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Abstract

The present paper considers distributed consensus algorithms that involve N agents evolv-
ing on a connected compact homogeneous manifold. The agents track no external reference
and communicate their relative state according to a communication graph. The consensus
problem is formulated in terms of the extrema of a cost function. This leads to efficient gradi-
ent algorithms to synchronize (i.e. maximizing the consensus) or balance (i.e. minimizing the
consensus) the agents; a convenient adaptation of the gradient algorithms is used when the
communication graph is directed and time-varying. The cost function is linked to a specific
centroid definition on manifolds, introduced here as the induced arithmetic mean, that is eas-
ily computable in closed form and may be of independent interest for a number of manifolds.
The special orthogonal group SO(n) and the Grassmann manifold Grass(p, n) are treated as
original examples. A link is also drawn with the many existing results on the circle.

1 Introduction

The distributed computation of means/averages of datasets (in an algorithmic setting) and the
synchronization of a set of agents (in a control setting) — i.e. driving all the agents to a common
point in state space — are ubiquitous tasks in current engineering problems. Likewise, spreading
a set of agents in the available state space — linked to the definition of balancing in §4 — is a
classical problem of growing interest. Practical applications include autonomous swarm/formation
operation (e.g. [42, 28, 22, 23, 25]), distributed decision making (e.g. [35, 47]), neural and com-
munication networks (e.g. [46, 19]), clustering and other reduction methods (e.g. [17]), optimal
covering or coding (e.g. [3, 4, 11, 12]) and other fields where averaging/synchronizing or dis-
tributing a set of points appear as sub-problems. In a modeling framework, the understanding of
synchronization or more generally swarm behavior has also led to many important studies (e.g.
[26, 45, 48]).

Synchronization algorithms are well understood in Euclidean spaces (e.g. [33, 32, 47, 35]).
They are based on the natural definition and distributed computation of the centroid in Rm.
However, many applications above involve manifolds that are not homeomorphic to an Euclidean
space. Even for formations moving in R2 or R3, the agents’ orientations evolve in a manifold
SO(2) ∼= S1 or SO(3). Balancing only makes sense on compact state spaces; though many
theoretical results concern convex or star-shaped subsets of Rm (e.g. [12]), most applications

∗Department of Electrical Engineering and Computer Science (Montefiore Institute), University of Liège, Sart-
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involve compact manifolds. It seems that the study of global synchronization or balancing in
non-Euclidean manifolds is not widely covered in the literature, except for the circle.

The present paper proposes algorithms for global synchronization and balancing — grouped
under the term consensus — on connected compact homogeneous manifolds. A homogeneous
manifold M is isomorphic to the quotient of two Lie groups. Intuitively, it is a manifold on
which “all points are equivalent”. This makes the problem symmetric with respect to the absolute
position on the manifold and allows to focus on configurations of the swarm, i.e. relative positions
of the agents.

The main idea is to embed M in Rm and measure distances between agents in Rm in order to
build a convenient cost function for an optimization-based approach. The related centroid on M
may be interesting on its own account; it is therefore studied in more detail in §3.

Throughout the paper, the abstract concepts are illustrated on the special orthogonal group
SO(n), the Grassmann manifold Grass(p, n) of p-dimensional vector spaces in Rn and sometimes
the circle S1, which is in fact isomorphic to both SO(2) and Grass(1, 2). Other manifolds to which
the present framework could be applied include the n-dimensional spheres Sn and the connected
compact Lie groups. The circle S1 is the simplest example; it links the present work to existing
results in [42, 41, 39, 43]. SO(n) is important in control applications as the natural state space for
orientations of n-dimensional rigid bodies. Grass(p, n) rather appears in algorithmic problems; [11]
mentions the optimal placement of N laser beams for cancer treatment and the projection of multi-
dimensional data on N representative planes as practical applications of optimal distributions on
Grass(p, n).

The paper is organized as follows. Previous work is briefly reviewed in §1.1. Section 2 intro-
duces concepts and notations about graph theory, SO(n) and Grass(p, n). Section 3 is devoted
to the induced arithmetic mean. A definition of consensus is presented in §4. Section 5 introduces
a cost function to express the consensus problem in an optimization setting. Section 6 derives
gradient algorithms based on this cost function, the only communicated information being the
relative positions of interconnected agents; convergence is proved for any connected, fixed and
undirected communication graph. Algorithms whose convergence properties can be guaranteed
under possibly directed, time-varying and disconnected communication graphs are presented in
§7; they employ an auxiliary variable that evolves in the embedding space Rm.

1.1 Previous work

Most of the work related to synchronization and balancing on manifolds concerns the circle S1.
The most extensive literature on the subject derives from the Kuramoto model (see [44] for a
review). Recently however, synchronization on the circle has been considered from a control
perspective, the state variables representing headings of agents in the plane. Most results cover
local convergence [22, 33]. An interesting set of globally convergent algorithms in SE(2) = S1×R2

is presented in [42], but they require all-to-all communication. Some problems related to global
discrete-time synchronization on S1 under different communication constraints are discussed in
[37], where connections of the control problem with various existing models are made. Stronger
results are presented in [39] for global synchronization and balancing on S1 with varying, directed
communication links, at the cost of introducing estimator variables that communicating agents
must exchange. Finally, [43] presents results on SE(2) similar to those of [42] but under relaxed
communication assumptions, using among others the estimator strategy of [39, 40].

Several authors have already presented algorithms that asymptotically synchronize satellite
attitudes, involving the rotation group SO(3). They often rely on tracking a common external
reference (e.g. [27]) or leader (e.g. [5, 25]). The use of the convenient but non-unique quaternion
representation for SO(3) produces unwanted artefacts in the satellites’ motions. Attitude synchro-
nization without common references and quaternion artefacts is studied in [34]; using the same
distance measure as the present work, an artificial coupling potential is built to establish local
stability. All these approaches explicitly incorporate the second-order rigid-body dynamics. In
accordance with the consensus approach, the present paper reduces the agents to first-order kine-
matic models to focus on (almost) global convergence for various agent interconnections, without
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any leader or external reference. Application of this framework in a mechanical setting is discussed
in a separate paper [38].

Synchronization or balancing on a manifold M is closely related to the definition and compu-
tation of a mean or centroid of points on M, a basic problem that has attracted somewhat more
attention, as can be seen from [20, 9, 15] among others.

A key element of the present paper is the computation of a centroid in the embedding space
Rm of M, which is then projected onto M. This is connected to the “projected arithmetic mean”
defined in [31] for SO(3). In fact, the computation of statistics in a larger and simpler embedding
manifold (usually Euclidean space) and projecting the result back onto the original manifold, goes
back to 1972 [13].

A short example in [1] addresses the computation of a “centroid of subspaces”, without much
theoretical analysis; in fact, our algorithms on Grass(p, n) are similar and can eventually be viewed
as generalizing the developments in [1] in the framework of consensus and synchronization. More
recently, [17] uses the centroid associated to the projector representation of Grass(p, n), exactly
as is done below but without going into theoretical details, to compute the cluster centers in a
clustering algorithm. The distance measure associated to this centroid on Grass(p, n) is called
the chordal distance in [11, 4] where it is used to derive optimal distributions (“packings”) of N
agents on some specific Grassmann manifolds.

