connues sont les pay-off de l’option à la maturité de celle-ci en fonction
des valeurs possibles du sous-jacent. Il apparaît donc un premier problème dans le sens où
V est connu non en t = 0 mais en t = T , cette forme d’équation est dénommée en anglais
comme étant backward in time.

Les conditions aux limites sont les valeurs de V aux bornes du domaine étudié. Dans le
cas du pricing d’une option européenne, le domaine est unidimensionnel et consiste dans les
différentes valeurs possibles de S. La borne inférieur du domaine est S = 0 et à cet endroit
il peut être supposé que V = 0. La borne supérieure est plus problématique car S n’est pas
borné à droite. Il sera vu plus tard comment s’affranchir de cette difficulté.

Dans la suite du texte, trois méthodes de résolution de l’équation 2.12 seront présentées.
Dans certaines situations (options simples), il est possible de transformer l’équation 2.12 en
une forme semblable à l’équation de la chaleur, et d’en tirer une solution analytique. Cette
approche sera présentée dans la section 2.2.

Quand une solution analytique n’est pas disponible, des méthodes numériques doivent
être envisagées afin d’obtenir des solutions approchées du problème. La section 2.3 présen-
tera la méthode de Monte-Carlo, qui est une méthode probabiliste basée sur la génération de
"chemins" pris par le sous-jacent à l’aide de l’équation 2.1.

La section 2.4 présentera la méthode des éléments finis, qui est une méthode moderne
de résolution des équations aux dérivées partielles basée sur une approximation polynômiale
définie par morceaux de la solution de l’équation 2.12.

2.2 Résolution analytique du modèle de Black et Scholes

Les changements de variables suivants peuvent être appliqués à l’équation 2.12 [6] :
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V = e−r(T−t)u(x, τ) (2.13)

τ = 2M
σ2 (T − t) (2.14)

M = r − σ2

2 (2.15)

x = 2M
σ2

(
log

(
S

E

)
+M(T − t)

)
(2.16)

(2.17)

l’équation devient alors :

δ2u

δx2 = δu

δτ
(2.18)

qui est connue comme étant l’équation de la chaleur. Dans le cas d’un call européen, le
pay-off final (S −K)+ devient, par le changement de variable :

u(x, 0) = Eex
σ2
2M − E (2.19)

et la solution de l’équation est

u(x, τ) = EN

(
x∗√
2τ

)
e−

x2
∗−x

2
4τ − EN

(
x√
2τ

)
(2.20)

où

x∗ = x+ τσ2

M
(2.21)

en repassant par les variable initiales, la solution analytique de l’équation de Black et
Scholes dans le cas d’un call européen est obtenue :

V = S0N(d1)− Ee−r(T−t)N(d2) (2.22)

d1 =
ln( S

E
+ (r + σ2

2 )(T − t))
σ
√
T − t

(2.23)

d2 = d1− σ
√
T − t (2.24)
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2.3 Résolution par la méthode de Monte-Carlo du mo-
dèle de Black et Scholes

La méthode de Monte-Carlo est une des techniques les plus générales pour le pricing d’op-
tions [13]. Le principe de la méthode est essentiellement d’utiliser la loi des grands nombres
pour évaluer l’espérance des gains à maturité de l’option.

La loi des grands nombres stipule que si Yn est une séquence de variables aléatoires
identiquement distribuées et indépendantes, la relation suivante est valide

lim
N→∞

1
N

N∑
j=1

Yj = E(Y ) (2.25)

Si le sous-jacent évolue selon un brownien géométrique, des "chemins" possibles de sa
valeur au cours du temps peuvent être générés à partir de la solution de l’équation 2.1
(obtenue après changement de mesure de probabilité vers la mesure risque neutre)

S(t) = S0e
(r− 1

2σ
2)t+σ

√
tN(0,1) (2.26)

La méthode de Monte-Carlo consiste donc à générer des nombres aléatoires selon une dis-
tribution normale, les insérer dans l’équation 2.26 et calculer la valeur du pay-off à maturité
de l’option. En répétant cette opération un grand nombre de fois, la moyenne des valeurs
obtenues va converger vers l’espérance des pay-off, qu’il suffira d’actualiser pour obtenir le
prix initial de l’option.

L’erreur sur la valeur obtenue est d’ordre θ( 1√
N

), ce qui impose l’utilisation d’un grand
nombre de données (généralement plusieurs millions) pour obtenir une solution acceptable.
L’erreur sur le résultat obtenu avec la génération de n "chemins" peut être évaluée par la
relation

ES =
√
σ

n
(2.27)

ou ES est l’erreur standard de la solution et σ est la variance des solutions obtenues.

Les avantages de la méthode de Monte-Carlo sont certainement :
– sa simplicité ;
– sa facilité d’implémentation ;
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– sa grande généralité (pratiquement tous les types d’options peuvent être pricés de cette
manière).

Ses inconvénient sont :
– sa faible vitesse de convergence. Elle impose la génération d’un très grand nombre de
"chemins" du sous-jacent pour obtenir des solutions précises, ce qui se traduit par des
temps de calcul relativement longs ;

– elle ne permet pas de calculer de manière directe les grecques de l’option.

2.4 Résolution par la méthode des éléments finis du
modèle de Black et Scholes

2.4.1 Idées générales

La méthode des éléments finis peut-être caractérisée par les 3 principes suivants [8] :

1. Le domaine de la solution est représentés comme un ensemble de sous-domaines appelés
éléments finis.

2. Sur chaque élément, la solution est représentée par une combinaison linéaire de poly-
nômes et de paramètres indéterminés. Les relations entre les paramètres sont établies
à partir de l’équation aux dérivées partielles à résoudre.

3. Les relations algébriques de tous les éléments sont assemblées dans le modèle global,
qui se matérialise en un système linéaire à résoudre.

Dans cette revue bibliographique, les principales étapes de la méthode des éléments finis
seront décrites dans le cas de la résolution de l’équation de la chaleur (équation 2.28), en
régime stationnaire. L’application de la méthode au pricing d’options sera présentée dans la
partie résultats de ce travail.

− δ

δx

(
a
δu

δx

)
+ cu = f 0 < x < L (2.28)

2.4.2 Approximation aux éléments finis

Le domaine (0,L) du problème consiste en tous les points entre x = 0 et x = L, ces deux
valeurs étant les frontières du domaine. Dans la méthode des éléments finis, le domaine (0,L)
est décomposé en un certain nombre d’intervalles appelés éléments finis. Chacun de ceux-ci
est de longueur he et est localisé entre les points x = xa et x = xb qui sont les coordonnées
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des frontières de l’élément selon l’axe x.

Dans la méthode des éléments finis, une solution approchée ueh de la solution u de l’équa-
tion 2.28 sur l’élément e est recherchée sous la forme :

ueh =
n∑
j=1

uejφ
e
j(x) (2.29)

où φej(x) sont des fonctions a sélectionner, uej sont des constantes à déterminer telles que
l’équation 2.29 satisfasse l’équation 2.28 ainsi que les conditions aux limites spécifiées et n
est le nombre de noeuds dans le domaine.

En introduisant l’équation 2.29 dans l’équation 2.28, il peut être défini un résidu généra-
lement non nul :

− δ

δx

(
a
δueh
δx

)
+ cueh − f = Re (2.30)

L’objectif est de déterminer les valeurs des constantes uej telles que ce résidu soit nul sur
l’élément. Plusieurs variantes de la méthode des éléments finis existent selon la façon dont
cette condition est exprimée. La méthode de Galerkin [7] consiste à écrire :

∫ xb

xa
φei (x)Redx = 0 i = 1, 2, . . . , n (2.31)

2.4.3 Obtention de la forme faible

Quelques modifications doivent être apportées à l’équation 2.31 afin d’obtenir le même
degré de différentiation pour les fonctions ueh et φej .

