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[1] An empirical orthogonal function–based technique called Data Interpolating
Empirical Orthogonal Functions (DINEOF) is used in a multivariate approach to
reconstruct missing data. Sea surface temperature (SST), chlorophyll a concentration, and
QuikSCAT winds are used to assess the benefit of a multivariate reconstruction. In
particular, the combination of SST plus chlorophyll, SST plus lagged SST plus
chlorophyll, and SST plus lagged winds have been studied. To assess the quality of
the reconstructions, the reconstructed SST and winds have been compared to in situ data.
The combination of SST plus chlorophyll, as well as SST plus lagged SST plus
chlorophyll, significantly improves the results obtained by the reconstruction of SST
alone. All the experiments correctly represent the SST, and an upwelling/downwelling
event in the West Florida Shelf reproduced by the reconstructed data is studied.
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1. Introduction

[2] Missing data reconstruction is usually performed by a
univariate approach, i.e., taking into account only the
information of a specific variable to infer values at missing
data locations [e.g., Reynolds and Smith, 1994; Beckers and
Rixen, 2003; He et al., 2003; Alvera-Azcárate et al., 2005;
Kondrashov et al., 2005]. However, oceanographic varia-
bles are often interrelated by ocean dynamics, making it
potentially useful to consider these relations in the recon-
struction of missing data.
[3] Multivariate optimal interpolation (OI) has been used

to analyze a given variable with the help of related mea-
sures. Gomis et al. [2001] and Paris et al. [2002] worked
with conductivity-temperature-depth (CTD) and acoustic
Doppler current profiler (ADCP) data to study the three-
dimensional geostrophic and ageostrophic circulation fea-
tures of the Alboran Sea and Barbados, respectively. Watts
et al. [2001] used OI to analyze bottom pressure and
currents measurements in the Gulf Stream. Grodsky and
Carton [2001] combined sea level and mixed layer veloc-
ities to examine the Tropical Pacific Ocean near-surface
currents. These works agree in the benefit of using multiple
variables in the analysis as a way to obtain more realistic
fields and a better understanding of their interrelation.
However, it is difficult to objectively estimate the covari-
ance between two variables and the error statistics neces-

sary to realize an OI analysis [Bennett, 2002]. Therefore
assumptions are often made about the variables covariance
and correlation length (e.g., isotropic and homogeneous
covariances).
[4] Multivariate empirical orthogonal functions (EOFs)

have also been used to improve the analysis of a given
variable by the addition of related variables. Since the
correlation between variables is taken into account by
the EOFs, the relation between them may be studied.
Bretherton et al. [1992] and Wallace et al. [1992] studied
the relation between sea surface height anomalies and
500-mbar height anomalies over the Pacific using various
covariance-based techniques. Korres et al. [2000] studied
the relation between surface heat fluxes and sea surface
temperature in the Mediterranean Sea using extended EOFs.
Collins et al. [2004] studied the predictability of the sea
surface temperature in the Indian Ocean, and found that a
combination through EOFs of sea level pressure and sea
surface height anomaly gave the best results.
[5] In this work, an EOF-based method is used to

reconstruct missing data on different but related variables.
Satellite data are often gappy due to the presence of clouds,
lack of satellite coverage, and observations rejected by
quality control. Certain satellite data, as those produced
by some radiometers, do not present a cloud coverage
problem, but their coverage may be subject to other limi-
tations, such as a coastal mask or rain contamination.
Beckers and Rixen [2003] and Alvera-Azcárate et al.
[2005] described a technique for filling missing data using
an EOF-based algorithm called Data Interpolating Empirical
Orthogonal Functions (DINEOF), and they applied it to sea
surface temperature (SST) data. Kondrashov and Ghil
[2006] and Kondrashov et al. [2005] used this technique
in a singular spectrum analysis version, and applied it to an
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Copyright 2007 by the American Geophysical Union.
0148-0227/07/2006JC003660$09.00