Finally, the topic of optimization-based algorithm design on manifolds has considerably devel-
oped over the last decades (see e.g. [6], [14] and the books [18, 2]).

2 Preliminaries

2.1 Elements of graph theory

Consensus among a group of agents depends on the available communication links. When consid-
ering limited agent interconnections, it is customary to represent communication links by means
of a graph. The graph G is composed of N vertices (the N agents) and contains the edge (j, k) if
agent j sends information to agent k, which is denoted j Ã k. A positive weight ajk is associated
to each edge (j, k) to obtain a weighted graph; the weight is extended to any pair of vertices by
imposing ajk = 0 iff (j, k) does not belong to the edges of G. The full notation for the resulting
digraph (directed graph) is G(V,E,A) where V = {vertices}, E = {edges} and A, containing the
ajk, is the adjacency matrix. The convention akk = 0 ∀k is assumed for the representation of
communication links.

The out-degree of a vertex k is the quantity d(o)
k =

∑N
j=1 akj of information leaving k towards

other agents; its in-degree is the quantity d(i)
k =

∑N
j=1 ajk of information received by k from other

agents. These degrees can be assembled in diagonal matrices D(o) and D(i). A graph is balanced
if D(o) = D(i). This is satisfied in particular by undirected graphs, for which A = AT . A graph is
bidirectional if (j, k) ∈ E ⇔ (k, j) ∈ E (but not necessarily A = AT ).

The Laplacian L of a graph is L = D−A. For directed graphs, D(i) orD(o) can be used, leading
to the in-Laplacian L(i) = D(i) −A and the out-Laplacian L(o) = D(o) −A. By construction, L(i)

has zero column sums and L(o) has zero row sums. The spectrum of the Laplacian reflects several
interesting properties of the associated graph, specially in the case of undirected graphs (see for
example [10]).

G(V,E,A) is strongly connected if it contains a directed path from any vertex j to any vertex
l (i.e. a sequence of vertices starting with j and ending with l such that (vk, vk+1) ∈ E for any
two consecutive vertices vk, vk+1); G is weakly connected if there is such a path in the associated
undirected graph, with adjacency matrix A+AT .

For time-varying interconnections, a time-varying graph G(t) is used and all the previously
defined elements simply depend on time. If the elements of A(t) are bounded and satisfy some
threshold ajk(t) ≥ δ > 0 ∀(j, k) ∈ E(t) and ∀t, then G(t) is called a δ-digraph. The present paper
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always considers δ-digraphs.
In a δ-digraph G(V,E,A), vertex j is said to be connected to vertex k across [t1, t2] if there is

a path from j to k in the digraph Ḡ(V, Ē, Ā) defined by

ājk =

{ ∫ t2
t1
ajk(t)dt if

∫ t2
t1
ajk(t)dt ≥ δ

0 if
∫ t2

t1
ajk(t)dt < δ

(j, k) ∈ Ē iff ājk 6= 0 .

Ḡ can be seen as a time-integrated graph while the δ-criterion prevents vanishing edges. A δ-
digraph G(t) is called uniformly connected if there exist a vertex k and a time horizon T > 0 such
that ∀t, k is connected to all other vertices across [t, t+ T ].

2.2 Specific manifolds

The concepts presented in this paper are illustrated on two particular manifolds: SO(n) and
Grass(p, n).

The special orthogonal Lie group SO(n) It can be viewed as the set of positively oriented
orthonormal bases of Rn, or equivalently as the set of rotation matrices in Rn; it is the natural
state space for the orientation of a rigid body in Rn. In its canonical representation, used in
the present paper, a point of SO(n) is characterized by a real n × n orthogonal matrix Q with
determinant equal to +1. SO(n) is homogeneous (as any Lie group), compact and connected. It
has dimension n(n− 1)/2.

The Grassmann manifold Grass(p, n) Each point on Grass(p, n) denotes a p-dimensional
subspace Y of Rn. The dimension of Grass(p, n) is p(n−p). Since Grass(n−p, n) is isomorphic to
Grass(p, n) by identifying orthogonally complementary subspaces, this paper assumes without loss
of generality that p ≤ n

2 . For the special case p = 1, the Grassmann manifold Grass(1, n) is also
known as the projective space in dimension n. Grass(p, n) is connected, compact and homogeneous
as the quotient of the orthogonal Lie group O(n) by O(p)×O(n−p). Indeed, Y ∈ Grass(p, n) can
be represented for instance by a (not necessarily positively oriented) orthonormal basis Q ∈ O(n)
whose first p column-vectors span Y; the same point Y ∈ Grass(p, n) is represented by any Q
whose first p column-vectors span Y (O(p)-symmetry) and whose last n− p column-vectors span
the orthogonal complement of Y (O(n− p)-symmetry). Other quotient structures for Grass(p, n)
are discussed in [1].

A matrix manifold representation of Grass(p, n) found in [1] assigns to Y any n × p matrix
Y of p orthonormal column-vectors spanning Y (p-basis representation); all Y corresponding to
rotations and reflections of the p column-vectors in Y represent the same Y (O(p)-symmetry),
so this representation is not unique. The dimension of this representation is np − p(p + 1)/2.
In [29], a point of Grass(p, n) is represented by Π = Y Y T , the orthonormal projector on Y
(projector representation); using the orthonormal projector on the space orthogonal to Y, Π⊥ =
In−Y Y T where In denotes the n×n identity matrix, is strictly equivalent. The main advantage
of this representation is that there exists a bijection between Grass(p, n) and the orthonormal
projectors of rank p, such that the projector representation makes Grass(p, n) an embedded
submanifold of the cone S+

n of n×n symmetric positive semi-definite matrices. A disadvantage of
this representation is its large dimension n(n+ 1)/2.

3 The induced arithmetic mean

A homogeneous manifold M is a manifold with a transitive group action by a Lie group G: it is
isomorphic to the quotient manifold G/H of a group G by one of its subgroups H. Informally,
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it can be seen as a manifold on which “all points are equivalent”. The present paper considers
connected compact homogeneous manifolds satisfying the following embedding property.

Assumption 1 M is a connected compact homogeneous manifold smoothly embedded in Rm with
the Euclidean norm ‖y‖ = rM constant over y ∈ M. The Lie group G acts as a subgroup of the
orthogonal group on Rm.

It is a well-known fact of differential geometry that any smooth m
2 -dimensional Riemannian

manifold can be smoothly embedded in Rm. The additional condition ‖y‖ = rM is in agreement
with the fact that all points on M should be equivalent. It is sometimes preferred to represent
y ∈M by a matrix B ∈ Rn1×n2 instead of a vector. Componentwise identification Rn1×n2 ∼= Rm is
assumed whenever necessary; the corresponding norm is the Frobenius norm ‖B‖ =

√
trace(BTB).

Consider a set of N agents on a manifold M satisfying Assumption 1. The position of agent
k is denoted by yk and its weight by wk.