L’équation 2.31 peut s’écrire :

0 =
∫ xb

xa
φei

(
− δ

δx

(
a
δueh
δx

)
+ cueh − f

)
dx (2.32)

par intégration par partie cette équation devient :

0 =
∫ xb

xa

(
a
δφei
δx

δueh
δx

+ cφeiu
e
h − φeif

)
dx−

[
φeia

δueh
δx

]xb
xa

(2.33)

où le terme
[
φeia

δueh
δx

]xb
xa
, représente ce qui est appelé les conditions de Neumann du

système, c’est à dire des valeurs imposées à la variable dite secondaire a δu
e
h

δx
aux limites du
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domaine. Ces conditions sont également appelées naturelles car elles apparaissent naturel-
lement dans la forme aux éléments finis, contrairement aux conditions de type Dirichlet qui
seront présentées plus tard.

2.4.4 Fonctions d’interpolation

Le choix des fonctions d’interpolation, appelées aussi fonctions de forme n’est pas ano-
din, et seuls les 2 types de fonction les plus simples et aussi les plus populaires seront présentés
ici.

Les plus simples des fonctions d’interpolation sont définies par 2 polynômes du premier
degré associés à chaque noeud de l’élément. Dès lors, l’approximation ueh de la solution u

devient :

ueh(x) = φe1(x)ue1 + φe2(x)ue2 =
2∑
j=1

φej(x)uej (2.34)

où ue1 = uea et ue2 = ueb sont les valeurs nodales de ueh et les fonctions φ sont définies par

φe1(x) = xb − x
xb − xa

(2.35)

φe2(x) = x− xa
xb − xa

(2.36)

Il peut être remarqué que les fonctions de forme satisfont à la propriété :

n∑
j=1

φej(x) = 1 (2.37)

De la même manière, ueh peut être approximé par des polynômes du second degré.

ueh(x) = φe1(x)ue1 + φe2(x)ue2 + φ3(x)ue3 =
3∑
j=1

φej(x)uej (2.38)

où ue1 = ueh(x1) , ue2 = ueh(x2) et ue3 = ueh(x3) avec x1 = xa, x2 = xa + he
2 et x3 = xb.

Les fonctions L sont définies par
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φe1(x) =
(
x− xe2
xe1 − xe2

)(
x− xe3
xe1 − xe3

)
(2.39)

φe2(x) =
(
x− xe1
xe2 − xe1

)(
x− xe3
xe2 − xe3

)
(2.40)

φe3(x) =
(
x− xe1
xe3 − xe1

)(
x− xe2
xe3 − xe2

)
(2.41)

Il peut être remarqué que l’utilisation de fonctions de forme quadratiques impose l’utili-
sation d’un noeud supplémentaire sur l’élément, placé ici au centre de l’intervalle [xa, xb].

La forme générale de la solution approchée de l’équation aux dérivées partielles, pour un
degré n, est donc donnée par :

ueh(x) =
n∑
j=1

φej(x)uej (2.42)

2.4.5 Modèle aux éléments finis

En remplacant l’équation 2.42 dans l’équation 2.33, n équations algébriques de la forme
suivante sont obtenues :

0 =
n∑
j=1

Ke
iju

e
j − f ei −Qe

i i = 1, 2, . . . , n (2.43)

où :

Ke
ij =

∫ xb

xa

(
a
δφei
δx

δφej
δx

+ cφeiφ
e
j

)
dx (2.44)

f ei =
∫ xb

xa
fφeidx (2.45)

Qe
i =

[
φeia

δU e
h

δx

]xb
xa

(2.46)

Au final, la méthode des éléments finis se réduit donc à un système linéaire de forme :

[K] ~uh = ~f + ~Q (2.47)
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où [K] est la matrice des coefficients, appelée parfois matrice de raideur, ~uh est le vecteur
des inconnues, ~f est le vecteur source et ~Q est le vecteur des contraintes de Neumann.
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Chapitre 3

Objectifs du travail

L’objectif principal de ce travail est d’appliquer la méthode des éléments finis au pricing
d’options, et d’étudier ses avantages et ses inconvénients par rapport à la méthode de Monte-
Carlo.

Dans un premier temps, la dérivation complète d’un modèle aux éléments finis pour la
résolution de l’équation de Black et Scholes dans le cas d’options européennes classiques sera
présentée. Ce paragraphe permettra de décrire de manière précise les étapes nécessaires à la
résolution d’une équation d’advection-diffusion-reaction en régime transitoire par la méthode
des éléments finis.

Le paragraphe suivant sera dédié à l’application pratique du modèle développé précédem-
ment. Le prix d’options européennes sur l’action Google pour deux maturités différentes et
différents prix d’exercice seront établis par la méthode de Monte-Carlo et la méthode des élé-
ments finis. Cette étape permettra de comparer les propriétés de convergence et de précision
de ces deux méthodes, ainsi que leurs besoins respectifs en temps de calcul. Les prix obtenus
seront également comparés à ceux obtenus à partir de la solution analytique de l’équation de
Black et Scholes ainsi qu’aux prix pratiqués sur le marché.

Les grecques sont des paramètres importants des options. Elles interviennent aussi bien
dans les stratégies de couverture que de trading, et à ce titre il est indispensable d’en ob-
tenir des valeurs précises. L’application de la méthode des éléments finis à ce domaine sera
explicitée. La méthode sera appliquée au calcul des grecques pour les options sur l’action
Google présentées au chapitre précédent. Dans le cas des options européennes classiques, des
solutions analytiques existent pour ces différents paramètres, ce qui permettra de vérifier la

17



précision des résultats obtenus.

La dernière partie de ce travail consistera à appliquer la méthode des éléments finis au
pricing d’options exotiques. Il sera montré comment certaines de ces options peuvent être
pricées en modifiant les conditions aux limites de l’équation de Black et Scholes. Les options
exotiques étant tradées over the counter, il n’est pas possible de se baser sur des prix de
marché pour vérifier l’exactitude du modèle. Les résultats seront donc comparés à d’autres
solutions publiées dans la littérature.
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Chapitre 4

Développement de la discrétisation
aux éléments finis du modèle de Black
et Scholes

4.1 Formulation du problème

L’équation de Black et Scholes pour un call européen de maturité T et de strike E est
donnée par :



δV

δt
+ σ2S2 1

2
δ2V

δS2 + rS
δV

S
− rV = 0

V (S, T ) = max(0, S − E)

V (0, t) = 0

(4.1)

(4.2)

(4.3)

Un problème particulier lié à la résolution de cette équation est que le domaine de réso-
lution est non-borné. En effet, aucune limite supérieure n’est pour l’instant donnée à S. La
méthode des éléments finis étant développée pour des domaines bornés (Il existe une méthode
appelée éléments infinis [2, 3], qui ne sera pas abordée ici), celui-ci devra donc être tronqué.
Plusieurs solutions existent :

1. Plus l’option devient in-the-money, plus sa valeur se rapproche de celle du sous-jacent
à laquelle on enlève la valeur actualisée du strike. Cela revient à choisir une valeur de
S assez grande Smax pour laquelle il est fixé :

V (Smax, t) = Smax − Ee−r(T−t) (4.4)
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2. Il peut également être postulé que pour des valeurs de S assez élevées, la valeur de
l’option évolue au même rythme que le sous-jacent, ce qui revient à écrire :

δV (Smax, t)
δS

= 1 (4.5)

3. Une dernière possibilité est d’imposer la dérivée seconde de la valeur de l’option égale
à zéro pour des valeurs de S assez élevées :

δ2V (Smax, t)
δS2 = 0 (4.6)

Dans ce travail, seule la première méthode sera utilisée, de part sa simplicité d’implé-
mentation.

