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Résumé : Cet article propose une stratégie de génération d’information dans le contexte de
l’apprentissage par renforcement en mode “batch”. Cette stratégie repose sur 'idée que les
expériences susceptibles de mener & une modification de la politique de décision courante sont
particulierement informatives. Etant donné a priori un algorithme d’inférence de politiques
de décision ainsi qu’un modeéle prédictif du systéme, une expérience est réalisée si, étant
donné le modele prédictif, cette expérience méne a I’apprentissage d’une politique de décision
différente. La stratégie est testée sur un probleme-jouet pour lequel des résultats prometteurs
sont obtenus.
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1 Introduction

De nombreux problémes de décision dans les domaines de I'ingénierie (Riedmiller (2005)), de
la finance (Ingersoll (1987)), de la médecine (Murphy (2003, 2005)) ou de l'intelligence artificielle
(Sutton & Barto (1998)) peuvent étre formalisés comme des problémes de contrdle optimal, dont
I’objectif est de déterminer une politique de décision menant a l'optimisation d’un critére numé-
rique. Souvent, ces problemes sont abordés avec peu de connaissances sur la dynamique du systéme
et la fonction de récompense qui les définissent.

Différentes approches ont déja été proposées pour calculer des solutions approchées a ces pro-
blemes dans le cas ou les informations disponibles sont données sous forme d’un ensemble de tran-
sitions du systeme. Chacune de ces transitions est constituée d’un état, d’une décision prise dans
cet état, de la valeur de la fonction de récompense et de la dynamique associées a ce couple état-
décision. En particulier, une branche issue de l'apprentissage par renforcement (RL, de 'anglais
Reinforcement Learning) - dont le but initial était la mise au point d’agents intelligents autonomes
- aborde spécifiquement ce probléme, que I'on désigne par BMRL par la suite (de Panglais Batch
Mode RL).

Etant donné un algorithme de type BMRL (c’est-a-dire capable d’apprendre une politique de
décision dans un contexte BMRL), on s’intéresse dans cet article au probléeme de la génération
d’ensembles de transitions & partir desquels l'algorithme BMRL puisse apprendre des politiques
de décision performantes. La stratégie proposée fait appel & un modéle prédictif (PM, de 'anglais
Predictive Model) permettant d’estimer, & partir des transitions déja disponibles, la dynamique du
systéme et la fonction de récompense en tout point de ’espace état-décision. Le choix d’échantillon-
ner une transition du systéme en un couple état-décision se fait si, considérant la valeur prédite
par le modele PM en ce couple, on observe une modification de la politique de décision calculée par
I’algorithme BMRL. En pratique, cette stratégie consiste donc a chercher un couple état-décision
pour lequel on prédit une modification de la politique de décision courante.

Cette approche est motivée par deux constatations : d’une part, si ’ajout d’une nouvelle transi-
tion dans ’ensemble des transitions disponibles provoque une modification du résultat calculé par
l’algorithme BMRL, alors cette transition est trés probablement informative ; d’autre part, la mise
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au point d’'un modele PM a partir des données disponibles peut se faire simplement pour un grand
nombre de problémes. Partant de ces deux constatations, la stratégie développée dans cet article (i)
explore de maniére itérative un ensemble de couples état-décision, (ii) calcule pour chacun de ces
couples la valeur prédite de la transition en utilisant le modele PM, et (iii) analyse l'influence de la
transition prédite ajoutée aux transitions déja disponibles sur la solution calculée par 'algorithme
BMRL. Le résultat de cette analyse est utilisé afin de (iv) sélectionner un couple état-décision pour
lequel une modification de la politique de décision calculée par 'algorithme BMRL est prédite.

Cette approche, ainsi que le contexte dans lequel elle s’inscrit, sont détaillés dans les sections 2,
3 et 4. Des résultats de simulations obtenus sur le probleme-jouet “car-on-the-hill” sont présentés
en section 5. La section 6 propose une discussion de travaux connexes puis la section 7 conclut et
suggere quelques perspectives d’amélioration.