Definition 1 The induced arithmetic mean IAM ⊆ M of N agents of weights wk > 0 and
positions yk ∈M, k = 1...N , is the set of points in M that globally minimize the weighted sum of
squared Euclidean distances in Rm to each yk:

IAM = argmin
c∈M

∑N
k=1 wk d

2
Rm(yk, c) = argmin

c∈M

∑N
k=1 wk (yk − c)T (yk − c) . (1)

The anti-[induced arithmetic mean] AIAM ⊆M is the set of points in M that globally maxi-
mize the weighted sum of squared Euclidean distances in Rm to each yk:

AIAM = argmax
c∈M

∑N
k=1 wk d

2
Rm(yk, c) = argmax

c∈M

∑N
k=1 wk (yk − c)T (yk − c) . (2)

The terminology is derived from [31] where the IAM on SO(3) is called the projected arithmetic
mean. The point in Definition 1 is that distances are measured in the embedding space Rm.
It thereby differs from the canonical definition of mean of N agents on M, the Karcher mean
[24, 36, 16, 20], which uses the geodesic distance dM along the Riemannian manifold M (with, in
the present setting, the Riemannian metric induced by the embedding of M in Rm):

CKarcher = argmin
c∈M

∑N
k=1 wk d

2
M(yk, c) .

The induced arithmetic mean has the following properties.

1. The IAM of a single point y1 is the point itself.

2. The IAM is invariant under permutations of agents of equal weights.

3. The IAM commutes with the symmetry group of the homogeneous manifold.

4. The IAM does not always reduce to a single point.

The last feature seems unavoidable for any mean (including the Karcher mean) that satisfies the
other properties. The main advantage of the IAM over the Karcher mean is computational. The
IAM and AIAM are closely related to the centroid.

Definition 2 The centroid Ce ∈ Rm of N weighted agents located on M is

Ce = 1
W

∑N
k=1 wk yk , where W =

∑N
k=1 wk .
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Since ‖c‖ = rM for c ∈M by Assumption 1, equivalent definitions for the IAM and AIAM are

IAM = argmax
c∈M

(cT Ce) and AIAM = argmax
c∈M

(−cT Ce) . (3)

Hence, computing the IAM and AIAM just involves a search for the global maximizers of a linear
function on Rm in a very regular search space M. Local maximization methods would even suffice
if the linear function had no maxima on M other than the global maxima. This is the case for
any linear function on SO(n) and Grass(p, n) (see §3.1) as well as the n-dimensional sphere Sn

in Rn+1. Not knowing whether this property holds for all manifolds satisfying Assumption 1, we
formulate the following blanket assumption.

Assumption 2 The local maxima of any linear function f(c) = cT b over c ∈ M, with b fixed in
Rm, are all global maxima.

3.1 Examples

These examples exclusively consider the IAM ; from (3), the conclusions for the AIAM are simply
obtained by replacing Ce with −Ce.

The circle The circle embedded in R2 with its center at the origin satisfies Assumptions 1 and
2. The IAM is simply the central projection of Ce onto the circle. Hence it corresponds to the
whole circle if Ce = 0 and reduces to a single point in other situations. The IAM uses the chordal
distance between points, while the Karcher mean would use arclength distance.

The special orthogonal group The embedding of SO(n) as orthogonal matrices Q ∈ Rn×n,
det(Q) > 0, satisfies Assumption 1 since ‖Q‖ =

√
trace(QTQ) =

√
n. It also satisfies Assumption

2 (proof in §6). Ce =
∑

k Qk is a general n×nmatrix. The IAM is linked to the polar decomposition
of Ce. Any matrix B can be decomposed into UR with U orthogonal and R symmetric positive
semi-definite; R is always unique, U is unique if B is non-singular [7]. Each U is a global minimizer
of dRn×n(c,B) over c ∈ O(n). Thus, if det(Ce) ≥ 0, the IAM contains all matrices U : det(U) > 0
obtained from the polar decomposition of Ce; this was already noticed in [31]. When det(Ce) < 0,
the result is more complicated but still has a closed-form solution.

Proposition 1 Consider U an orthogonal matrix obtained from the polar decomposition Ce =
UR. The IAM of N points on SO(n) is characterized as follows.

If det(Ce) ≥ 0, then IAM = {U : det(U) > 0}. It reduces to a single point if the multiplicity
of 0 as an eigenvalue of Ce is less or equal to 1.

If det(Ce) ≤ 0, then IAM = {UHJHT } where det(U) < 0, H contains the orthonormalized
eigenvectors of R with an eigenvector corresponding to the smallest eigenvalue of R in the

first column, and J =
( −1 0

0 In−1

)
. The IAM reduces to a single point if the smallest

eigenvalue of R has multiplicity 1.

Proof: It is provided in §6 after introducing further necessary material to compute the critical
points of cTCe, among which the local maxima are selected. ¤
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The Grassmann manifold The representation of Grass(p, n) with p-bases Yk is not an em-
bedding and cannot be used in the proposed framework, because the p-dimensional subspace of
Rn spanned by the columns of Ce =

∑
k Yk would depend on the particular matrices Yk chosen

to represent the subspaces Yk. The IAM is defined with the projector representation, embedding
Grass(p, n) in S+

n . The latter satisfies Assumption 1; the Frobenius norm of a p-rank projector is√
p. It also satisfies Assumption 2 (proof in §6). The centroid Ce of N projectors is generally a

symmetric positive semi-definite matrix of rank ≥ p.

Proposition 2 The IAM contains all dominant p-eigenspaces of Ce. It reduces to a single point
if the p-largest and (p+ 1)-largest eigenvalues of Ce are different.

Proof: Following the same lines as for SO(n), it is postponed to §6. ¤

In fact, for Y ∈ Grass(p, n) with a p-basis Y and the projector ΠY = Y Y T , the cost function
in (3) becomes

f(ΠY) = trace(ΠYCe) = trace(Y TCeY ) = trace((Y TY )−1 Y TCeY ) (4)

where the last expression is equal to the generalized Rayleigh quotient for the computation of the
dominant p-eigenspace of Ce. The computation of eigenspaces from cost function (4) is extensively
covered in [1, 2]. Furthermore, it is a well-known fact of linear algebra that the p largest eigenvalues
(the others being 0) of ΠYΠk are the squared cosines of the principal angles φi

k, i = 1...p, between
subspaces Y and Yk. This provides a geometrical meaning for the IAM of subspaces: it minimizes
the sum of squared sines of principal angles between the set of subspaces Yk, k = 1...N , and a
centroid candidate subspace Y, i.e. IAM = argminY

∑N
k=1

∑p
i=1 sin2(φi

k). The Karcher mean
admits the same formula with sin2(φi

k) replaced by (φi
k)2 [11].

4 Consensus

Consider a set of agents with positions yk, k = 1...N , on a manifold M satisfying Assumption
1. The rest of this paper assumes equal weights wk = 1 ∀k; extension to weighted agents is
straightforward. Suppose that the agents are interconnected according to a fixed digraph G of
adjacency matrix A = [ajk].

Definition 3 Synchronization is the configuration where yj = yk ∀j, k.
Definition 4 A consensus configuration with graph G is a configuration where each agent k
is located at a point of the IAM of its neighbors j Ã k, weighted according to the strength of the
corresponding edge. Similarly, an anti-consensus configuration satisfies this definition with IAM
replaced by AIAM .

Consensus: yk ∈ argmax
c∈M

(
cT

∑N
j=1 ajk yj

)
∀k . (5)

Anti-consensus: yk ∈ argmin
c∈M

(
cT

∑N
j=1 ajk yj

)
∀k . (6)

Note that consensus is defined as a Nash equilibrium: each agent minimizes its cost function
assuming the others fixed ; the possibility to decrease cost functions by moving several agents
simultaneously is not considered. Consensus is graph-dependent: agent k reaches consensus when
it minimizes its distance to agents j Ã k.