4.2 Discrétisation spatiale du problème

En remplaçant la dérivée temporelle δV
δt

par u̇, les dérivées premières et secondes respec-
tivement par u′ et u′′ , et en remplaçant les coefficients de l’équation 4.1 par les paramètres
a0, a1 et a2, celle-ci peut s’écrire de façon générale :

u̇ = a0u
′′ + a1u

′ + a2u+ f (4.7)

qui peut se réécrire 1

u̇ = (a0u
′)′ + (a1 − a

′

0)u′ + a2u+ f (4.8)

En remplaçant u par sa forme approchée uh, un résidu peut être calculé :

R = (a0u
′

h)
′ + (a1 − a

′

0)u′h + a2uh + f − u̇h (4.9)

Et la minimisation de ce résidu par la méthode de Galerkin donne :

∫ xmax

xmin
φiRdx = 0 i = 1, 2, . . . , N (4.10)

où xmin et xmax sont les bornes de l’élément. En remplaçant R par son expression il est
obtenu

1. a0u
′′ = (a0u

′)′ − a′0u
′
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∫ xmax

xmin
φi
[
(a0u

′

h)
′ + (a1 − a

′

0)u′h + a2uh + f − u̇h
]
dx = 0 i = 1, 2, . . . , N (4.11)

Le premier terme de l’intégrale peut être intégré pour obtenir l’équation suivante

∫ xmax

xmin
φi(a0u

′

h)
′
dx = [φia0u

′

h]xmaxxmin
−
∫ xmax

xmin
φ
′

ia0u
′

hdx (4.12)

où le premier terme s’annule entre éléments adjacents et ne subsiste que pour les élé-
ments frontières dans le cas ou des conditions aux limites de type Neumann sont définies.
Etant donné qu’il a été décidé en 4.1 d’utiliser des conditions aux limites de type Dirichlet
(V (Smin, t) = 0 et V (Smax, t) = Smax − Ee−r(T−t)), ce terme est tout simplement éliminé de
la formulation.

Après ces modifications, l’équation 4.11 devient :

∫ xmax

xmin

[
φ
′

ia0u
′

h − φi(a1 − a
′

0)u′h − φia2uh − φif + φiu̇h
]
dx = 0 i = 1, 2, . . . , N (4.13)

dans laquelle uh peut être remplacé par sa définition pour donner :

n∑
j=1

[∫ xmax

xmin
φiφjdx

]
u̇j+

n∑
j=1

[∫ xmax

xmin

(
a0φ

′

iφ
′

j − (a1 − a
′

0)φiφ
′

j − a2φiφj
)
dx
]
uj

=
∫ xmax

xmin
φifdx i = 1, 2, . . . , n

(4.14)

ou sous forme matricielle

[A]~̇u+ [B]~u = ~Q (4.15)

4.3 Discrétisation temporelle du problème

Le système 4.15 ne peut être résolu à ce stade, car sont inconnues les valeurs de u mais
aussi de leurs dérivées temporelles u̇. Tout comme la discrétisation spatiale, la méthode de dis-
crétisation temporelle consistera à diviser le domaine [0, T ] en un certain nombre d’intervalles
de temps pour lesquels le système pourra être résolu. L’algorithme de résolution consistera
donc à parcourir le domaine temporel d’intervalle en intervalle en utilisant à chaque étape
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les solutions obtenues à l’étape précédente.

De nombreuses formes de discrétisation temporelle existent, et présentent des propriétés
différentes. Le domaine est trop vaste pour être étudié dans le cadre de ce travail, et seules les
principales implications du choix seront présentées. Un schéma de discrétisation temporelle
se caractérise par trois éléments importants :

1. Son caractère explicite ou implicite : les schémas explicites sont nommés de cette façon
car les solutions aux temps n+1 y sont donnés en fonction des solutions aux temps n.
Ces schémas présentent le gros avantage de ne pas nécessiter de résolution de système
linéaire, et donc d’économiser une grosse quantité de temps de calcul. Les schémas im-
plicites expriment par contre les solutions aux temps n+1 non seulement en fonction des
solutions aux temps n, mais également en fonction des valeurs des autres noeuds aux
temps n+1, ce qui impose la résolution à chaque pas de temps d’un système d’équations
de taille égale au nombre de noeuds du domaine.

2. Sa stabilité : certains schémas (de manière générale les schémas explicites), imposent
des restrictions quant à la taille des pas de temps utilisés. Pour des pas de temps su-
périeurs aux limites autorisées, les erreurs de calcul s’additionnent et mènent à des
solutions complètement erronées. Le gain de temps réalisé par l’utilisation d’un schéma
explicite (en ne résolvant pas de système d’équation à chaque pas de temps) peut donc
être perdu par l’obligation d’utiliser des pas de temps extrêmement petits.

3. Sa convergence : la précision de la solution dépend fortement du degré de raffinement
de la disctrétisation spatiale, mais aussi temporelle. La vitesse avec laquelle la précision
obtenue augmente quand le pas de temps diminue est appelée la propriété de conver-
gence du schéma temporel.

Dans ce travail, le schéma dit de Crank-Nickolson sera utilisé. C’est un schéma impli-
cite inconditionnellement stable présentant de bonnes propriétés de convergence.

Dans ce schéma, le système 4.15 est remplacé par le suivant :

[A] 1
∆t

(
~̇un − ~̇un−1

)
= ( ~Q− [B]~u)n − ( ~Q− [B]~u)n−1

2 (4.16)

qui se ramène à un système linéaire classique de type :
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[M ]~x = ~b (4.17)

4.4 Remarques sur la forme du système linéaire

Les fonctions de forme n’étant définies qu’élément par élément, les seuls éléments non-nuls
de la ligne i du système d’équations obtenu correspondent aux noeuds k appartenant au même
élément que le noeud i. Les matrices obtenues par la méthode des éléments finis comportent
donc un grand nombre d’éléments nuls. Ce type de matrice est appelé matrice creuse. La
taille de stockage nécessaire et la complexité algorithmique des opérations matricielles pour
ce type de matrice sont fortement réduits par rapport à ceux obtenus pour des matrices
pleines.

4.5 Remarques sur le calcul des intégrales

Les coefficients des matrices obtenues par la méthode des éléments finis sont exprimés
sous la forme d’intégrales. La précision des résultats dépendra fortement de la précision avec
laquelle ces intégrales seront calculées. S’il est possible de calculer de façon analytique les
intégrales correspondantes à chaque coefficient, cette façon de faire est très peu utilisée en
pratique. En effet, le code obtenu serait entièrement dédié à un type de problème, et devrait
être presque entièrement réécrit pour chaque petite modification du modèle à résoudre. Des
méthodes numériques d’intégration sont donc le plus souvent utilisées, et particulièrement la
méthode des quadratures de Gauss.