C03008 1 of 11



extended matrix containing time-lagged information of the
variable studied. By application to a synthetic data set, as
well as to several real examples, the results were shown to
be improved by the addition of the time lag information.
Bergant et al. [2005] applied this technique to tidal gauge
data. Here we present a multivariate application of the
method developed by Beckers and Rixen [2003], where
the extended matrix is formed by more than one physical
variable at one or at several times. The advantage of using
DINEOF compared to OI application, as classically applied,
to reconstruct multivariate data is that the first technique
calculates the relation between variables internally, based on
available data, so there is no subjective parameter estimation.
[6] We applied the multivariate DINEOF technique to a

domain covering the southeast U.S. coast and the eastern
Gulf of Mexico (GoM). SST, chlorophyll and winds are
combined in different ways and compared to in situ data to
establish the most beneficial combination. Any set of varia-
bles could have been chosen, given that they are related.
[7] A brief explanation of DINEOF, as well as its

multivariate application are included in section 2. The data
used in this work and the experiments carried out are
explained in sections 3 and 4, respectively, followed by
experimental results in section 5. As an application,
section 6 then studies a series of upwelling/downwelling
events on the West Florida Shelf (WFS) detected in the
reconstructed data. Conclusions are offered in section 7.

2. DINEOF

2.1. Monovariate DINEOF

[8] DINEOF [Beckers and Rixen, 2003; Alvera-Azcárate
et al., 2005] is a parameter-free (i.e., the necessary param-
eters are derived internally from existing data), EOF-based
method for the reconstruction of missing data. Alvera-
Azcárate et al. [2005] applied DINEOF to a series of
satellite SST images and compared the results to a classical
OI reconstruction. The number of operations required for a
global OI is m3 n3, with m, n the spatial and temporal
dimensions of the matrix being reconstructed, respectively.
Alvera-Azcárate et al. [2005] empirically established the
total cost for DINEOF as proportional to m1.25n1.17. Our
experience has also shown that DINEOF is faster than local
OI codes. For example, in the work by Alvera-Azcárate et
al. [2005], DINEOF was 30 times faster than the widely
used local OI package provided by Harvard Ocean Predic-
tion System (HOPS [Carter and Robinson, 1987]), and both
techniques performed similarly when compared to in situ
data. DINEOF has proven to be an accurate technique, and
it produces reliable results.
[9] DINEOFworks as follows: data are stored in amatrixX

with the temporal and spatial average subtracted a priori.
Missing data are initialized to zero, to guarantee that they are
unbiased with respect to X. With this first guess, a first
singular value decomposition (SVD) is realized with one
(k = 1) EOF. The missing data are then replaced using the
obtained EOF:

Xi;j ¼
X

k

p¼1

rp up
� �

i
vTp

� �

j
ð1Þ

where i, j are the spatial and temporal indexes of the missing
data in matrix X; up and vp are the pth column of the spatial
and temporal EOF U and V, respectively; and rp is the
corresponding singular value, with p = 1. . .k. With the new
values for the missing data, the SVD decomposition is
performed again. The two last steps are repeated until
convergence is obtained for the missing values. Then, the
whole iterative procedure is performed for k = 2, 3,. . ., kmax

EOFs, where kmax is a predefined number that should vary
according to the initial matrix characteristics. For each k, an
estimation for the missing values is obtained. The optimal
number of EOFs retained for the reconstruction is
determined by cross validation: a number of points
(typically 1% of the initial data) are set aside and considered
as missing. At each EOF estimation, the error between those
initial points and their reconstruction is calculated, so the
optimal number of EOFs minimizing this error can be
determined. Along with the reconstructed data, local error
fields reflecting the accuracy of the reconstruction can be
also generated [Beckers et al., 2006]. DINEOF calculates
the EOFs using a Lanczos method [Toumazou and Cretaux,
2001], which reduces the calculation time. For an extended
description of DINEOF please refer to Beckers and Rixen
[2003] and Alvera-Azcárate et al. [2005].