Proposition 3 If G is an equally-weighted complete graph, then the only possible consensus con-
figuration is synchronization.
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Proof:At consensus the yk satisfy yT
k

∑
j 6=k yj ≥ cT

∑
j 6=k yj ∀k and ∀c ∈ M. Further-

more, it is obvious that yT
k yk > yT

k c for any c ∈ M \ {yk}. As a consequence, yT
k

∑N
j=1 yj >

cT
∑N

j=1 yj ∀c ∈ M \ {yk} and ∀k. Thus according to (3), each yk is located at the IAM of all
the agents, which moreover reduces to a single point; thus yk = yj = IAM({yl : l = 1...N}) ∀k, j.
¤

Synchronization is a configuration of complete consensus. To similarly characterize a configu-
ration of complete anti-consensus, it appears meaningful to require that the IAM of the agents is
the entire manifold M; this is called a balanced configuration.

Definition 5 N agents are balanced if their IAM contains all M.

Balancing implies some spreading of the agents on the manifold. A full characterization of bal-
anced configurations seems complicated. Balanced configurations do not always exist (typically,
when the number of agents is too small) and are mostly not unique (they can appear in qualita-
tively different forms). The following link exists between anti-consensus for the equally-weighted
complete graph and balancing.

Proposition 4 All balanced configurations are anti-consensus configurations for the equally-weighted
complete graph.

Proof: For the equally-weighted complete graph, (6) can be written

yk ∈ argmin
c∈M

(
cT (N Ce − yk)

) ∀k . (7)

Assume that the agents are balanced. This means that f(c) = cT Ce must be constant over c ∈M.
Therefore (7) reduces to yk = yk ∀k which is trivially satisfied. ¤

In contrast to Proposition 3, Proposition 4 does not establish a necessary and sufficient condi-
tion; and indeed, anti-consensus configurations for the equally-weighted complete graph that are
not balanced do exist, though they seem exceptional.

4.1 Examples

The following examples illustrate among others the last assertions about balanced configurations.

The circle Anti-consensus configurations for the equally-weighted complete
graph are fully characterized in [42]. It is shown that the only anti-consensus configurations
that are not balanced correspond to (N + 1)/2 agents at one position and (N − 1)/2 agents at
the opposite position on the circle, for N odd. Balanced configurations are unique for N = 2 and
N = 3 and form a continuum for N > 3.

Another interesting illustration is the equally-weighted undirected ring graph in which each
agent is connected to two neighbors such that the graph forms a single closed undirected path.
Regular consensus configurations correspond to situations with consecutive agents in the path
always separated by the same angle 0 ≤ χ ≤ π/2; regular anti-consensus configurations have
π/2 ≤ χ ≤ π. In addition, for N ≥ 4, irregular consensus and anti-consensus configurations
exist where non-consecutive angles of the regular configurations are replaced by (π − χ). As a
consequence:

1. Several qualitatively different (anti-)consensus configurations exist.
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2. Consensus and anti-consensus configurations can be equivalent when discarding the graph.
For example, the positions occupied by 7 agents separated by 2π/7 (consensus) or 4π/7
(anti-consensus) are strictly equivalent; the only difference, based on which agent is located
at which position, concerns the way the links are drawn.

3. Degenerate configurations of simultaneous consensus and anti-consensus exist (e.g. χ = π/2
for N = 4, 8, ...); this singularity is specific to the particular graph.

4. There is no common anti-consensus state for all ring graphs. Indeed, considering an agent
k, a common anti-consensus state would require that any two other agents, as potential
neighbors of k, are either separated by π or located at both sides of k at a distance χ ≥ π/2;
one easily verifies that this cannot be satisfied for all k.

The special orthogonal group Simulations of the algorithms proposed in this paper suggest
that balanced configurations always exist for N ≥ 2 if n is even and for N ≥ 4 if n is odd. Under
these conditions, convergence to an anti-consensus state that is not balanced is not observed for
the equally-weighted complete graph.

The Grassmann manifold Balanced states on Grass(p, n) appear if all eigenvalues of Ce are
equal. Since trace(Ce) = 1

N

∑
k trace(Πk) = p, this requires Ce = p

nIn. This is not always possible
with N orthonormal projectors of rank p. As for SO(n), simulations tend to indicate that it is
possible when N is large enough; however, computing the minimal value of N for a given n and p
is not straightforward.

5 Consensus optimization strategy

The presence of a maximization condition in the definitions of the previous sections naturally
points to the use of optimization methods. The present section introduces a cost function whose
optimization leads to (anti-)consensus configurations. For a graph G with adjacency matrix A =
[ajk] and associated Laplacian L(i) = [l(i)jk ] and the variable y = (y1, ..., yN ) ∈MN , define

PL(y) = 1
2N2

∑N
k=1

∑N
j=1 ajk y

T
j yk = ξ1 − 1

4N2

∑N
k=1

∑N
j=1 ajk ‖yj − yk‖2 (8)

with constant ξ1 = r2
M

4N2

∑
k

∑
j ajk. The index L refers to the fact that (8) can also be written as

a quadratic form on the graph Laplacian:

PL(y) = ξ2 − 1
2N2

∑N
k=1

∑N
j=1 l

(i)
jk y

T
j yk with constant ξ2 = r2

M
2N2

∑
k d

(i)
k . (9)

In [37] and [43], this form of PL is studied on the circle for undirected equally-weighted graphs.
For the unit-weighted complete graph, P := PL + r2

M
2N equals

P (y) = 1
2‖Ce‖2 , (10)

proportional to the squared norm of the centroid Ce. This is a classical measure of the synchrony
of phase variables on the circle S1, used for decades in the literature on coupled oscillators; in the
context of the Kuramoto model, P (y) is known as the “complex order parameter” (because R2

is usually identified with C in that context). In [42], P is used to derive gradient algorithms for
synchronization (by maximizing (10)) or balancing (by minimizing (10)) on S1.

Proposition 5 Synchronization of the N agents on M is the unique global maximum of PL

whenever the graph G associated to L(i) is weakly connected.
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Proof: According to the second form of (8), PL reaches its global maximum when yj = yk for all
j, k for which ajk 6= 0. If G is weakly connected, this equality propagates through the whole graph
such that y1 = y2 = ... = yN . ¤

Proposition 6 Consider N agents on a manifold M satisfying Assumptions 1 and 2. Given an
undirected graph G, a local maximum of the associated cost function PL(y) necessarily corresponds
to a consensus configuration and a local minimum of PL(y) necessarily corresponds to an anti-
consensus configuration.