Dans cette méthode, soit à évaluer l’intégrale suivante

∫
Ωe
f(x)dx (4.18)

Cette intégrale, qui est définie sur un domaine quelconque (les dimensions de l’élément
ne sont pas définies), est ramenée à une intégrale sur un élément parent par un changement
de coordonnées

∫
Ωe
f(x)dx =

∫ 1

−1
f(x(ε))δx

δε
dε =

∫ 1

−1
g(ε)dε (4.19)

et la méthode des quadratures de Gauss est définie de la manière suivante

∫ 1

−1
g(ε)dε =

nint∑
l=1

g(εl)Wl (4.20)
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où nint est le nombre de points de Gauss, εl sont les points de Gauss et Wl sont les poids
associés. Des tables sont disponibles donnant les valeurs de ces points de Gauss et poids en
fonction de l’ordre des fonctions à intégrer.

Les exemples précédents, donnés en une dimension, se généralisent facilement aux cas à
plusieurs dimensions.

4.6 Remarques sur les conditions aux limites

Au stade du système 4.17, aucune restriction n’est encore imposée aux valeurs de u aux
noeuds x = 0 et x = Smax. L’algorithme suivant permet de contraindre le système tout en
préservant le caractère symétrique de la matrice M [19].

Soit à imposer la k-ième valeur de u à la valeur Tk :

1. On multiplie la k-ième colonne de la matrice M par la valeur Tk, et on la soustrait au
vecteur B ;

2. La k-ième ligne et la k-ième colonne deM sont remplacées par une ligne et une colonne
de zéros ;

3. Le terme Mk,k est remplacé par 1 ;

4. La composante Bk est remplacée par Tk.
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Chapitre 5

Application de la méthode des
éléments finis au pricing d’options
européennes

5.1 Présentation du cas étudié

La méthode des éléments finis sera appliquée dans ce chapitre au pricing d’options euro-
péennes sur l’action Google, cotées le 20 et le 21 janvier 2011. Les prix historiques de l’action
Google ont été trouvés sur le site internet Google Finance [18], et les prix des options asso-
ciées sur la base de données en ligne CBOE [17]. Le taux sans risque en Dollars a été quant
à lui trouvé sur le site de la réserve fédérale américaine [16].

La figure 5.1 présente l’évolution du prix journalier de clôture de l’action Google entre le
21 juin 2010 et le 19 janvier 2011. A partir de ces prix, la volatilité annuelle des rendements
est évaluée à 29,4 % . Le taux sans risque en Dollars au 20 janvier 2011 était de 0,18%.
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Figure 5.1 – Evolution du prix journalier de clôture de l’action Google entre le 21 juin 2010
et le 19 janvier 2011
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5.2 Présentation des codes de calcul

Dans ce chapitre, les prix d’options call à un mois et un an sur l’action Google au 20
janvier 2011 seront calculés par la méthode de Monte-Carlo et des éléments finis.

Ces deux méthodes ont été implémentées en C++ en utilisant le paradigme de la pro-
grammation orientée objet [12].

La génération des nombres aléatoires pour la méthode de Monte-Carlo à été réalisée à
l’aide des librairies Boost [15].

Les codes aux éléments finis ont été réalisés avec l’aide des libraires Getfem++ [14], ces
dernières fournissent des interfaces permettant l’import/export de maillages dans différents
formats, différentes méthodes d’intégration, des procédures génériques pour la constructions
des matrices, des solveurs directs et itératifs pour la résolution de systèmes d’équations
linéaires,. . .

5.3 Etude de la convergence de la méthode des élé-
ments finis

Plusieurs paramètres influence la précision avec laquelle la solution de l’équation de Black
et Scholes est approchée par la méthode des éléments finis :

1. Le nombre d’éléments utilisés sur le domaine ;

2. Le degré des polynômes d’interpolation utilisés ;

3. La valeur de Smax utilisée pour tronquer le domaine ;

4. La taille des pas de temps utilisés.

Augmenter le nombre d’éléments, utiliser un degré de polynôme élevé, prendre une valeur
de Smax élevée et un pas de temps le plus petit possible sont autant de solutions permet-
tant d’améliorer la précision de la méthode. Cependant, toutes ces approches s’accompagnent
également d’une augmentation significative du temps de calcul nécessaire à la résolution du
modèle.

Dans cette section, ces différents "leviers" permettant d’améliorer la précision de la mé-
thode seront comparés des points de vue de leur convergence et de leur coût de calcul. La
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convergence est étudiée en réalisant un graphique donnant la précision obtenue en fonction
des valeurs du paramètre étudié (toutes choses restant égales par ailleurs). Le coût de calcul
est quand à lui estimé par le temps de calcul CPU nécessaire à la résolution du modèle en
fonction des valeurs du paramètre étudié (toutes choses restant égales par ailleurs).

L’option modèle considérée dans les prochaines sections sera une option call européenne
sur l’action Google, de maturité 1 an et cotée le 20 janvier 2011. La précision sera estimée
en calculant la norme L2 de l’erreur de la manière suivante :

1. Un maillage de 10000 éléments entre S = 0 et S = Smax est réalisé ;

2. La solution analytique de l’équation de Black et Scholes est utilisée pour calculer le
prix de l’option sur chaque point du maillage ;

3. La solution approchée obtenue par éléments finis est interpolée sur le nouveau maillage
à l’aide de l’équation

U(x) =
n∑
i=1

τi(x) Ui (5.1)

4. La norme L2 peut ensuite être calculée grâce à l’équation

L2 =
√√√√ n∑
i=1

(Ue,i − Ua,i)2 (5.2)

où Ue,i et Ua,i sont respectivement les solutions par éléments finis et analytique de
l’équation de black et Scholes au noeud i.

5.3.1 Nombre d’éléments

Dans cette section, l’évolution de la convergence et du coût de calcul de la méthode
des éléments finis en fonction du nombre d’éléments utilisé sera étudiée. Afin de mettre en
évidence l’impact du nombre d’éléments, les autres paramètres ayant une influence sur les
résultats obtenus seront constants et de :

– Nombre de pas de temps = 1000
– Smax = 5000
– Ordre des polynômes = 1

La figure 5.2 présente l’évolution de la norme L2 de l’erreur ainsi que le temps de calcul
CPU nécessaire à la résolution du modèle pour un nombre d’éléments variant entre 10 et 1000.
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Figure 5.2 – Evolution de la norme L2 de l’erreur et du temps de calcul en fonction du
nombre d’éléments utilisés.

Comme attendu, l’erreur diminue avec l’augmentation du nombre d’éléments tandis que
le temps de calcul augmente. La norme L2 ne diminue plus de manière significative quand le
nombre d’éléments est supérieur à 500, tandis que le temps de calcul augmente lui logiquement
de façon constante.

5.3.2 Degré des polynômes d’interpolation

Afin d’étudier l’impact du degré des polynômes d’interpolation sur la convergence et le
coût de calcul de la méthode des éléments finis, les paramètres utilisés sont les suivants :

– Nombre de pas de temps = 1000
– Smax = 5000

Le prix de l’option est ensuite calculé à l’aide de polynômes d’interpolation d’ordre 2,
en faisant varier le nombre d’éléments entre 10 et 1000. La figure 5.3 présente les résultats
obtenus. L’allure générale est identique au cas de l’utilisation de polynômes d’ordre 1, mais
la comparaison des 2 méthodes permet d’identifier des différences. En effet, si la précision
augmente de manière plus rapide avec des polynômes d’ordre élevé, il en est de même pour
le temps de calcul. Pour la suite de ce travail, il a été choisi d’utiliser des polynômes d’ordre
1 avec un nombre d’éléments égal à 500. La raison en est que la précision obtenue avec ces
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paramètres ne peut pas être améliorée de façon significative, même en augmentant l’odre des
polynômes ou le nombre d’éléments, et que le temps de calcul nécessaire avec ces paramètres
est inférieur à celui demandé par l’utilisation de polynômes d’ordre 2 pour la même précision.
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Figure 5.3 – Evolution de la norme L2 de l’erreur et du temps de calcul en fonction du
nombre d’éléments utilisés en utilisant des polynômes d’ordre 1 et 2.
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5.3.3 Valeur de Smax
Pour un nombre d’éléments égal à 500, des polynômes d’interpolation égaux à 1 et un

nombre de pas de temps égal à 1000, la figure 5.4 présente la convergence et le coût de calcul
de la méthode des éléments finis pour des valeurs de Smax variant entre 1000 et 5000.
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Figure 5.4 – Evolution de la norme L2 de l’erreur et du temps de calcul en fonction de la
valeur de Smax.