2.2. Multivariate DINEOF

[10] Extended EOFs (ExEOFs) are a generalized form of
the classical EOFs in which more than one data set are used
simultaneously to perform an EOF analysis. Most works
[e.g., Weare and Nasstrom, 1982; Fraedrich et al., 1997;
Tourre and White, 1997; Smith and Reynolds, 2003] use a
lagged version of the analyzed matrix to construct the
extended matrix Xe. Here we present the extended matrix
in a more general case, where different variables with
lagged versions of themselves are combined to form an
extended, multivariate matrix Xe:

Xe ¼

X1 X2 :: XN�2l

X1þl X2þl :: XN�l

X1þ2l X2þ2l :: XN

::
Y1 Y2 :: YN�2l

::
Z1 Z2 :: ZN�2l

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

ð2Þ

where Xt, Xt+l, Xt+2l are column vectors that contain all
spatial points of variable X at times t, t + l and t + 2l,
respectively (l and 2l are the time lags). Y . . . Z are other
variables. Each matrix can have a different number of
spatial points (size X = M � N, size Y = P � N, size Z =
T � N, and so on, with M, P, and T the spatial dimension
and N the temporal dimension). The use of such an
extended matrix to compute ExEOFs has many advantages
over the use of classic EOFs in the frame of missing data
reconstruction. First, they can resolve moving patterns more
accurately because of the presence of future and/or past
information, if those points are not missing in the lagged
matrix [von Storch and Zwiers, 1999; Ghil et al., 2002;
Jolliffe, 2002; Kim and Wu, 2000]. Also, the correlation
between different physically related variables can help to
reconstruct missing data [e.g., Gomis et al., 2001].
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[11] When the different variables included in matrix Xe

have different units, the normalization of each variable
before constructing Xe is necessary. In this multivariate
version of the ExEOFs, a given missing point of one
variable can benefit from the presence of other variable at
the same time. The correlation between both variables is
taken into account by the ExEOFs to reconstruct missing
data.

3. Data

[12] Several satellite data sets covering the GoM and the
east U.S. coast are used for the period from 1 October 2004
to 31 March 2005. SST is derived from infrared observa-
tions made by the advanced very high resolution radiometer
(AVHRR) sensors on board the NOAA Polar Orbiting
Environmental Satellite (POES) series. The SST is calcu-
lated using the multichannel sea surface temperature
(MCSST) algorithm developed by McClain et al. [1985].
Chlorophyll a pigment concentration data are obtained from
the Aqua Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite. These fields have a resolution of 1 km.
[13] The AVHRR SST data set has 45.3% missing data,

and a slightly increasing trend on the percentage of missing
data is observed in the six months of the experiment. Figure 1
shows the mean spatial percentage of missing SST during
the period studied: the highest cloud coverage is concen-
trated along the U.S. east coast. The open Atlantic Ocean
also has a high percentage of missing data. In the GoM, the
zone near the Loop Current (LC) has the highest cloud
concentration during this period, along with the Big Bend at
the Florida coast. The chlorophyll fields have a higher mean
percentage of missing data (65%) and its spatial distribution
(not showed) is similar to the one described for the SST.
[14] QuikSCAT Level 3 wind fields are obtained through

the Physical Oceanography Distributed Active Archive

Center Web site http://podaac-www.jpl.nasa.gov/. They
consist of 25 km resolution gridded fields and they cover
the whole globe (up to 75� latitude) every 2 days. The winds
are referenced to 10 m height. Only points where no rain is
detected are retained for the study. There are typically two
passes each day over the GoM. When there is more than one
pass during a day, a composite with the various passes is
calculated to obtain one wind field per day. Both the north-
south and east-west components of the wind field are used
simultaneously with the SST to form the extended matrix Xe

for their reconstruction.
[15] QuikSCATwinds have a lower percentage of missing

data (22.6%) than the SST data set, because it employs a
radiometer sensor that sees through clouds. There are two
main sources of missing data: the lack of satellite passes
over the study zone and rain-contaminated areas. Spatially,
the GoM has a higher percentage of missing data (up to
�35% in average) than the Atlantic Ocean (�20%). Coastal
regions have higher percentage of missing data than the
open ocean regions, mainly due to the coarse resolution of
the product and the land-sea mask.
[16] In situ data are obtained from the Coastal Ocean