Proof: The proof is given for local maxima; it is strictly equivalent for local minima. For y∗ =
(y∗1 ...y

∗
N ) to be a local maximizer of PL, y∗k must be, for each k, a local maximizer of pk(c) :=

PL(y∗1 ...y
∗
k−1, c, y

∗
k+1...y

∗
N ). Since A = AT , pk takes the linear form pk(c) = ξk + 1

N2 c
T (

∑
j ajk y

∗
j )

with ξk constant ∀k. Thanks to Assumption 2, all local maxima of pk(c) are global maxima.
Therefore, y∗k is a global maximum of pk(c) for all k, which corresponds to Definition 4 of consensus.
¤

Proposition 6 establishes that a sufficient condition for (anti-)consensus configurations is to
optimize PL. However, nothing guarantees that this is also necessary. In general, optimizing PL

will thus provide proven (anti-)consensus configurations, but not necessarily all of them (this is
because consensus maximizes PL on MN for only moving one agent with others fixed, and not
along directions of combined motion of several agents). The remaining sections of this paper
present algorithms that drive the swarm to (anti-)consensus. Being based on the optimization
of PL, these algorithms do not necessarily target all possible (anti-)consensus configurations. For
instance, for a tree, maximization of PL always leads to synchronization, although other consensus
configurations can exist.

5.1 Examples

On SO(n) and Grass(p, n), PL with matrix forms for the elements yk becomes

PL(y) = 1
2N2

∑N
j=1

∑N
k=1 ajk trace(yT

j yk) with yk ∈ Rn×n ∀k . (11)

The special orthogonal group Each term QT
j Qk = Q−1

j Qk is itself an element of SO(n). It
is actually the unique element of SO(n) translating Qj to Qk by matrix (group) multiplication on
the right. Hence, on the Lie group SO(n), the order parameter PL measures the sum of the traces
of the elements translating connected agents to each other. Observing that the trace is maximal
for the identity matrix and considering the particular case of SO(2), one can easily imagine how
the trace of Q−1

j Qk characterizes the distance between Qj and Qk. This cost function has been
previously used in [8, 34] as a measure of disagreement on SO(3).

The Grassmann manifold On Grass(p, n), (11) can be rewritten as

PL(Y) = 1
2N2

∑N
j=1

∑N
k=1 ajk

(∑p
i=1 cos2(φi

jk)
)

with φi
jk = ith principal angle between Yj and Yk. This reformulation has previously appeared in

[11, 4, 1].
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6 Gradient consensus algorithms

The previous sections pave the way for ascent and descent algorithms on P and PL. This paper
considers continuous-time gradient algorithms, but any descent or ascent algorithm — in partic-
ular, discrete-time — will achieve the same task; see [2] for extensive information on this subject.
In the present paper, the gradient is always defined with the canonical metric induced by the
embedding of M in Rm.

6.1 Fixed undirected graphs

A gradient algorithm for PL leads to

ẏk(t) = 2N2α gradk,M(PL) , k = 1...N , (12)

where α > 0 (resp. α < 0) for consensus (resp. anti-consensus), ẏk denotes the time-derivative of
agent k’s position and gradk,M(f) denotes the gradient of f with respect to yk along M. This
gradient can be obtained from the gradient in Rm,

gradk,Rm(PL) = 1
2N2

∑
j(ajk + akj) yj ,

by orthogonal projection ProjTM,k onto the tangent space to M at yk, yielding ∀k

ẏk(t) = α ProjTM,k

(∑
j(ajk + akj)yj

)
= α ProjTM,k

(∑
j(ajk + akj)(yj − yk)

)
. (13)

The last equality comes from ProjTM,k(yk) = 0. It shows that to implement this consensus
algorithm, each agent k must know the relative position with respect to itself of all agents j
such that j Ã k or k Ã j. Since the information flow is restricted to j Ã k, (13) can only be
implemented for undirected graphs, for which it becomes

ẏk(t) = 2α ProjTM,k

(∑N
j=1 ajk(yj − yk)

)
, k = 1...N . (14)

In the special case of a complete unit-weighted graph,

ẏk(t) = 2αN ProjTM,k (Ce(t)− yk) , k = 1...N . (15)

Proposition 7 A group of N agents moving according to (14) on a manifold M satisfying As-
sumptions 1 and 2, where the graph G associated to A = [ajk] is undirected, always converges to a
set of equilibrium points. If α < 0, all asymptotically stable equilibria are anti-consensus configu-
rations for G. If α > 0, all asymptotically stable equilibria are consensus configurations for G (in
particular, for the equally-weighted complete graph, the only asymptotically stable configuration is
synchronization).

Proof: M being compact and the ajk bounded, PL is upper- and lower-bounded. PL is always
increasing (decreasing) for α > 0 (α < 0) along solutions of (14), since

ṖL =
∑

k ẏ
T
k gradk,M(PL) = 2N2α

∑
k ‖gradk,M(PL)‖2 .

By LaSalle’s invariance principle, the swarm converges towards a set where ṖL = 0, implying
gradk,M(PL) = 0 ⇔ ẏk = 0 ∀k and the swarm converges to a set of equilibria. For α > 0
(α < 0), since PL always increases (decreases) along solutions, only local maxima (minima) can
be asymptotically stable. Proposition 6 states that all local maxima (minima) of PL correspond
to consensus (anti-consensus). ¤

Remark 1 Computing gradk,M directly along the manifold, as in [2], can be much more efficient
if the dimension of M is substantially lower than m (see §6.3).
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6.2 Extension to directed and time-varying graphs

Formally, algorithm (14) can be written for directed and even time-varying graphs, although the
gradient property is lost for directed graphs and has no meaning in the time-varying case (since PL

then explicitly depends on time). Nevertheless, the general case of (14) with varying and directed
graphs still exhibits synchronization properties.

It can be shown that synchronization is still a stable equilibrium; it is asymptotically stable
if disconnected graph sequences are excluded. Its basin of attraction includes the configurations
where all the agents are located in a convex set of M. Indeed, convergence results on Euclidean
spaces can be adapted to manifolds when agents are located in a convex set (see e.g. [33]). On
the other hand, examples where algorithm (14) with α > 0 runs into a limit cycle can be built for
as simple cases as undirected equally-weighted (but varying) graphs on the circle (see §6.3).

Simulations on SO(n) and Grass(p, n) seem to indicate that for randomly generated digraph
sequences1, the swarm eventually converges to synchronization when α > 0; this would correspond
to generic convergence for unconstrained graphs.

Algorithm (14) can lead to a generalization of Vicsek’s phase update law (see [48]) to manifolds.
The Vicsek model is a discrete-time algorithm governing the headings of particles in the plane,
and hence operates on the circle. It can be written as

yk(t+ 1) ∈ IAM ({yj(t)|j Ã k in G(t)} ∪ {yk(t)}) , k = 1...N , (16)

with the definitions introduced in the present paper; interconnections among particles depend on
their relative positions in the plane (so-called “proximity graphs”). Vicsek’s law can be directly
generalized in the form (16) to any manifold satisfying Assumption 1. Based on the previous
discussions, it is clear why (16) can be viewed as a discrete-time variant of (14). When run
asynchronously on a fixed undirected graph, (16) is an ascent algorithm for PL; see [37] for a
precise relationship between the continuous-time and discrete-time consensus algorithms on the
circle.

6.3 Examples

Consensus on the circle is studied in [42, 37, 39, 43]; the other algorithms presented here are
original.

The circle Denoting angular positions by θk, the specific form of (14) for S1 is

θ̇k = α′
∑N

j=1 ajk sin(θk − θj) , k = 1...N . (17)

For the equally-weighted complete graph, this is strictly equivalent to the Kuramoto model [26]
with identical (zero) natural frequencies.