Il peut être observé que la norme L2 de l’erreur n’évolue plus pour des valeurs de Smax >
2500$, qui sera donc la valeur utilisée pour les simulations suivantes. Le temps de calcul
n’est quant-à-lui pas influencé par ce paramètre, puisqu’il n’influence ni la taille du système
linéaire à résoudre à chaque étape (le nombre d’éléments est fixé), ni le nombre de pas de
temps.
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5.3.4 Taille des pas de temps

La figure 5.5 présente l’évolution de la convergence et du coût de calcul de la méthode
des éléments finis pour des nombres de pas de temps variant entre 10 et 1000.
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Figure 5.5 – Evolution de la norme L2 de l’erreur et du temps de calcul en fonction du
nombre de pas de temps utilisé.

Le temps de calcul augmente de façon linéaire avec le nombre de pas de temps, la norme
L2 peut quant-à-elle être considérée comme constante pour un nombre de pas de temps > 300,
c’est la valeur de ce paramètre qui sera utilisée pour les simulations suivantes.

5.4 Comparaison de la méthode des éléments finis et
de la méthode de Monte-Carlo

En utilisant les paramètres déterminés précédemment, la méthode des éléments finis est
comparée à la méthode de Monte-Carlo pour le pricing d’options call européennes de diffé-
rents strikes et maturités.

Les résultats obtenus sont comparés sur base des critères suivants :
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– La précision, qui sera estimée par le pourcentage d’erreur de prévision par rapport à la
solution analytique ;

– Le temps de calcul nécessaire.

Les prix observés pour le marché sont également renseignés pour chacune des ces options.

Les tableaux 5.1 et 5.2 présentent respectivement les résultats obtenus pour des options de
maturité 1 an et 1 mois. Pour des options de maturité d’un an, la précision de la méthode des
éléments finis est systématiquement meilleure que celle de la méthode de Monte-Carlo, pour
un temps de calcul CPU réduit d’un facteur 30. Par contre, pour une maturité d’un mois, la
précision de la méthode des éléments finis est nettement inférieure à celle de la méthode de
Monte-Carlo. Le temps de calcul CPU est quant-à-lui toujours à l’avantage de la première.
Pour comprendre ce phénomène, il faut observer à la figure 5.6 l’allure de la solution de
l’équation de Black et Scholes pour les deux maturités considérées. Il est clairement visible
que la solution pour une maturité d’un mois présente une convexité plus forte que celle pour
la maturité d’un an. Dès lors, il est nécessaire d’affiner la réponse obtenue par la méthode des
éléments finis, par exemple en augmentant l’ordre d’intégration ou en utilisant un maillage
plus fin. A titre d’exemple, le tableau 5.3 présente les mêmes calculs, mais en utilisant un
ordre d’intégration de 2 et 1000 éléments. La précision obtenue avec la méthode des éléments
finis devient en moyenne meilleure que celle obtenue par la méthode de Monte-Carlo, tout
en nécessitant un temps de calcul 4 fois inférieur. Les résultats obtenus autour du strike,
où la convexité de la solution est la plus forte, sont d’une précision semblable pour les deux
méthodes.
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Table 5.1 – Comparaison des prix (en Dollars) donnés par la solution analytique, la méthode
de Monte-Carlo, la méthode des éléments finis et le marché pour une option européenne call
de maturité 1 an sur l’action Google, le 20 janvier 2011. Les chiffres entre parenthèses sont
les temps de calcul en temps CPU.

Strike Marché Analytique Monte-Carlo Erreur Eléments-finis Erreur
500 153,8 148,201 148,160 (135,609) 0,027952 % 148,206 (4,09) 0, 00302189 %
510 144,75 140,977 140,936 (135,262) 0,0291415 % 140,982 (4,06) 0, 00366402 %
540 123,5 120,680 120,639 (134,885) 0,0339987 % 120,689 (4,03) 0, 00684363 %
550 115,0 114,381 114,340 (134,693) 0,0357378 % 114,391 (4,06) 0, 00862017 %
580 98,0 96,893 96,854 (134,766) 0,0401916 % 96,9095 (4,02) 0, 0172215 %
590 90,0 91,529 91,491 (136,483) 0,0418161 % 91,5483 (4,04) 0, 021045 %
600 84,0 86,394 86,357 (134,978) 0,0437543 % 86,4159 (4,03) 0, 0249643 %
610 78,8 81,485 81,448 (134,762) 0,0463770 % 81,5086 (4,03) 0, 0285443 %
620 74,0 76,798 76,761 (135,725) 0,0489003 % 76,8221 (4,03) 0, 0312817 %
625 72,8 74,536 74,536 (135,945) 0,0499597 % 74,524 (4,03) −0, 0164183 %
630 69,0 72,328 72,291 (134,876) 0,0511072 % 72,3517 (4,02) 0, 0327176 %
635 66,11 70,173 70,136 (134,886) 0,0521586 % 70,1614 (4,03) −0, 0165838 %
640 65,53 68,070 68,034 (134,427) 0,0532193 % 68,0925 (4,03) 0, 032566 %
645 61,60 66,019 65,984 (135,921) 0,0541049 % 66,0094 (4,02) −0, 0152095 %
650 61,47 64,020 63,984 (135,368) 0,0549343 % 64,0393 (4,05) 0, 0308145 %
660 56,20 60,170 60,136 (134,821) 0,0564767 % 60,1866 (4,02) 0, 0277501 %
665 56,3 58,319 58,285 (135,743) 0,0573997 % 58,3136 (4,03) −0, 00871047 %
670 53,25 56,516 56,482 (135,374) 0,0585349 % 56,529 (4,04) 0, 0238909 %
680 48,63 53,050 53,018 (135,043) 0,0605617 % 53,0605 (4,05) 0, 0198427 %
690 45,62 49,767 49,736 (134,783) 0,0633188 % 49,775 (4,04) 0, 0161367 %
700 42,0 46,660 46,629 (139,751) 0,0665936 % 46,666 (4,09) 0, 0131084 %
710 39,0 43,722 43,691 (136,433) 0,0704098 % 43,7269 (4,08) 0, 0108599 %
720 36,4 40,947 40,916 (135,526) 0,0752807 % 40,9509 (4,05) 0, 00930285 %
730 33,3 38,328 38,297 (134,024) 0,0811396 % 38,3311 (4,05) 0, 00824512 %
740 30,2 35,858 35,827 (135,737) 0,0864107 % 35,8608 (4,07) 0, 00747902 %
750 25,8 33,531 33,501 (135,641) 0,0904122 % 33,5332 (4,04) 0, 00683662 %

34



Table 5.2 – Comparaison des prix (en Dollars) donnés par la solution analytique, la méthode
de Monte-Carlo, la méthode des éléments finis et le marché pour une option européenne call
de maturité 1 mois sur l’action Google, le 20 janvier 2011. Les chiffres entre parenthèses sont
les temps de calcul en temps CPU.