2 Formalisation du probleme

On considére un systéme déterministe a temps discret dont la dynamique stationnaire est donnée
par I’équation

11 = f(zg,uy) t=0,1,...,7 —1,

ou, pour tout t € {0,...,T — 1}, 'état z; est un élément d’un espace d’état normé (X, ||.||x) et
uz est un élément d’un espace de décision fini U = {dl, - 7dm} avec m € Ng. T € Ny désigne
I’horizon d’optimisation supposé fini. Une récompense instantanée

re = p(xg,up) € R

est associée a une décision u; € U prise dans un état x; € X'. L’état initial du systeme zg € X
est supposé connu. Etant donnée une séquence de décisions u = (ug, ..., ur_1) € UT, on définit le
retour J"(x) de la séquence u a partir de zo :

T
vYue Ut J%(zo) = p(xt, ug)
t

|
—

Il
=]

avec Tyr1 = f(xg,up),Vt € {0,..., T — 1} . On note J*(xp) la valeur maximale de J"(xg) :

J*(z9) = max J"(xg) .
ueld”

Une séquence de décisions u* est optimale si
A (zo) = J*(wo)
On appelle “transition du systeme” un quadruplet
(x,u, p(z,u), f(z,u)) e X xUXR X X

qui rassemble les valeurs des fonctions f et p en un couple (x,u) de 'espace conjoint X x U.
Les algorithmes BMRL (Ormoneit & Sen (2002); Ernst et al. (2005); Riedmiller (2005)) ont été
introduits afin d’inférer des lois de contréle quasi-optimales a partir d’un ensemble de transitions

du systéme B
]:n - {( lvularl7yl)}l=1

our! = p(at, ul) et y' = f(2!,u!). Dans la suite de cet article, on désigne par BM RL un algorithme
générique de type BMRL et on note BMRL(F,,xo) la politique de décision calculée par cet
algorithme.

Cet article propose une stratégie d’échantillonnage dont I’objectif est d’acquérir un ensemble de
transitions F,, de taille maximale Nyax € N (c’est & dire n < Nyax), & partir duquel une politique
de décision de qualité 0% € UT puisse étre apprise par BMRL, c’est a dire telle que J U, (z0)
soit aussi proche que possible de J*(z).



3 Stratégie d’échantillonnage

Cette section propose une premiére implémentation de 'approche basée sur la modification de
la politique de décision courante présentée en section 1 afin de traiter le probléme formalisé en
section 2.

Etant donné un algorithme BM RL, un modele prédictif PM, et une suite d’entiers (L,),,, on
procede itérativement pour chaque n < Npax :

— A partir de 'ensemble F,, = {(:cl,ul,rl,yl)}?zl des transitions préalablement générées, on

calcule une politique de décision

iy = BMRL(Fy,,x0) ;

— On tire au hasard un couple (z,u) € X xU selon une distribution uniforme px «y/(+) sur 'espace
X xU,
— A partir de F,, et du modele PM, on calcule une “transition prédite” :

(x,u, Pz, (x,u),Jr, (x,u) = PM(F,, z,u)

et on construit 1’“ensemble prédit” :

A

-7:7L+1($7u) =FnU {(z,u,f]:n(x,u),g]]:n(x,u))} s

que l'on utilise pour calculer une “politique de décision prédite” :

A~

ﬁj,:.nﬂ(x)u) = BMRL(Fpy1(x,u),x0) ;

- Si ﬁ*fn+1 () # @, on consideére que f et p méritent d’étre échantillonnées en (x, u), ce que
on réalise; on obtient ("™ u"™ r+1 ynHl) avec 2"t =z, ™ = u, "t = p(z,u)
et y" Tt = f(z,u), et on ajoute cette nouvelle transition a I’ensemble courant :

Foy1 = Fp U {($"+1,u"+1,r"+1,y”+1)} ;
- Si ﬁ}nﬂ(x,u) = 1i%_, on tire un autre couple (2, u’) selon pxxy(-) et on itere le processus;

— Si L, couples ont été testés sans mener a une modification de la politique de décision cou-
rante, on tire un couple (x"“,u”“) au hasard selon pyxy(-), et on ajoute la transition
(1.n+1’un+l’p(xn+17un+l)7f(l.n+l’un+1)) Py J—_'n

Influence de l’algorithme BMRL et du modéle PM. Pour obtenir de bons résultats, il
est nécessaire que les capacités d’inférence de BM RL soient les meilleures possibles. En général,
les algorithmes BMRL utilisent des approximateurs de fonctions (Busoniu et al. (2010)) dont le
but est de décrire soit le systéme lui-méme (f et p), soit des fonctions de valeur état-décision,
soit des politiques de décision. Etant donné qu’ici, pour chaque itération de ’algorithme, la seule
connaissance disponible sur le probléme est un ensemble de transitions du systeme, on suggere
d’utiliser un algorithme BMRL faisant appel a des approximateurs non-paramétriques, comme des
méthodes du type “plus proche(s) voisin(s)” ou a base d’arbres.