Monitoring and Prediction System (COMPS http://comps.
marine.usf.edu/) at the University of South Florida and the
National Data Buoy Center (NDBC, http://www.ndbc.
noaa.gov/). A total of seven stations measuring temperature
at 1 m depth (Figure 2) are used for the validation of the
results obtained with DINEOF. We also used seven stations
measuring winds from NDBC (Figure 2) to validate the
reconstruction of the QuikSCAT fields. The in situ winds
are adjusted to a height of 10 m.
[17] The spatial correlation between the different data sets

used in this work is presented in Figure 3. The advantage of
using an EOF-based method is that, with a small computa-
tional cost, the spatial correlation between two variables is
taken into account, and not only the correlation between two

Figure 1. Spatial distribution of the percentage of cloud coverage in the original AVHRR SST data set.
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points at the same geographical location. For figure clarity,
the correlation fields have been filtered, so only the main
features are retained.
[18] The correlation between wind and temperature is

more important near the coast, where the wind plays an
important role in the ocean dynamics. The correlation
between SST and the north-south component of the wind
(Figure 3, V) has a clear positive/negative correlation
indicating upwelling/downwelling along the eastern/western
coast of Florida, respectively, with the highest values near
the coast. The whole WFS presents this high correlation.
The negative correlation on the GoM north coast also
indicates upwelling/downwelling dynamics. The correlation
between SST and the east-west component of wind
(Figure 3, U) shows also an influence of the winds on the
SST. The correlation between SST and the east-west com-
ponent of wind is mainly positive in the GoM, in agreement
with the upwelling/downwelling influence of the wind
along the west coast of Florida. The negative correlation
seen in the Atlantic Ocean in Figure 3 (U) shows a relation
between the SST and the easterly winds coming from the
central Atlantic Ocean.
[19] The correlation between SSTand chlorophyll (Figure 3,

CHL) is almost everywhere negative, meaning that cold
waters have high chlorophyll concentration and warm
waters have low chlorophyll concentration. The magnitude
of the correlation is larger than that observed with winds,
due to the direct relationship between these two variables. A
multivariate reconstruction using SST and chlorophyll can
be beneficial for both variables, with the disadvantage of
both having a similar high cloud contamination. It is thus

interesting to assess which combination leads to better
results: SST with nearly complete wind fields, or SST with
highly related chlorophyll, but with similar cloudiness.

4. Experiments

[20] Section 5 presents the results of the multivariate
reconstruction of missing data using DINEOF, based on

Figure 2. In situ stations used for the validation of the SST and wind reconstruction. Asterisks show
SST station positions, and circles show the wind station positions. Stations 42021 and 42014 are COMPS
buoys. Buoy sgof1 is a C-Man station owned by NDBC, and station 41001 is an NDBC buoy.

Figure 3. Correlation between the SST and both compo-
nents of (top) wind and (bottom) the chlorophyll.
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several combinations of satellite data, summarized here as
follows: (1) only SST; this reconstruction is used as a
control data set, to assess the impact of the different
multivariate combinations on the reconstruction of SST;
(2) SST + chlorophyll, the first of our multivariate recon-
structions; matrix Xe is formed by SST and chlorophyll at
time t; (3) SST + lagged winds; the effect of winds is not
directly transferred to the ocean, so past winds are better
correlated to current SST; in this case, SST at time t and
both components of wind at time t � 1 (1-day lag) form
matrix Xe; the 1-day lag was chosen because it minimizes
the error of the reconstruction when compared to in situ
data; and (4) SST + chlorophyll + lagged SST; the SST can
benefit from the presence of a lagged version of itself. In
this experiment we use SST at time t with SST at time t + 1
and chlorophyll at time t.

5. Results

5.1. Temperature Reconstruction Results

[21] Table 1 presents the comparison between the recon-
structed SST data and the in situ SST from the stations
shown in Figure 2. The error is calculated at initially
missing points. For reference, the RMS error between the
original noncloudy SST data and in situ data is 0.65�C,
which can be used as a reference value for the reconstruc-
tions. All multivariate reconstructions improve the results
obtained by the univariate SST reconstruction, in terms of
RMS, bias and correlation. The largest improvement corre-
sponds to the combination of SST + chlorophyll + lagged
SST, although all reconstructions are satisfactory quantita-
tively, since the reconstruction error of all experiments is of
the order of the expected difference between the satellite
and in situ data. We have performed a Student’s t test to
know if the improvement of the multivariate approach
compared to the univariate approach is significant. We
calculate the squared differences

di ¼ To � T i
� �2 ð3Þ

with T o the observed temperature and Ti, (i = 1. . .4) the
reconstructed temperature (1 for SST only; 2 for SST +
chlorophyll + lagged SST; 3 for SST + chlorophyll; 4 for
SST + lagged winds). We then calculate the variance of the
difference between the monovariate reconstruction and each
of the multivariate reconstructions xi = d1 � di; i = 2. . .4:

s2i ¼
1

N� 1

X

N

n¼1

xin � �xi
� �2 ð4Þ

with N the number of points of the time series xi (816 in this
case). The mean �xi is defined by