Strike Marché Analytique Monte-Carlo Erreur Eléments-finis Erreur
590 34,5 37,632 37,624 (136,055) 0,0225596 % 37,6154 (4,17) −0, 0446411 %
595 30,2 34,112 34,103 (136,102) 0,0248684 % 34,1259 (3,91) 0, 0416853 %
600 26,4 30,781 30,772 (133,777) 0,0274281 % 30,7657 (3,96) −0, 0480665 %
605 22,8 27,646 27,638 (135,151) 0,0300650 % 27,6625 (3,91) 0, 0604765 %
610 19,1 24,713 24,705 (135,036) 0,0322981 % 24,6988 (3,89) −0, 0561074 %
615 16,2 21,984 21,977 (135,917) 0,0347544 % 22,002 (3,91) 0, 081113 %
620 13,52 19,461 19,454 (135,861) 0,0385582 % 19,4467 (3,92) −0, 0736862 %
625 10,97 17,142 17,135 (135,237) 0,0428098 % 17,1592 (3,91) 0, 101446 %
630 8,70 15,023 15,016 (135,942) 0,0461614 % 15,0069 (3,91) −0, 107752 %
635 7,00 13,099 13,093 (135,41) 0,0486541 % 13,115 (3,91) 0, 11894 %
640 5,48 11,364 11,358 (134,852) 0,0524303 % 11,3446 (3,89) −0, 167655 %
645 4,2 9,807 9,802 (134,314) 0,0584245 % 9,82015 (3,92) 0, 131205 %
650 3,2 8,420 8,415 (134,133) 0,0681372 % 8,39801 (3,91) −0, 265667 %
655 2,45 7,192 7,187 (140,04) 0,0784029 % 7,20208 (3,92) 0, 136857 %
660 1,75 6,111 6,106 (134,309) 0,087942 % 6,08589 (3,89) −0, 417814 %
665 1,43 5,166 5,161 (134,563) 0,10005 % 5,17326 (3,91) 0, 13687 %
670 1,08 4,345 4,339 (135,271) 0,119192 % 4,31659 (3,9) −0, 645222 %
675 0,70 3,634 3,630 (134,942) 0,13926 % 3,63987 (3,9) 0, 136668 %
680 0,58 3,026 3,021 (134,526) 0,153515 % 2,99601 (3,91) −0, 976363 %
685 0,45 2,506 2,501 (134,437) 0,174225 % 2,50926 (3,91) 0, 149404 %
690 0,35 2,064 2,060 (134,585) 0,192281 % 2,03441 (3,91) −1, 45077 %
695 0,31 1,692 1,689 (135,219) 0,214072 % 1,69574 (3,91) 0, 201159 %
700 0,25 1,380 1,377 (141,969) 0,238728 % 1,35109 (3,89) −2, 12522 %
710 0,15 0,905 0,902 (143,065) 0,305286 % 0,877064 (3,91) −3, 0839 %
720 0,11 0,582 0,579 (142,699) 0,406767 % 0,555931 (3,91) −4, 45538 %
740 0,1 0,227 0,226 (135,164) 0,662846 % 0,206022 (3,94) −9, 36031 %
750 0,06 0,138 0,137 (134,793) 0,671 % 0,119246 (3,94) −13, 7324 %
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Table 5.3 – Comparaison des prix (en Dollars) donnés par la solution analytique, la méthode
de Monte-Carlo, la méthode des éléments finis avec maillage raffiné et le marché pour une
option européenne call de maturité 1 mois sur l’action Google, le 20 janvier 2011. Les chiffres
entre parenthèses sont les temps de calcul en temps CPU.

Strike Marché Analytique Monte-Carlo Erreur Eléments-finis Erreur
590 34,5 37,632 37,624 (136,055) 0,0225596 % 37,6313 (38) −0, 00223749 %
595 30,2 34,112 34,103 (136,102) 0,0248684 % 34,1098 (37,94) −0, 00548966 %
600 26,4 30,781 30,772 (133,777) 0,0274281 % 30,7769 (37,94) −0, 0118662 %
605 22,8 27,646 27,638 (135,151) 0,0300650 % 27,6396 (37,99) −0, 0224625 %
610 19,1 24,713 24,705 (135,036) 0,0322981 % 24,7036 (38) −0, 037081 %
615 16,2 21,984 21,977 (135,917) 0,0347544 % 21,9725 (37,78) −0, 0531816 %
620 13,52 19,461 19,454 (135,861) 0,0385582 % 19,4482 (38,06) −0, 0660266 %
625 10,97 17,142 17,135 (135,237) 0,0428098 % 17,1297 (38,16) −0, 0707049 %
630 8,70 15,023 15,016 (135,942) 0,0461614 % 15,0133 (38,05) −0, 0650657 %
635 7,00 13,099 13,093 (135,41) 0,0486541 % 13,0927 (38,13) −0, 0512603 %
640 5,48 11,364 11,358 (134,852) 0,0524303 % 11,3598 (37,94) −0, 0344345 %
645 4,2 9,807 9,802 (134,314) 0,0584245 % 9,80536 (37,93) −0, 0196345 %
650 3,2 8,420 8,415 (134,133) 0,0681372 % 8,41959 (37,94) −0, 00944441 %
655 2,45 7,192 7,187 (140,04) 0,0784029 % 7,19196 (38,03) −0, 00378649 %
660 1,75 6,111 6,106 (134,309) 0,087942 % 6,11135 (38,12) −0, 00121896 %
665 1,43 5,166 5,161 (134,563) 0,10005 % 5,16618 (38,1) −0, 000259832 %
670 1,08 4,345 4,339 (135,271) 0,119192 % 4,34462 (38,1) 3, 71762 ∗ 10−5 %
675 0,70 3,634 3,630 (134,942) 0,13926 % 3,63491 (38,17) 0, 000115043 %
680 0,58 3,026 3,021 (134,526) 0,153515 % 3,02555 (38,19) 0, 000134486 %
685 0,45 2,506 2,501 (134,437) 0,174225 % 2,50552 (38,2) 0, 000142356 %
690 0,35 2,064 2,060 (134,585) 0,192281 % 2,06436 (38,13) 0, 000152057 %
695 0,31 1,692 1,689 (135,219) 0,214072 % 1,69234 (38,28) 0, 000164572 %
700 0,25 1,380 1,377 (141,969) 0,238728 % 1,38043 (38,18) 0, 000183864 %
710 0,15 0,905 0,902 (143,065) 0,305286 % 0,904975 (38,26) 0, 000254582 %
720 0,11 0,582 0,579 (142,699) 0,406767 % 0,581858 (38,13) 0, 000393127 %
740 0,1 0,227 0,226 (135,164) 0,662846 % 0,2273 (38,25) 0, 00103827 %
750 0,06 0,138 0,137 (134,793) 0,671 % 0,13823 (38,26) 0, 00165492 %
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Les différences entre les prix observés sur les marchés et les prix donnés par le modèle de
Black et Scholes peuvent être importante, surtout pour les options largement in-the-money
ou out-of-the-money. Cela s’explique par l’aspect "Skew" de la courbe de volatilité de l’option
de maturité un an (figure 5.7) qui devient un "smile" pour l’option de maturité un mois (figure
5.8). Le modèle de Black et Scholes ne permet pas de rendre compte de tels phénomènes,
seule l’utilisation de modèles à volatilité stochastique permet de le faire.
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Figure 5.7 – Volatilité implicite de l’option call de maturité 1 an sur l’action Google en
fonction du strike
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Figure 5.8 – Volatilité implicite de l’option call de maturité 1 mois sur l’action Google en
fonction du strike
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Chapitre 6

Application de la méthode des
éléments finis au calcul des grecques

6.1 Introduction

Il est possible de construire une équation aux dérivées partielles pour chaque grecque en
différentiant l’équation 2.12 par rapport à la variable correspondante pi.