Algorithm (17) can run into a limit cycle for varying graphs. Consider a regular consensus
state for an equally-weighted ring graph G1, with consecutive agents separated by χ < π/2 (local
maximum of PL1). Define G2 by connecting each agent to the agents located at an angle ψ > π/2
from itself with ψ properly fixed. G2 is a collection of disconnected ring graphs and the swarm is
at a local minimum of PL2 . Starting the system in the neighborhood of that state and regularly
switching between G1 and G2, the system will oscillate in its neighborhood, being driven away by
G2 and brought back by G1 if consensus is intended and reversely if anti-consensus is intended.

1More precisely, the following distibution was examined: initially, each element ajk independently takes a value
in {0, 1} according to a probability Prob(1) = p. The corresponding graph remains for a time tgraph uniformly
distributed in [tmin, tmax], after which a new graph is built as initially.
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The special orthogonal group The tangent space to SO(n) at the identity In is the space
of skew-symetric n × n matrices. By group multiplication, the projection of B ∈ Rn×n onto
the tangent space to SO(n) at Qk is Qk Skew(Q−1

k B) = Qk (QT
k B
2 − BT Qk

2 ). This leads to the
following explicit form of algorithm (14) on SO(n), where the right-hand side only depends on
relative positions of the agents with respect to k:

Q−1
k Q̇k = α

∑
j ajk

(
Q−1

k Qj −Q−1
j Qk

)
, k = 1...N . (18)

Using Lemma 1 in the appendix, the following proves that SO(n) satisfies Assumption 2. It also
includes the proof of Proposition 1.

Proposition 8 The manifold SO(n) satisfies Assumption 2.

Proof: (+ Prop.1) Consider a linear function f(Q) = trace(QTB) with Q ∈ SO(n) and B ∈ Rn×n;
gradRn×n(f) = B so gradSO(n)(f) = Q

2 (QTB − BTQ). Since Q is invertible, critical points of f
satisfy (QTB − BTQ) = 0, meaning that they take the form described by Lemma 1. Using
notations of Lemma 1, write R = HΛHT where Λ contains the (non-negative) eigenvalues of R.
This leads to

Q = UHJHT ⇒ QTB = HJΛHT ⇒ f(Q) = −∑l
j=1 Λjj +

∑n
j=l+1 Λjj .

If l ≥ 2, select any m ∈ [2, l] and define Qε = UHJAHT where A is the identity matrix except
that A(1, 1) = A(m,m) = cos(ε) and A(1,m) = −A(m, 1) = sin(ε) with ε arbitrarily small. It is
straightforward to see that f(Qε) > f(Q) unless Λ11 = Λmm = 0. Similarly, if l = 1 and ∃ m ≥ 2
such that Λmm < Λ11, then f(Qε) > f(Q) with Qε and A defined as previously. Therefore,

1. if det(B) ≥ 0, local maxima require l = 0 such that Q = U and f(Q) is the sum of the
eigenvalues of R;

2. if det(B) ≤ 0, local maxima require U to take the form of Lemma 1 with l = 1 and
Λ11 ≤ Λmm∀m; thus the first column of H corresponds to a smallest eigen- value of R and
f(Q) is the sum of n− 1 largest eigenvalues minus the smallest one.

This shows that all maxima of f(Q) are global maxima (since they all take the same value)
and, with B = Ce, characterizes the IAM . ¤

The Grassmann manifold The projection of a matrix M ∈ S+
n onto the tangent space to

Grass(p, n) at Πk is given in [29] as ΠkMΠ⊥k + Π⊥kMΠk. This leads to

Π̇k = 2α
∑

j ajk (ΠkΠjΠ⊥k + Π⊥kΠjΠk) , k = 1...N . (19)

In practice, the basis representation Yk is handier than Πk since it involves smaller matrices.
Computing the gradient of PL({Πk , k = 1...N}) = PL({Yk Y

T
k , k = 1...N}) directly on the

quotient manifold as explained in [1] leads to the algorithm

Ẏk = 4α
∑

j ajk

(
Yj Mj·k − Yk M

T
j·kMj·k

)
, k = 1...N , (20)

where the p×p matrices Mj·k are defined as Mj·k = Y T
j Yk. For theoretical purposes, the projector

representation is an easier choice, as for the following proofs.

Proposition 9 The Grassmann manifold satisfies Assumption 2.



SIAM/SICON preprint: subm 09/2006; rev 11/2007; acc 04/2008; publ? ≥ 2009. 14

Proof: (+ Prop.2) Consider a linear function f(Π) = trace(ΠTB) where B ∈ S+
n and Π represents

Y ∈ Grass(p, n); gradRn×n(f) = B so gradGrass(p,n)(f) = ΠBΠ⊥+Π⊥BΠ. The ranges of the first
and second terms in gradGrass(p,n)(f) are at most Y and its orthogonal complement respectively,
so they both equal zero at a critical point Y∗, such that Y∗ is an invariant subspace of B. In
an appropriate basis (e1...en), write Π∗ = diag(1, ...1, 0, ...0) and B = diag(µ1, ...µp, µp+1...µn). If
∃ d ≤ p and l > p such that µd < µl, then any variation of Π∗ rotating ed towards el strictly
increases f(Π). Therefore, at local maxima of f(Π), the p-dimensional space corresponding to
Π must be an eigenspace of B corresponding to p largest eigenvalues. This implies that at any
local maximum, f(Π) equals the sum of p largest eigenvalues of B, so Assumption 2 is satisfied.
Replacing B by Ce proves Proposition 2. ¤

7 Consensus algorithms with estimator variables

Section 6 derives algorithms that lead to a consensus situation linked to the interconnection graph.
But in many applications, the interconnection graph is just a restriction on communication possi-
bilities, under which one actually wants to achieve a consensus for the complete graph. Moreover,
allowing directed and time-varying communication graphs is desirable for robustness. This section
presents algorithms achieving the same performance as those of §6 for the equally-weighted com-
plete graph — that is, driving the swarm to synchronization or to a subset of the anti-consensus
configurations for the equally-weighted complete graph which seems to contain little more than
balancing — under very weak conditions on the actual communication graph. However, this re-
duction of information channels must be compensated by adding a consensus variable xk ∈ Rm,
which interconnected agents are able to communicate, to the state space of each agent.

7.1 Synchronization algorithm

For synchronization purposes, the agents run a consensus algorithm on their estimator variables xk

in Rm, k = 1...N , initialized arbitrarily but independently and such that they can take any value
in an open subset of Rm; ∀k, agent k’s position yk on M independently tracks (the projection on
M of) xk. This leads to

ẋk = β
∑

j ajk (xj − xk) , β > 0 (21)

ẏk = γS gradk,M(yT
k xk) = γS ProjTM,k(xk) , γS > 0 , k = 1...N. (22)

Equation (21) is a classical consensus algorithm in Rm, where ẋk(t) points from xk(t) towards the
centroid of the (appropriately weighted) xj(t) for which j Ã k at time t. According to [33, 32, 35],
if the time-varying communication graph G(t) is piecewise continuous in time and uniformly
connected, then all the xk exponentially converge to a common consensus value x∞; moreover, if
G(t) is balanced for all t, then x∞ = 1

N

∑
k xk(0) (i.e. x∞ is the centroid of the initial xk). This

implies the following convergence property for (21),(22), where the notation IAMg generalizes the
definition (3) of the IAM when the points defining Ce are not on M.