�xi ¼ 1

N

X

N

n¼1

xin ð5Þ

We assume that xi follows a Gaussian distribution, which in
our case is approximately true. The t value is calculated as

ti ¼ j�xij
si=

ffiffiffiffi

N
p ð6Þ

With the time step being one day it is possible that a serial
correlation is present in the time series xi. This correlation
can result in an overestimation of the t value. One way to
account for serial correlation is to transform N into the
effective sample size [see, e.g., Wilks, 1995] by multiplying
N by the factor (1 � r1)/(1 + r1), with r1 the 1-day lag
correlation of the time series xi. The effective sample size
becomes N = 698, the value used in the calculation of the
t value. The t value is 3.4 for case 2, 4.8 for case 3 and 1.4 for
case 4. Cases 2 and 3 exceed the threshold for significance of
1.96 at the 5% level. The error reduction in the SST +

Table 1. Summary of the Errors Calculated Between the

Reconstructed Fields and in Situ Data Over Initially Missing Points

RMS, �C Bias, �C Correlation SD,a �C

Only SST 0.76 �0.09 0.59 1.04
SST + 1 day lag wind 0.75 0.01 0.6 1.00
SST + CHL 0.62 0.05 0.71 0.93
SST +1 day lag SST + CHL 0.6 �0.01 0.69 0.89

aIn situ data 0.97�C.

Figure 4. Comparison of the SST with buoy 42014. From
top to bottom panels, initial (cloudy) SST, SST +
chlorophyll, SST + lagged winds, and SST + chlorophyll +
lagged SST. The thick line represents data from buoy 42014,
and the thin line represents the SST interpolated at the
position of this buoy.
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chlorophyll, and SST + chlorophyll + lagged SST
reconstructions is then significantly smaller than the
reconstruction of SST alone. The improvement achieved
by the combination of SST with winds is very small, and it
does not show a significant improvement with respect to the
reconstruction of SST alone. However, it will be shown that
the three multivariate combinations give very similar results
when qualitatively compared.
[22] In Figure 4 we can see the comparison of all the

presented reconstructions with buoy 42014 (Figure 2). The
buoy sensor is located at 1 m depth, so we can observe that
in general, the satellite data are influenced more strongly by
short-term atmospheric fluctuations. This can be seen in
both the initial data and the reconstructions. In addition, at
the beginning of the time series there is a bias between the
buoy and the satellite data, caused by the difference
between the bulk temperature and the skin temperature,
which is still important in October in the GoM. This bias is
present in the initial SST data as well as in all reconstruc-
tions. Besides these differences between in situ and satellite
data, the reconstructed SST data sets accurately follow the
observations.
[23] For a qualitative comparison of the different SST

reconstructions, Figure 5 shows the SST on 4 March 2005
for all data sets. Although the original SST is very cloudy in
the GoM and off the U.S. east coast, the reconstruction of
SST + chlorophyll + lagged SST, SST + chlorophyll, and
SST + lagged winds all capture the main features of the SST
distribution correctly. A large eddy is detached from the LC,
which is clearly seen in all three reconstructed data sets,
although it is not visible in the cloudy SST (the signature of

this eddy is visible for about a month in the original SST,
although with a cloudiness similar to what is observed in
Figure 5). Since the LC consists of warm, oligotrophic
water, characteristics easily detected in the SST and chlo-
rophyll, it is not surprising that the two reconstructions
combining SST with chlorophyll show a sharper contrast in
the LC and the eddy, better defined than in the SST + lagged
winds reconstruction. The benefit of using winds along with
SST is clearer near the coast, as observed in the correlation
between those variables (Figure 3), where the wind plays a
stronger role in determining the characteristics of the
surface water, through upwelling and surface mixing. The
effect of wind on the SST reconstruction will be shown later
with an example.