δ

δpi

[
δV

δt
+ σ2S2 1

2
δ2V

δS2 + rS
δV

S
− rV

]
= 0 (6.1)

6.2 Développement de l’équation du Delta (∆)

δ

δS

[
δV

δt
+ σ2S2 1

2
δ2V

δS2 + (r −D)S δV
S
− rV

]
= 0 (6.2)

= δ

δS

δV

δt
+ 1

2σ
2 δ

δS

[
S2 δ

2V

δS2

]
+ (r −D) δ

δS

[
S
δV

δS

]
− δ

δS
[rV ] (6.3)

= δ∆
δt

+ 1
2σ

2
[
2S δ∆

δS
+ S2 δ

2∆
δS2

]
+ (r −D)

[
∆ + S

δ∆
δS

]
− r∆ (6.4)

= δ∆
δt

+ σ2S2 1
2
δ2∆
δS2 + rS

δ∆
S
− r∆︸ ︷︷ ︸

Opérateur de Black et Scholes sur ∆

+(r −D)∆ + σ2S
δ∆
δS

= 0 (6.5)

(6.6)

L’équation 6.5 est donc l’équation aux dérivées partielles exprimant l’évolution de la
valeur du ∆ de l’option en fonction du temps et de la valeur du sous-jacent. Les conditions

39



aux limites de l’équation doivent également être modifiées selon l’option considérée. Les
conditions initiales dans le cas d’un call européen sont :

∆(S, T ) = δ

δS
max(S − E, 0) =

1 S > E

0 S ≤ E
(6.7)

Pour S = 0, ∆ = 0, et pour S = Smax, ∆ = δ
δS

[
S − Ee−r(T−t)

]
= 1.

6.3 Développement des équations des autres grecques

Les équations aux dérivées partielles décrivant l’évolution des différentes grecques en
fonction de la valeur du sous-jacent et du temps peuvent être obtenues de la même manière.
Les paragraphes suivant présenterons les formes finales de ces équations.

6.3.1 Gamma (Γ)

δΓ
δt

+ σ2S2 1
2
δ2Γ
δS2 + rS

δΓ
S
− rΓ︸ ︷︷ ︸

Opérateur de Black et Scholes sur Γ

+2(r −D)Γ + 2σ2S
δΓ
δS

+ σ2Γ = 0 (6.8)

6.3.2 Vega (ν)

δν

δt
+ σ2S2 1

2
δ2ν

δS2 + rS
δν

S
− rν︸ ︷︷ ︸

Opérateur de Black et Scholes sur ν

+σS2Γ = 0 (6.9)

Cette équation comprend Γ dans ses variables, il faut donc la résoudre en parallèle avec
l’équation 6.8.

6.3.3 Theta (Θ)

δΘ
δt

+ σ2S2 1
2
δ2Θ
δS2 + rS

δΘ
S
− rΘ︸ ︷︷ ︸

Opérateur de Black et Scholes sur Θ

= 0 (6.10)
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6.3.4 Rho (ρ)

δρ

δt
+ σ2S2 1

2
δ2ρ

δS2 + rS
δρ

S
− rρ︸ ︷︷ ︸

Opérateur de Black et Scholes sur ρ

+S δV
δS
− V = 0 (6.11)

Cette équation doit être résolue en parallèle avec l’équation 2.12

6.4 Applications

Les tableaux 6.1 et 6.2 présentent les valeurs de delta obtenues pour les options de matu-
rités d’un an et de un mois pour différents strikes, données par la méthode des éléments finis
et la solution analytique. L’erreur varie entre 0,1 % et 5%, avec une erreur maximale pour
les options proche de la monnaie. Ce comportement s’explique aisément sur base de la figure
6.1, qui présente la solution analytique du calcul de Delta pour les 2 options at-the-money. Il
est clairement visible qu’autour du spot la pente de la solution est très forte, ce qui impose
l’utilisation d’un maillage plus fin à cet endroit si une précision plus élevée est nécessaire.
L’avantage de la méthode des éléments est qu’il est tout à fait possible d’utiliser un maillage
extrêmement fin dans certaines parties du domaine où la solution varie plus fortement, et un
maillage plus grossier ailleurs.
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Figure 6.1 – Valeurs de Delta en fonction du spot pour les options de maturité 1 an et 1
mois
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Table 6.1 – Comparaison des valeurs de Delta données par la solution analytique et la
résolution par la méthode des éléments finis de l’équation de Black et Scholes pour une
option européenne call de maturité 1 an sur l’action Google, le 20 janvier 2011. Les chiffres
entre parenthèses sont les temps de calcul en temps CPU.

Strike Eléments-finis Analytique Erreur
500 0,821666 0,822405 (36,8) 0, 0899667 %
510 0,803552 0,804321 (36,8) 0, 0957501 %
540 0,745361 0,746202 (36,91) 0, 112955 %
550 0,72493 0,725789 (36,95) 0, 118593 %
580 0,661625 0,662519 (36,97) 0, 135054 %
590 0,640112 0,641011 (36,81) 0, 140361 %
600 0,618518 0,619419 (36,79) 0, 145567 %
610 0,596915 0,597813 (36,94) 0, 150513 %
620 0,57537 0,570631 (37,3) −0, 823627 %
625 0,564639 0,536799 (36,82) −4, 93059 %
630 0,553947 0,547245 (36,8) −1, 20984 %
635 0,5433 0,546128 (36,83) 0, 520591 %
640 0,532706 0,533645 (36,83) 0, 176278 %
645 0,522171 0,523047 (36,94) 0, 167732 %
650 0,511702 0,512572 (36,98) 0, 169937 %
660 0,490988 0,491844 (37,11) 0, 17446 %
665 0,480753 0,481603 (37,01) 0, 176677 %
670 0,470608 0,47145 (37,08) 0, 178864 %
680 0,450605 0,45143 (37,05) 0, 183149 %
690 0,431016 0,431823 (37,03) 0, 187314 %
700 0,411873 0,412661 (37,12) 0, 19136 %
710 0,393204 0,393972 (37,06) 0, 195288 %
720 0,375034 0,375781 (37,02) 0, 1991 %
730 0,357382 0,358107 (37,04) 0, 202797 %
740 0,340264 0,340966 (37,03) 0, 20638 %
750 0,323692 0,324371 (37,02) 0, 209851 %
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Table 6.2 – Comparaison des valeurs de Delta données par la solution analytique et la
résolution par la méthode des éléments finis de l’équation de Black et Scholes pour une
option européenne call de maturité 1 mois sur l’action Google, le 20 janvier 2011. Les chiffres
entre parenthèses sont les temps de calcul en temps CPU.