Le meilleur modele prédictif PM envisageable est un algorithme qui, pour chaque couple état-
décision (z,u), renvoie une prédiction égale a (x,u, p(z,u), f(z,u)). Prédire avec précision p(z,u)
et f(x,u) peut s’avérer difficile. On peut dés lors envisager de travailler avec des ensembles de
prédictions, ce qui d'un co6té augmente la probabilité de détecter un couple susceptible de mener
a une modification de la politique de décision courante, mais de l'autre, augmente également la
probabilité que le couple choisi ne méne & aucune modification réelle. Si des connaissances a priori
sur les fonctions f et p sont disponibles, on peut construire des ensembles de transitions “compati-
bles” avec ces connaissances ainsi qu’avec les transitions précédemment acquises (voir par exemple
(Fonteneau et al. (2011)) ou des connaissances de continuité Lipschitzienne sont exploitées). Ces
connaissances peuvent ainsi étre utilisées pour augmenter la précision de PM.

Influence de la suite (L,),. Chaque terme de la suite (L,,),, définit le nombre maximal d’essais
autorisés pour identifier une transition pour laquelle on prédit une modification de la politique de
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décision lorsque n transitions ont déja été collectées. La valeur du terme L,, devrait étre choisie
de maniére a assurer que, a la n—iéme itération, s’il existe un couple état-décision pour lequel la
transition correspondante méne a une modification de la politique courante, alors ce couple devrait
étre identifié avec une grande probabilité. Il peut cependant arriver que, pour certaines itérations
n, il n’existe pas de transition (prédite) menant & une modification de la politique de décision
(prédite). Dans un tel cas, L, essais seront tout de méme réalisés, ce qui peut étre génant en
termes de temps de calcul si L,, est grand. Le choix des valeurs des termes de la suite (Ly,),, résulte
donc d’'un compromis entre la volonté d’identifier avec grande probabilité les transitions menant a
une modification de la politique de décision, et le besoin de limiter les temps de calcul lorsqu’il n’y
a rien a identifier.

4 Implementation avec une méthode du plus proche voisin

Dans cette section, on introduit les algorithmes BM RL et PM utilisés pour illustrer notre stra-
tégie d’échantillonnage dans les expériences détaillées en section 5. L’algorithme BM RL fonctionne
en approximant les fonctions f et p a partir des transitions disponibles puis en résolvant de ma-
niére exacte le probleme de contrdle optimal défini par ces fonctions approchées. Cet algorithme
est détaillé en section 4.1. En section 4.2, on détaille 'algorithme PM, qui fonde ses prédictions
sur les approximations de f et p utilisées par BM RL.

4.1 Choix de I’algorithme BMRL

RL basé sur ’apprentissage d’un modéele. Le RL basé sur 'apprentissage d’un modeéle consiste
a résoudre de maniére approchée un probléme de controle optimal en approximant les fonctions
inconnues f et p et en résolvant le probleme de contrdle optimal “approché” défini par les approxi-
mations de f et p. Les valeurs y' (resp. r!) de la fonction f (resp. p) en (z!,u'),l = 1...n sont
utilisées pour apprendre une fonction fz, (resp. pr,) définie sur 'espace X x U. Le probléeme de
controle optimal approché défini par les fonctions f].-n et pr, est résolu et sa solution est utilisée
comme solution approchée du probléme de controle optimal defini par les “vraies” fonctions f et
p-
Etant donnée une séquence de décisions u € U7 et un algorithme de type BMRL par apprentis-
sage de modele, on note jJP_-n (x0) le retour approché de la séquence de décisions u, c’est & dire le

retour obtenu en considérant les approximations fr, et gz, :

T-1
VueUT, TR (z0) =Y pr, (4, ur)
t

I
<)

avec .
Ti41 = f]:n (it,ut), vVt € {0, B 1}
et
"EO =9 -
On note j}n (z0) le retour approché maximal au départ de ’état initial xyp € X et selon les

approximations fr, et pr, :

j}" (z0) max j;n (z0) -

- ueld

En utilisant ces notations, les algorithmes BMRL par apprentissage de modele calculent une sé-
quence de décisions % € UT telle que j;: » (q) soit le plus proche possible de (idéalement, égal a)
jj{- (z9). Ces algorithmes supposent implicitement qu’une politique de décision destinée au modele
appris mene aussi a un retour élevé pour le vrai modele.