5.2. QuikSCAT Winds Reconstruction Results

[24] QuikSCAT winds used along with the SST are also
reconstructed. Although they present a much smaller
amount of missing data, some locations, as near the coast,
are particularly problematic. Figures 6 and 7 show the
comparison of the reconstructed QuikSCAT winds with
stations 41001 and sgof1, respectively (Figure 2) from
January to March 2005. The initial gappy data are also
shown. The original QuikSCAT data are already very
similar to the in situ data, capturing the overall wind field
as well as high-frequency variations. At station sgof1 the
original QuikSCAT data are particularly gappy (Figure 7),
because of its proximity to coast and also because there is a
higher amount of missing data in the GoM region. Even in
these conditions the wind reconstruction realized by the
SST + lagged winds shows good agreement with the in situ

Figure 5. (top left) Original SST and (top right) its DINEOF reconstruction using SST + chlorophyll +
lagged SST, (bottom left) SST + chlorophyll, and(bottom right) SST + lagged winds on 4 March 2005.
Units are �C.
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data given by the top panel of Figure 7. Considering the
seven stations measuring wind shown in Figure 2, the RMS
error in speed is 2.1 m/s for the initial data, 2.3 m/s for the
whole reconstruction and 2.8 m/s for only the initially
missing data. The mean direction difference between the
initial gappy data and in situ data is 8.8�, and 14.6� for the
reconstruction.

6. Study of an Upwelling/Downwelling Event in
the West Florida Shelf

[25] From 30 December 2004 to 15 January 2005, we
observe a series of upwelling/downwelling-favorable wind
events over the WFS. NDBC buoy 42036 (Figure 8) shows
a series of alternating upwelling/downwelling winds for
the duration of the mentioned period (Figure 9). Starting

on 4 January 2005, we can see two important downwelling-
favorable wind periods.
[26] To study the impact of these events on the WFS, and

the accuracy of the reconstructed data sets, we looked to a
transect perpendicular to the coast, located at 28�N
(Figure 8). The reconstructed QuikSCAT winds at this
transect (Figures 10 and 11 for east-west and north-south
components, respectively) show the upwelling/downwelling
pulses observed at buoy 42036. The east-west component is
predominantly negative, and the north-south component
presents an alternation of positive and negative values,
more evident near the coast. Given the orientation of
the coast at 28�N, the north-south wind component is the
most important in defining an upwelling or downwelling-
favorable event.
[27] The partially clouded SST along 28�N is shown in

Figure 12. The SST decreases with time near the coast, and

Figure 6. (top) Vector plot of buoy 41001, (middle) the
reconstructed winds, and (bottom) the original QuikSCAT
winds at the buoy position.

Figure 7. (top) Vector plot of buoy sgof1, (middle) the
reconstructed winds, and (bottom) the original QuikSCAT
winds at the buoy position.

Figure 8. Transect studied in an upwelling/downwelling
event in the West Florida Shelf (WFS). Contours and labels
show the bathymetry. The square indicates buoy 42036
(owned by NDBC), the triangle shows buoy 42013 (owned
by COMPS), and the dot at the right of the transect shows
the position of the Clearwater tide gauge.

Figure 9. Wind at buoy 42036. (top) Winds vector plot;
(middle) east-west component; and (bottom) north-south
component. Units are m/s.
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we notice a series of warm water/cold water pulses over the
entire shelf. However, the cloudiness in this data set makes
it difficult to study the duration and strength of these events.
The different SST reconstructions (in Figures 13, 14, and 15
for SST + chlorophyll + lagged SST, SST + chlorophyll,
and SST + lagged winds, respectively) are able to reproduce
these events clearly. The pulses become stronger on 4 January
2005, when the two long downwelling wind periods,
observed in Figure 9, start. The correlation between the
SST and the reconstructed north-south wind component is
very weak (�0.01) from 15 December 2004 to 15 January
2005. However, if we only consider the period from
30 December to 15 January, when the warm/cold pulses
are more evident in the SST, the correlation is 0.35, showing
that the SST upwelling/downwelling pulses are caused by
winds. This is further confirmed by the response of the sea
surface height (SSH) at 28�N. Figure 16 shows the Hybrid
Coordinate Ocean Model (HYCOM [Bleck, 2002]) SSH
over the WFS transect. An oscillatory signal is observed,
with high SSH corresponding to warm SST episodes,
typical of a downwelling case, and vice versa. The response
of the WFS under upwelling-favorable winds develops in a
few hours [Li and Weisberg, 1999; Weisberg et al., 2001a],
which explains the wave-like cold water pulses alternating