Strike Eléments-finis Analytique Erreur
500 0,821666 0,822405 (36,8) 0, 0899667 %
510 0,803552 0,804321 (36,8) 0, 0957501 %
540 0,745361 0,746202 (36,91) 0, 112955 %
550 0,72493 0,725789 (36,95) 0, 118593 %
580 0,661625 0,662519 (36,97) 0, 135054 %
590 0,640112 0,641011 (36,81) 0, 140361 %
600 0,618518 0,619419 (36,79) 0, 145567 %
610 0,596915 0,597813 (36,94) 0, 150513 %
620 0,57537 0,570631 (37,3) −0, 823627 %
625 0,564639 0,536799 (36,82) −4, 93059 %
630 0,553947 0,547245 (36,8) −1, 20984 %
635 0,5433 0,546128 (36,83) 0, 520591 %
640 0,532706 0,533645 (36,83) 0, 176278 %
645 0,522171 0,523047 (36,94) 0, 167732 %
650 0,511702 0,512572 (36,98) 0, 169937 %
660 0,490988 0,491844 (37,11) 0, 17446 %
665 0,480753 0,481603 (37,01) 0, 176677 %
670 0,470608 0,47145 (37,08) 0, 178864 %
680 0,450605 0,45143 (37,05) 0, 183149 %
690 0,431016 0,431823 (37,03) 0, 187314 %
700 0,411873 0,412661 (37,12) 0, 19136 %
710 0,393204 0,393972 (37,06) 0, 195288 %
720 0,375034 0,375781 (37,02) 0, 1991 %
730 0,357382 0,358107 (37,04) 0, 202797 %
740 0,340264 0,340966 (37,03) 0, 20638 %
750 0,323692 0,324371 (37,02) 0, 209851 %

43



La méthode de Monte-Carlo ne permet pas de calculer les valeurs des grecques de manière
aussi directe. La seule possibilité est d’approximer les dérivées de la manière suivante :

δf(x)
δx

= f(x+ h)− f(x− h)
2h (6.12)

Ce qui donne par exemple, pour le calcul du Delta de l’option européenne de maturité 1
an et de strike à 625 $, en utilisant une valeur de h de 1$ :

∆ = 75, 0645− 73, 9355
2 = 0, 5645 (6.13)

Soit une erreur de -0,025% et un temps de calcul de 338 s. Deux remarques peuvent être
formulées :

– le temps de calcul nécessaire est très élevé, puisqu’il a fallu calculer 2 prix d’options
européennes ;

– la méthode de Monte-Carlo ne donne la valeur du Delta que pour une valeur de sous-
jacent, alors que la méthode des éléments finis la donne pour toutes les valeurs de
sous-jacent comprises dans l’intervalle [0,Smax].
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Chapitre 7

Application de la méthode des
éléments finis au pricing des options
exotiques

7.1 Introduction

Dans ce chapitre, la méthode des éléments finis sera appliquée au pricing d’options
exotiques particulières, les options barrières. Ces dernière sont des options dites "chemin-
dépendantes" ou "path-dependent" en anglais, c’est-à-dire que leur valeur finale dépend de
l’évolution réelle de la valeur du sous-jacent entre le moment de l’émission de l’option et
sa maturité. Il peut être défini des options knock-in et knock-out. Les options barrières
knock-in ont une valeur nulle tant que le sous-jacent n’a pas atteint une valeur égale à celle de
la barrière. A l’inverse, les options knock-out ne valent plus rien une fois que le sous-jacent a
atteint une valeur égale à celle de la barrière. Une option possédant deux barrières est appelée
double barrier option. L’équation décrivant l’évolution de la valeur d’une telle option est
identique à celle d’une option européenne classique, seules les conditions aux limites varient.



δV

δt
+ σ2S2 1

2
δ2V

δS2 + rS
δV

S
− rV = 0

V (S, T ) = max(0, S − E)

V (Su, t) = 0

V (Sd, t) = 0

(7.1)

(7.2)

(7.3)

(7.4)

où Sd et Su sont respectivement les valeurs des barrières inférieure et supérieure de l’option.

45



7.2 Obtention du modèle aux éléments finis

L’obtention de la forme aux éléments finis du problème est identique à celle obtenue pour
le pricing d’options européennes, seule le stade des conditions aux limites diffère.

7.3 Démarche

Les options à deux barrières étant échangées over-the-counter, il n’est pas possible d’en
trouver des prix sur des bases de données telles que Bloomberg.

Afin de pouvoir valider les résultats obtenus avec le code développé dans ce travail, un
exemple tiré d’un livre récent [9] sera reproduit avec le code développé ici et les résultats qui
en seront tirés seront comparés à ceux de l’auteur.

7.4 Résultats

Les paramètres de l’option étudiée sont présentés au tableau 7.1.

Table 7.1 – Paramètres de l’option barrière

Prix d’exercice ($) 100
Limite basse ($) 75
Limite haute ($) 130
Taux d’intérêt (%) 10

Volatilité (%) 20
Maturité (années) 1

A la figure 7.1 est présentée la solution obtenue pour le prix de l’option. Le prix est nul
pour des valeurs de sous-jacent égales aux barrières, et maximales pour des valeurs égales au
strike.

Le prix pour une valeur de sous-jacent de 100 $ obtenu avec le code développé dans ce
travail est de 3,53137 $. Le prix obtenu dans la littérature pour cette option est de 3,52533
$, soit une différence de 0,17 %.
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Chapitre 8

Conclusions

Dans ce travail, la méthode des éléments finis à été appliquée à quelques problèmes clas-
siques des mathématiques financières. Ont été étudié : le calcul des prix d’options euro-
péennes, le calcul des valeurs de Delta de ces options ainsi que le calcul du prix d’options
exotiques particulières que sont les options à deux barrières.

Quand cela a été possible, les résultats obtenus ont été comparés à une méthode large-
ment utilisée dans le domaine des mathématiques financières, la méthode de Monte-Carlo.

La méthode des éléments finis à montré plusieurs avantages :

1. Car elle est basée sur la résolution de l’équation de Black et Scholes, et non sur une
génération de "chemins" comme la méthode de Monte-Carlo, elle fournit en un seul
calcul les résultats souhaités pour toutes les valeurs de spot comprises dans le domaine
considéré. La méthode de Monte-Carlo ne fournit quant-à-elle un résultat que pour la
valeur de spot utilisée comme origine des chemins considérés ;

2. Elle permet d’affiner facilement la solution obtenue si nécessaire, soit en réduisant la
taille des éléments utilisés, soit en élevant le degré des polynômes d’interpolation ;

3. Elle permet de calculer de manière directe les valeurs des grecques d’une option, ce que
la méthode de Monte-Carlo ne permet de faire que d’une manière grossière ;

4. Elle permet de résoudre l’équation de Black et Scholes pour certaines options parti-
culières, telles que les options à deux barrières, en ne modifiant qu’une seule ligne du
programme de calcul (concernant les conditions aux limites du domaine). Le pricing
d’une telle option par la méthode de Monte-Carlo nécessite la réécriture d’une part plus
importante du programme original.
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La méthode des éléments finis présente également des inconvénients :

1. Elle est plus complexe que la plupart des autres méthodes, telles que la méthode de
Monte-Carlo ou la méthode des différences finies ;

2. L’implémentation de la méthode des éléments finis requiert de bonnes compétences en
informatiques et en algorithmique. Un programme de calcul aux éléments finis repré-
sente également un nombre de lignes de code beaucoup plus important que pour les
autres méthodes ;

3. La méthode des éléments finis est une méthode de résolution d’équations aux dérivées
partielles. Elle n’est donc utilisable que si le problème peut s’écrire sous la forme d’une
ou de plusieurs équations, avec des conditions aux limites définies. Certains problèmes
de la finance ne peuvent s’écrire de cette manière, et requièrent donc l’utilisation de
méthodes plus robustes telles que la méthode de Monte-Carlo.

En résumé, quand son application est possible, la méthode des éléments finis est certaine-
ment d’une grande utilité de part la grande précision qu’elle peut atteindre avec un temps de
calcul réduit. Par contre, la méthode de Monte-Carlo reste indispensable à la résolution de
problèmes qui ne peuvent être formulés sous la forme d’une équation aux dérivées partielles.
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