Partition de Voronoi. On spécifie dans cette section ’algorithme BMRL par apprentissage de
modele utilisé par la suite dans les simulations. Cet algorithme approxime f et p en utilisant des
fonctions constantes par morceaux sur une partition de type Voronoi (Aurenhammer (1991)) de



Pespace X x U (ce qui correspond & une approximation du plus proche voisin). L’algorithme est
noté VRL (pour Voronoi RL) dans la suite. Etant donné un état initial xy € X, 'algorithme VRL
retourne une séquence de décisions en boucle ouverte correspondant a un “déplacement optimal”
parmi les cellules de Voronoi.

Tout d’abord, on fait 'hypothése que les couples de Pensemble {(z!, “l)}7:1 donnés par F,, sont
distincts deux a deux :

VLU e {1,...,n}, (ahul) = (@ d) = 1=1.

On fait également I’hypothese que chaque décision de I'espace U a été prise au moins une fois lors
de la génération des transitions inclues dans F, :

Vueld,Ae{l,....n}ul=u.

Le modele appris se base sur n cellules de Voronoi {Vl};;l définissant une partition de taille n de
'espace X x U. La cellule V! associée au couple (z!,u') est définie comme I’ensemble des couples
(x,u) € X x U tels que

(i) u=u', (1)

(#4) lGargmin{Hx—ml/H;{} ) (2)
1l =u
(#74) l:rr};n{l’ 6argmin{|m—xl/;(}}. (3)
1l =u

{Vl }7:1 forme bien une partition de X X U puisque 'on peut aisément vérifier que chaque couple
(r,u) € X x U appartient a une et a une seule cellule de Voronoi. La fonction f (resp. p) est
approximée par une fonction constante par morceaux fz, (resp. pr,) de la maniere suivante :

zu) = o,

T,u) = .

Vie{l,...,n},V(z,u) eV, fr (
7. (
T-1

A partir de f]—'n et pr,, on définit une suite finie de fonctions de valeur approchées (Q*Tft) —0

comme suit : V¢ € {0,..., T — 1} ,V(z,u) € X xU ,

Qr—(w,u) = pr, (w,u) + arg max Qp—s1 (fr.(@,u),0)
u’ €
avec
Qi(z,u) = pr, (x,u), Y(z,u) e X xU.

A partir de la suite de fonctions (Q*T—t)t:o ,

on calcule une politique de décision en boucle ouverte

Ur, = (UF, 05 Ur, 7—1) €U

solution du probléme de contréle optimal approché, c’est a dire telle que

T (x0) = I3, (z0)
de la maniére suivante :

@0 € argmax Qp(a) ) ,
" u’' €U

et,Vt € {0,...,T -2},

~ A 3 ~% o~ /
U, 111 € argg;ax Q;“—(H-l) (ffn (xf’“;fmt)v“)
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Entrées : un état initial zg € X', un ensemble de transitions F,, = {(ml

oy b
Sorties : une séquence de décisions @ et j} (o) ;
Initialisation :
Créer une matrice n x m V telle que V (i, j) contient l'indice de la cellule de Voronoi (CV) ou
(f;n (z',u’),d’) se trouve;
for i=1ton do
Qi 13
end for

Algorithme :
fort=T-2to0do
for i=1ton do

I+ argmax {Qr_4_1v(i)};

re{1,...m}
Qr—ti < 1" +Qr—t—1,v(,0);
end for
end for
| < argmax Qp,; ou i’ désigne I'indice de la CV ou (xo, dl/) se trouve ;
Ue{l,...,m}

I + indice de la CV ou (g, d") se trouve;
JF, (o) QT,Z; ;

115

Wr o4 ulo ;

fort=0toT —2do

{41 < argmax {QT—t—l,v(i,l')};
l'e{1,....m}

~ I .

