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Résumé— Un modèle 3D de pli composite à fibres tissées est présenté. Ce modèle se base sur l’ap-
proche mésoscopique développée à l’ENS Cachan et sur des lois de comportement 2D pour plis tissés
mises au point au LMA de Marseilles. L’implantation de ces lois constitutives dans un code éléments
finis est décrite et des résultats de simulations sont présentés.
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1 Introduction

Les matériaux composites deviennent incontournables dansde nombreux secteurs industriels, où leur
exceptionnel rapport poids/résistance permet théoriquement d’alléger les structures de façon sigificative.
Toutefois, pour exploiter pleinement le potentiel de ces matériaux, il est indispensable de faire évoluer
en parallèle les outils de simulation numérique largement utilisés en conception. Les composites, du fait
leur nature hétérogène et non isotrope, constituent cependant un défi pour les modélisateurs : la mise
au point de lois de comportement décrivant avec précision les mécanismes d’endommagement s’avère
extrêmement complexe. Cet article décrit un modèle comportemental pour des laminés à fibres tissées et
son implantation dans un code éléments finis implicite, en vue de la simulation d’impacts à basse énergie
sur des structures composites.

2 Modèle de pli tissé

Pour modéliser l’endommagement des laminés, les approchesmacroscopiques s’avèrent trop peu
précises tandis que la simulation directe des fibres et de la matrice polymère n’est envisageable que
pour des volumes élémentaires. La méthode adoptée ici, développée initialement à l’Ecole Nationale
Supérieure (ENS) de Cachan, consiste à travailler à une méso-échelle intermédiaire entre les échelles mi-
croscopique et macroscopique. Le méso-modèle résultant sedécompose en un modèle de pli homogène
et une interface séparant les plis du laminé. La majorité desmodèles de plis décrits dans la littérature
sont toutefois conçus pour des composites unidirectionnels. Cet article décrit la mise au point d’un mod-
èle tridimensionnel de pli tissé sur base des modèles existant pour les plis unidirectionnels 3D d’une
part [1][2], et les plis tissés 2D mis au point au Laboratoirede Mécanique et d’Acoustique (LMA) de
Marseilles d’autre part [3][4][5].

FIG. 1 – Photo de la surface du laminé (à gauche) et représentation des axes d’orthotropie du pli tissé (à
droite).
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2.1 Lois de comportement

Les lois de comportement du pli sont définies par la densité d’énergie de déformation
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où lesσi j sont les composantes du tenseur de contraintes exprimé dansles axes d’orthotropie (Fig. 1)
et lesEi , Gi j et νi j sont les neuf paramètres élastiques classiques des matériaux orthotropes. Les vari-
ables d’endommagementd11 et d22 représentent l’endommagement du pli en direction des fibreset d12

l’endommagement en cisaillement. Le paramètreλ introduit un couplage entre l’endommagement en
cisaillement plan et les contraintes de cisaillement hors-plan.

On suppose un comportement élastique fragile en direction des fibres et un comportement élastopla-
tique à écrouissage isotrope en cisaillement. Les contraintes effectives et la vitesse effective de déforma-
tion plastique correspondante s’écrivent
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et la surface de plasticité, fonction des contraintes effectives, est donnée par la relation

f (σ̃,εp) =
√

σ̃
2
12+ σ̃2

23+ σ̃2
31−R0−R(εp) , (3)

où R0 est la limite d’élasticité etR(εp) la courbe d’écrouissage, fonction de la déformation plastique
équivalenteεp.

2.2 Endommagement

On suppose un endommagement fragile en direction des fibres et un endommagement fragile en
cisaillement plan et hors-plan. Les variables d’endommagement statiquesds

i j sont exprimées en fonction
de forces thermodynamiquesYi j ,
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En définissant les valeurs critiques en traction (Yc+
11 , Yc+

22 ) et en compression (Yc−
11 , Yc−

22 ), on obtient
l’expression de l’endommagement statique en direction desfibres,
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En cisaillement, on définit comme dans [5] une force équivalenteY(t) qui exprime le couplage entre les
contraintes selon les fibres et l’endommagement en cisaillement,

Y(t) = sup
τ≤t

(
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)

, (9)

Y+
ii =

{

Yii si σii > 0 ,

0 sinon,
(10)

α1 et α2 étant des paramètres additionnels du matériau. L’endommagement statique en cisaillement
s’écrit alors
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oùY0 est un seuil que l’on considère généralement comme nul etYc
12 une valeur critique à déterminer à

l’aide de tests de chargement cyclique. Il faut noter que la définition (9) deY(t) est légèrement différente
de l’expression proposée dans [5]. Dans leur article, les auteurs précisent en effet queY(t) ne doit pas
dépendre des efforts en compression, ce qui est effectivement le cas dans leur modèle, où les forces
thermodynamiquesY11 etY22 sont nulles en compression. Dans le modèle décrit ici, le choix a été fait de
ne pas distinguer les comportements en traction et en compression. Il en découle queY11 etY22 dépendent
également des valeurs négatives deσ11 et σ22, d’où la modification apportée.

Afin d’éviter le problème de dépendance des résultats au maillage, typique des simulations d’en-
dommagement, un effet retard est introduit via la définitiond’une loi d’évolution de l’endommagement
[6],
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1
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où τc est un temps caractéristique qui borne la vitesse d’endommagement.