with the warm water, as wind changes from upwelling to
downwelling-favorable direction.
[28] The three SST reconstructions are able to reproduce

the series of upwelling and downwelling events, although
there are some differences with the initial cloudy SST, as
well as between the different reconstructions. For example,
on 11 January 2005 there is a cold signal in the cloudy SST
that is not observed in the reconstructions. DINEOF recon-
structs missing data using a truncated EOF series, which
results in the elimination of noise from the initial data set.
Some small-scale features can be also smoothed by this
procedure, and the cold water on 11 January 2005 is one
example. However, this cold temperature can be also an
artefact of the SST introduced by the vicinity of clouds, as
none of the three multivariate reconstructions support this
feature.
[29] A difference between the three SST reconstructions

can be observed on 26 December 2004. The reconstruction
of SST + chlorophyll, and SST + lagged winds show a cold
event around this date, not seen in the SST + chlorophyll +
lagged SST. The model SSH showed in Figure 16 presents
low values over the entire WFS around this date, up to
85�W. Atmospheric total net heat flux from the National
Centers for Environmental Prediction (NCEP) reanalysis
model (available at http://www.cdc.noaa.gov/cdc/reanalysis/

Figure 10. QuikSCAT reconstructed winds (east-west
component) at 28�N on the WFS. Units are m/s.

Figure 11. QuikSCAT reconstructed winds (north-south
component) at 28�N on the WFS. Units are m/s.

Figure 12. Cloudy SST at 28�N. Units are �C.

Figure 13. SST from the SST + chlorophyll + lagged SST
reconstruction at 28�N. Units are �C.
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reanalysis.shtml, data not shown) shows a cooling event
from 24 to 26 December 2004. This event is also supported
by observations: buoy 42013, situated south of the transect
(Figure 8), shows a temperature decrease of about 1.5�C on
this date (Figure 17). An upwelling-favorable wind event
can be observed at buoy 42036 (Figure 9), as well as in the
reconstructed QuikSCAT winds (Figures 10 and 11). Finally,
a tide gauge situated at Clearwater (Figure 8) also shows a
sharp decrease in the water level on this date (Figure 18),
typical of an upwelling event. The temperature decrease is
represented in the SST + chlorophyll, and SST + lagged
winds data sets, and the various data sources mentioned
support this event. However, the upwelling happens during
a gap on the initial data set, so we cannot be certain that this
event is real though all indirect indications suggest so. We
have observed that this kind of cold events happen in fall/
winter on the WFS. Figure 19 shows a sequence of cloudy
SST on November 2005. This time the clouds do not cover
the entire region, so we are able to see a rapid decrease in
temperature on 2 November 2005, a decrease that lasts only
one day. The HYCOM SSH, the NCEP atmospheric forc-
ings and the temperature at buoy 42013 all support this
event in the same way as for the one reconstructed by

DINEOF on December 2004. The absence of the
26 December 2004 event in the SST + chlorophyll + lagged
SST reconstruction can be explained by the high cloud
coverage observed over the whole WFS. The SST reinforced
with 1-day lagged SST does not add information because of
the cloudiness during those dates, resulting in a smoother
SST reconstruction. As seen in Table 1, the reconstruction of
SST + chlorophyll + lagged SST presents a lower standard
deviation than the other reconstructions. A low-variability
reconstruction can result in a better RMS error, but it is also
likely to miss localized and extreme events such as this
strong upwelling event.
[30] We observe (Figure 17) that the water column on the

WFS evolves from well-mixed during the first half of the
study period to a stratified situation after the cold event on
26 December 2004. Under stratified conditions, the re-
sponse to upwelling-favorable winds is found to exceed
the response to downwelling-favorable winds [Weisberg et
al., 2001b], a result that is also seen in this data set: whereas
the downwelling winds for events starting on 4 January
2005 and 10 January 2005 are longer and more persistent
than the intervening upwelling winds (Figure 9), the SST
warm pulses are similar in strength to the cold pulses

Figure 14. SST from the SST + chlorophyll reconstruc-
tion at 28�N. Units are �C.