Proposition 10 Consider a piecewise continuous and uniformly connected graph G(t) and a man-
ifold M satisfying Assumptions 1 and 2. The only stable limit configuration of the yk under
(21),(22), with the xk initialized arbitrarily but independently and such that they can take any
value in an open subset of Rm, is synchronization at y∞ = ProjTM,k(x∞); if G(t) is balanced,
y∞ = IAMg{xk(0), k = 1...N}.

Proof: Convergence of (21) towards xk = x∞ ∀k is proved in [32]; the property x∞ = 1
N

∑
k xk(0)

for balanced graphs is easy to check (see [35]). As a consequence, the asymptotic form of (21),(22)
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is a set of N independent systems

xk = x∞ (23)
ẏk = γS ProjTM,k(x∞) , k = 1...N , (24)

where x∞ is a constant. According to [30], the ω-limit sets of the original system (21),(22)
correspond to the chain recurrent sets of the asymptotic system (23),(24). The first equation is
trivial. According to Proposition 4 in [21] and Sard’s theorem, since (24) is a gradient ascent
algorithm for f(yk) = yT

k x∞ and f(yk) is smooth (as the restriction of a smooth function to the
smooth embedded manifold M), the chain recurrent set of (24) is equal to its critical points. Since
x∞ is a linear combination of the xk(0), variations of the xk(0) are equivalent to variations of x∞.

Property o: Any open neighborhood O of any point xo ∈ Rm contains a point xa for which
f(yk) has a unique (local = global, by Assumption 2) maximizer.
Proof: If yT

k xo has multiple maximizers, select one of them, call it y∗. Then for σ > 0, yT
k xo +

σ yT
k y∗ ≤ yT

∗ xo + σ yT
k y∗ ≤ yT

∗ xo + σ yT
∗ y∗ with equality holding if and only if yk = y∗, so y∗ is the

unique maximizer of yT
k (xo + σy∗). Since any open neighborhood O of xo contains points of the

form xa = xo + σy∗, σ > 0, property o is proved.
Because of Property o, with respect to variations of the xk, the situation “f(yk) has multiple

maximizers” is unstable. The situation “f(yk) has a unique maximizer” is stable since it corre-
sponds to a non-empty open set in Rm; thus a convex neighborhood of x∞ can be found in which
the xk(t) will stay by convexity of (21) and where f(yk) has a unique maximizer. With respect
to variations of the yk, the (thus unique) maximizer of yT

k xk is the only stable equilibrium for
gradient ascent algorithm (22), such that for xk → x∞ the only stable situation is synchronization.
¤

7.2 Anti-consensus algorithm

For anti-consensus, in analogy with the previous section, each yk evolves according to a gradient
algorithm to maximize its distance to xk(t). If xk(t) asymptotically converges to Ce(t), this
becomes equivalent to the gradient anti-consensus algorithm (15). Imposing xk(0) = yk(0) ∀k, the
following algorithm achieves this purpose when G(t) is balanced ∀t:

ẋk = β
∑N

j=1 ajk (xj − xk) + ẏk , β > 0 (25)

ẏk = γB gradk,M(yT
k xk) = γB ProjTM,k(xk) , γB < 0 , k = 1...N . (26)

Note that the variables xk and yk are fully coupled; in a discrete-time version of this system, this
essential feature of the algorithm must be retained in the form of implicit update equations in
order to ensure convergence (see [39] for details).

Proposition 11 Consider a piecewise continuous, uniformly connected and balanced graph G(t)
and a manifold M satisfying Assumptions 1 and 2. Then, algorithm (25),(26) with initial condi-
tions xk(0) = yk(0) ∀k converges to an equilibrium configuration of the anti-consensus algorithm
for the equally-weighted complete graph, that is (15) with α < 0.

Proof: First show that 1
N

∑
k xk(t) = 1

N

∑
k yk(t) = Ce(t). Since xk(0) = yk(0) ∀k, it is true for

t = 0. Thus it remains to show that
∑

k ẋk(t) =
∑

k ẏk(t). This is the case because a balanced
graph ensures that the first two terms on the right side of the following expression cancel each
other: ∑

k ẋk(t) = β
∑

j (
∑

k ajk) xj − β
∑

k

(∑
j ajk

)
xk +

∑
k ẏk(t) .

Next, prove that ∀k, ẏk(t) is a uniformly continuous function in L2(0,+∞) such that Barbalat’s
Lemma implies ẏk → 0. First show that W (t) = 1

2

∑
k xk(t)Txk(t) is never increasing along the

solutions of (25),(26). Denoting by (x)j , j = 1...m, the vectors of length N containing the j-th
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component of every xk, k = 1...N and by L(i) the in-Laplacian of the varying graph associated to
the ajk, one obtains

Ẇ (t) =
∑

k x
T
k ẋk =

∑
k x

T
k ẏk − β

∑
j(x)

T
j L

(i)(x)j .

The term containing L(i) is non-positive because the Laplacian of balanced graphs is positive semi-
definite (see [49]). Replacing ẏk from (26) and noting that
xT

k ProjTM,k(xk) =
(
ProjTM,k(xk)

)T ProjTM,k(xk), one obtains

Ẇ (t) = γB

∑
k ‖ProjTM,k(xk)‖2 − β

∑
j (x)T

j L
(i)(x)j ≤ 0 . (27)

Thus W (t) ≤W (0) = N
2 r

2
M which implies that each ẏk(t) is in L2(0,+∞) since

1
|γB |

∑
k

∫ +∞
0

‖ẏk(t)‖2 dt ≤ − ∫ +∞
0

Ẇ (t) dt ≤ N
2 r

2
M .

W (t) ≤W (0) also implies that xk is uniformly bounded ∀k; from (26), ẏk is uniformly bounded as
well. Combining these two observations, with the ajk bounded, (25) shows that xk has a bounded
derivative and hence is Lipschitz in t ∀k. Now write

‖ẏk(xk(t1), yk(t1))− ẏk(xk(t2), yk(t2))‖ ≤
‖ẏk(xk(t1), yk(t1))− ẏk(xk(t2), yk(t1))‖+ ‖ẏk(xk(t2), yk(t1))− ẏk(xk(t2), yk(t2))‖ .

The first term on the second line is bounded by r1 |t1− t2| for some r1 since ẏk is linear in xk and
xk is Lipschitz in t. The second term on the second line is bounded by r2 |t1− t2| for some r2 since
ẏk is Lipschitz in yk (as the gradient of a smooth function along the smooth manifold M) and
d
dt (yk) = ẏk is uniformly bounded. Hence, ẏk is Lipschitz in t and therefore uniformly continuous
in t, such that Barbalat’s Lemma can be applied. Therefore ẏk → 0. Thus from [30], the ω-limit
sets of (21),(22) correspond to the chain recurrent sets of the asymptotic system

ẋk = β
∑

j ajk (xj − xk)
0 = γB ProjTM,k(xk) .

The second line is just a static condition. The chain recurrent set of the linear consensus algorithm
in the first line reduces to its equilibrium set xk = x∞ ∀k. But then, from the beginning of the
proof, xk = Ce ∀k such that the static condition becomes 0 = γB ProjTM,k(Ce) ∀k. This is the
condition for an equilibrium of anti-consensus algorithm (15) with γB = 2αN . ¤

In simulations, a swarm applying (25),(26) with xk(0) = yk(0) ∀k seems to generically con-
verge to an anti-consensus configuration of the equally-weighted complete graph, that is a stable
equilibrium configuration of (15) with α < 0.