3 Implantation

Le modèle comportemental décrit ci-dessus a été implanté dans le logicielMetafor, un code éléments
finis grandes déformations, implicite/explicite, développé dans le service MN2L de l’Université de Liège.
L’algorithme implicite se base sur le principe d’équivalence en déformations de Lemaître, qui permet
d’écrire la loi d’élasticité lineaire du matériau endommagé [7]
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où H est le tenseur de Hooke d’ordre 4 etHd le tenseur endommagé dont les composantes non-nulles
sont données, pour le modèle défini par l’expression (1), parles relations
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L’intégration temporelle se fait selon le formalisme Lagrangien actualisé. Partant de (13), les contraintes
au tempst1 s’expriment en fonction des grandeurs au pas de temps précédent t0,
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En exprimant l’incrément de déformation élastique comme ladifférence entre l’incrément de déformation
total et l’incrément de déformation plastique,
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L’hypothèse du retour radial conduit à l’expression suivante de l’incrément de déformation plastique,
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où Γ correspond à l’incrément de déformation plastique équivalente εp. La dérivée de la surface de
plasticité, dans le cas du matériau endommagé, s’écrit
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En définissant le prédicteur élastique des contraintes
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l’égalité (20) devient
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oùσn est le tenseur normal à la surface de plasticité,
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En chaque point de Gauss, il faut donc déterminer simultanément l’incrément de déformation plastique
équivalenteΓ et les variables d’endommagement ent1, que l’on notera globalementD(t1). On procède
de manière itérative, en définissant deux boucles imbriquées : soit une boucle sur les variables d’endom-
magementD j à l’intérieur de laquelle se trouve une boucle sur la variable plastiqueΓ j,k, calculée par
Newton-Raphson. L’algorithme a la forme suivante :
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4 Applications

4.1 Traction d’une éprouvette trouée

Afin de tester l’implantation du modèle dans le code, la traction jusqu’à rupture d’une éprouvette
percée en son centre (Fig. 2) a été simulée. Le laminé se compose de 12 plis superposés, d’empilement
[(+45◦,0◦)3]S, mais un huitième seulement de l’éprouvette est modélisé grâce aux symétries. Les plis
du laminés sont tous maillés à l’aide d’éléments de volume tandis que des éléments d’interface sont
intercalés entre les plis d’orientations différentes. La Fig. 3 montre l’endommagement se développant
d’abord dans les plis à 0◦ selon un plan perpendiculaire à la direction de traction, etle délaminage qui se
produit entre les plis d’orientations différentes à partirdes bords de la perforation.

FIG. 2 – Eprouvette trouée en laminé d’empilement[(+45◦,0◦)3]S après un test en traction jusqu’à
rupture.

4.2 Impact sur une plaque

L’objectif final étant l’étude de l’endommagement d’un laminé suite à un impact d’énergie fixée, une
simulation d’impact sur une plaque rectangulaire a été réalisée. Les conditions aux limites reproduisent
aussi fidèlement que possible le dispositif réel de test (Fig. 4), où la plaque repose sur un cadre et est
maintenue en place à l’aide de quatre fixations. Le cadre et les fixations sont représentés à l’aide de
contacts définis entre les zones correspondantes de la surface de la plaque et des plans fixes. L’impacteur
est représenté par une sphère indéformable de masse donnée,dont la vitesse initiale est fixée à une valeur
dépendant de l’énergie d’impact souhaitée. La Fig. 5 montrele bilan d’énergie du modèle éléments finis
au cours de la simulation : l’énergie cinétique de la sphère,les énergies cinétique et de déformation
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de la plaque et l’énergie dissipée en raison de la plasticitéet de l’endommagement. En fin de calcul,
l’énergie dissipée numériquement représente environ 0.5%du total. La force exercée sur l’impacteur et
le déplacement du point central de la plaque (Fig. 6) sont desgrandeurs mesurées expérimentalement,
qui seront nécessaires pour les comparaisons entre les simulations et l’expérience. La Fig. 7 montre la
propagation de l’endommagement dans les plis au cours de l’impact.

FIG. 3 – Endommagement dans les plis (à gauche) et au niveau de l’interface (à droite) calculés par
éléments finis pour un modèle représentant un huitième du laminé.

FIG. 4 – A gauche, dispositif expérimental du test d’impact à basse énergie sur une plaque en com-
posite (Université Catholique de Louvain, UCL-IMAP) ; à droite, modèle éléments finis de la plaque et
représentation schématique des conditions aux limites.
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FIG. 5 – Bilan énergétique de l’impact à 10 J sur une plaque en composite tissé : énergie cinétique de la
sphère, énergie de la plaque et énergie dissipée.
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FIG. 6 – A gauche, force verticale exercée sur l’impacteur en fonction du temps ; à droite, déplacement
du point central de la plaque au cours du temps.

FIG. 7 – Niveau d’endommagement, tous modes confondus, dans un quart de la plaque à trois moments
différents de l’impact.
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5 Conclusions

Un modèle comportemental tridimensionnel pour des laminésà fibres tissées a été présenté. Son
implantation dans un code éléments finis implicite a été décrite, en particulier l’algorithme de calcul des
contraintes, des variables de plasticité et des variables d’endommagement en chaque point de Gauss. Les
tests d’identification des paramètres étant en cours, des simulations ont été réalisées avec des paramètres
de la littérature afin de tester le modèle : d’abord une traction simple d’éprouvette perforée en son centre,
puis un impact à faible énergie sur une plaque rectangulaire.
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