Figure 15. SST from the SST + lagged winds reconstruc-
tion at 28�N. Units are �C.

Figure 16. SSH from Hybrid Coordinate Ocean Model
(HYCOM), at 28�N. Units are cm.

Figure 17. Temperature measured at buoy 42013.

C03008 ALVERA-AZCÁRATE ET AL.: MULTIVARIATE RECONSTRUCTION OF MISSING DATA

9 of 11

C03008



produced by much weaker winds (as seen, for example, in
Figure 14).

7. Conclusions

[31] We successfully applied a multivariate EOF-based
technique, DINEOF, to reconstruct the missing data of a
series of satellite products. To our knowledge, this is the
first time that a multivariate EOF-based technique is used to
reconstruct missing data, and we showed that the results
improve upon a univariate approach. Sea Surface Temper-
ature (SST), winds and chlorophyll were used in three
combinations: SST +1-day lagged winds, SST + chloro-
phyll, and SST +1-day lagged SST + chlorophyll. These
reconstructions were compared to in situ data over the Gulf
of Mexico (GoM) and the U.S. east coast. The SST +
chlorophyll + lagged SST reconstruction gave the best
results in terms of RMS, bias and correlation. All three
experiments improved the reconstruction of SST alone by
the same technique. The SST + chlorophyll + lagged SST
case, however, presents smoother results. The three recon-
struction experiments gave qualitatively similar results.
[32] We have observed that the length of the data set does

not influence the outcome of the SST + chlorophyll +
lagged SST, and SST + chlorophyll cases. We analyzed
3-month and a 6-month experiments, the latter one presented
here, and the results were comparable qualitatively and
quantitatively, which shows the robustness of the method.
In the case of the SST + lagged winds reconstruction,
however, the results improved with the 6-month experiment.
This finding indicates that the correlation between the SST
and winds, weaker than between SST and chlorophyll, is not
fully explained in short time periods, and thus DINEOF
needs more information to converge to the solution.
[33] When using lagged versions of the same variable, like

in the SST + chlorophyll + lagged SST, one should establish
which one of the two reconstructions of the lagged variable
gives better results, as there is more than one estimate. We
checked this for the SST + chlorophyll + lagged SSTcase, but
the skill measured was very similar for both SST versions.
[34] For the results obtained, we conclude that the com-

bination of SST with related variables gives better results

than when using the SST alone. The combination of SST +
chlorophyll + lagged SST misses some localized events due
to a lower variability of the reconstructed SST. The SST +
chlorophyll reconstruction presents a higher variability. The
choice of SST with winds is qualitatively very similar to the
other two experiments, but the reduction of error with
respect to the reconstruction of SST alone is not significant.
However, this combination gave good results near the coast,
where the wind plays a more important role in the SST
evolution.
[35] A series of upwelling/downwelling events were

detected in the West Florida Shelf (WFS). These events,
of high ecological importance for the WFS, are supported
by observations, and all multivariate SST reconstructions
correctly represent them. The reconstructed QuikSCAT
winds are also in accordance with observations.
[36] To conclude, the multivariate DINEOF reconstruc-

tion gives accurate results, and it allows an easy combina-
tion of different variables. Other multivariate techniques,
like multivariate optimal interpolation in its generally used
form, require a priori knowledge of the statistics of each
variable, as well as of the correlation between variables.
DINEOF is more objective because it calculates these
statistics internally and based on available data.
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Figure 19. Cloudy SST from 1 to 4 November 2005. A
rapid decrease in temperature is observed on 2 November.

C03008 ALVERA-AZCÁRATE ET AL.: MULTIVARIATE RECONSTRUCTION OF MISSING DATA

10 of 11

C03008



References
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