7.3 Examples

Applying this strategy to the circle yields the results of [39], the xk reduce to vectors of R2;
algorithms (22) and (26) respectively drive the yk towards and away from the central projection
of xk onto the unit circle.

The special orthogonal and Grassmann manifolds The particular balancing algorithms
will not be detailed as they are directly obtained from their synchronization counterparts. Intro-
ducing auxiliary n×n-matrices Xk, (21) may be transcribed verbatim. Using previously presented
expressions for ProjTM,k(Xk), (22) becomes

On SO(n) : Q−1
k Q̇k = γS

2

(
QT

kXk −XT
k Qk

)
, k = 1...N . (28)

On Grass(p, n) : Π̇k = γS (ΠkXkΠ⊥k + Π⊥kXkΠk) , k = 1...N . (29)

Note that for Grass(p, n), the projector representation must be used in (21) and (25), such that
using n× n matrices Xk becomes unavoidable.
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7.4 Remark about the communication of estimator variables

To implement the algorithms of this section, interconnected agents must communicate the values
of their estimator variable xk. It is important to note that the variables xk may not just be a set of
abstract scalars for each agent k: since xk interacts with the geometric yk, it must be a geometric
quantity too. However, the xk evolve in Rm while the original system lives on M; the relative
position of agents on M is a meaningful measurement, but nothing ensures a priori that a similar
thing can be done in Rm. A solution could be to use a common (thus external) reference frame in
Rm and transmit the coordinates of the xk in this frame. That solution would unfortunately imply
that the swarm loses its full autonomy; however, the external frame is just used for “translation”
purposes and does not interfer with the dynamics of the system.

When M is (a subgroup of) SO(n), the algorithms can be reformulated such that they work
completely autonomously if interconnected agents measure their relative positions QT

kQj . Indeed,
define Zk = QT

kXk. Then (21),(22) for instance becomes

Żk = (QT
k Q̇k)TZk + β

∑
j ajk

(
(QT

kQj)Zj − Zk

)
(30)

QT
k Q̇k = γS

2

(
Zk − ZT

k

)
, k = 1...N . (31)

In this formulation, each agent k can represent Zk as an array of scalars, whose columns express
the column-vectors of Xk as coordinates in a local frame attached to k (i.e. in a frame rotated by
Qk with respect to a hypothetical reference frame). Pre-multiplying Zj by QT

kQj expresses Xj in
the local frame of k, and QT

k Q̇k expresses the velocity of Qk (with respect to a hypothetical fixed
reference) in the local frame of k as well. Thus (30),(31) actually corresponds to (21),(22) written
in the local frame of k. Each agent k gets from its neighbors j Ã k their relative positions QT

kQj

and the n × n arrays of numbers Zj ; from this it computes the update Żk to its own array of
numbers Zk and the move it has to make with respect to its current position, QT

k Q̇k. The same
can be done for the anti-consensus algorithm.

8 Conclusion

The present paper makes three main contributions.
First, it defines the induced arithmetic mean of N points on an embedded connected compact

homogeneous manifold M; though it differs from the traditional Karcher mean, it has a clear
geometric meaning with the advantage of being easily computable — see analytical solutions for
SO(n) and Grass(p, n).

Secondly, a definition of consensus directly linked to the induced arithmetic mean is pre-
sented for these manifolds. In particular, the notion of balancing introduced in [42] for the circle
is extended to connected compact homogeneous manifolds. Consensus for the equally-weighted
complete graph is equivalent to synchronization. Likewise, it appears in simulations that anti-
consensus for the equally-weighted complete graph leads to balancing (if N is large enough), even
though this could not be proved.

Thirdly, consensus is formulated as an optimization problem and distributed consensus algo-
rithms are designed for N agents moving on a connected compact homogeneous manifold. In a first
step, gradient algorithms are derived for fixed undirected interconnection graphs; (anti-)consensus
configurations are their only stable equilibria. Similar algorithms are considered when the graph
is allowed to be directed and/or to vary, but their convergence properties are mostly open. In a
second step, the algorithms are modified by incorporating an estimator variable for each agent.
In this setting, convergence to the (anti-)consensus states of the equally-weighted complete graph
can be established theoretically for time-varying and directed interconnection graphs. The mean-
ingful way of communicating estimators between agents remains an open issue when M is not a
subgroup of SO(n).

Running examples SO(n) and Grass(p, n) illustrate the validity of the discussion and provide
geometric insight. The models and results obtained by applying this framework to the circle are
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strictly equivalent to existing models and results (most significantly in [42],[43],[39]). This draws
a link from the present discussion to the vast literature about synchronization and balancing on
the circle.

9 Appendix

Lemma 1 If g(Q) = QTB − BTQ with Q ∈ SO(n) and B ∈ Rn×n, then g(Q) = 0 iff Q =
UHJHT , where B = UR is a polar decomposition of B, the columns of H contain (orthonormal-
ized) eigenvectors of R and

J =
( −Il 0

0 In−l

)
,

l even if det(U) > 0
l odd if det(U) < 0

Proof: All matrices Q of the given form obviously satisfy that QTB is symmetric. The following
constructive proof shows that this is the only possible form.

Since UTB = R is symmetric with U ∈ O(n), the problem is to find all matrices T = UTQ ∈
O(n) such that S = TTR is symmetric and det(T ) = det(U). Work in a basis of eigenvectors H∗

diagonalizing R with its eigenvalues placed in decreasing order λ1 ≥ λ2... ≥ λn ≥ 0. The following
shows that T is diagonal in that basis. Then orthogonality of T imposes values 1 or −1 on the
diagonal, the number l of −1 being compatible with det(T ) = det(U); the final form follows by
returning to the original basis and reordering the eigenvectors such that those corresponding to
−1 are in the first columns.

The jth column of S is simply the jth column of T multiplied by λj . Therefore:

1. If λi = λj , then H∗ may be chosen such that the corresponding submatrix T (i : j, i : j) =
intersection of rows i to j and columns i to j of T is diagonal.

2. If λp+1 = 0 and λp 6= 0, then S symmetric implies T (n − p : n, 1 : p) = 0. As T (n − p :
n, n− p : n) is diagonal from 1., only diagonal elements are non-zero in the last n− p rows
of T . Rows and columns of T being normalized, T (1 : p, n− p : n) = 0.

3. Consider i− ≤ p and i+ the smallest index such that λi+ < λi− . Note that
∑

j T
2
i−j =

∑
j T

2
ji− = 1 (orthogonality) and

∑
j S

2
i−j =

∑
j S

2
ji− (symmetry). (32)

Start with i− = 1 and assume λi+ > 0. (32) can only be satisfied if Tjk = Tkj = 0 ∀j ≥ i+ and
∀k ∈ [i,i+); 1. further implies Tjk = Tkj = 0 ∀j 6= k and ∀k ∈ [i−, i+). This argument is repeated
by defining the new i− as being the previous i+ until λi+ = 0 (case 2.) or λi− = λn > 0. This
leaves T diagonal. ¤
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