Uy yyq d'e+1 g

iV (i, 17 1);
end for

return Gy = (4% o, Ux, 7_1) » J5, (T0).

FIGURE 1 — L’algorithme VRL (de Panglais Voronoi Reinforcement Learning). Qr—_¢; est la valeur
prise par la fonction @75._, dans la cellule de Vornoi VL.

et
Fiy = fr (3% ), Ve {0,..., T —1}.

Toutes les fonctions de la suite (Q*Tft)tT:_Ol sont constantes dans chaque cellule, ce qui permet
d’extraire facilement la politique de décision - en utilisant un algorithme de type Viterbi dont la
complexité est linéaire en fonction de n, T et la cardinalité m de I'espace U. Une version tabulaire
de 'algorithme VRL est donnée en figure 1. D’autre part, 'algorithme VRL possede des propriétés
de consistance lorsque les fonctions f et p sont Lipschitziennes et que la dispersion de ’ensemble
de transitions F,, converge vers 0 (Fonteneau & Ernst (2010)).

4.2 Choix de Palgorithme PM

L’algorithme PM utilisé dans les simulations fait appel aux fonctions f]—'” et pr, calculées par
lalgorithme VRL. Etant donné un ensemble de transitions F,, et un couple (xz,u) € X x U,
l’algorithme PM renvoie

(x,u, ffn(x»u)vg}'n (mvu)) = PM(]:n,{E,U)

tel que
fr.(z,u) = pF, (z,u)
et

UF, (v,u) = fr,(z,u) .



5 Résultats expérimentaux
Cette section illustre la stratégie d’échantillonnage décrite ci-dessus sur le probléme-jouet “car-

on-the-hill” (Ernst (2005)), un probléme classique souvent utilisé pour tester les algorithmes d’ap-
prentissage par renforcement.

mg

Position initiale

FI1GURE 2 — Illustration du probleme-jouet “car-on-the-hill”.

5.1 Présentation du probléme jouet “car-on-the-hill”

Un point de masse unitaire - représentant un véhicule - doit étre conduit au sommet d’une colline
située a droite sur la figure 2 par application d’une force horizontale. Pour certains états initiaux
du systéme, la puissance maximale du véhicule ne permet pas d’atteindre le sommet de la colline.
Le véhicule doit donc grimper sur le flanc d’une autre colline située a gauche, puis la redescendre
afin de prendre de la vitesse et atteindre le sommet de la colline de droite.

La dynamique du véhicule est donnée par I’équation différentielle :

1 )2 ( u o dH(x)  ,dH() d?H(@)

=" —
1+ (dH(z)

Me g dz dz dz?
dz

ol z € [—1,1] est la position horizontale du vehicule (donnée en m), 2 € [—3, 3] est la vitesse du
véhicule (donnée en m/s), u € {—4,4} est la force horizontale (donnée en N), g = 9.81m/s? est la
constante de gravité et H est le profil du terrain :

224z if 2<0,

ir if z>0.

La masse du véhicule vaut m. = 1kg. La durée d’un pas de temps est Ty = 0.1s et la dynamique
a temps discret du véhicule f est obtenue par intégration de la dynamique a temps continu entre
chaque pas de temps. L’espace de décision U contient deux éléments : —4 et 4. Lorsque la position
z ou la vitesse Z dépasse les bornes, le véhicule atteint un état absorbant dans lequel il reste
indépendamment de la décision prise. Si z;41 < —1 ou si |2441| > 3, alors le véhicule atteint un
état absorbant “perdant” s_; et regoit une récompense de —1 a chaque pas de temps jusqu’a
t=T—1.85i 211 > 1et |241| < 3, alors le véhicule atteint un état absorbant “gagnant” sq, et
recoit une récompense de +1 a chaque pas de temps jusqu'a t = T — 1. Les états absorbants s_;
et s11 sont supposés connus. L’espace d’état est donc égal a

X=[-1,1] x [-3,3] U {s1,5_1} .
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L’objectif est de déterminer une séquence de décisions maximisant la somme des récompenses
obtenues sur un horizon 7' = 20 lorsque le véhicule démarre au creux de la vallée en 2y = [—0.5, 0].
Une telle séquence permettra aussi de mener le véhicule au sommet de la colline en une durée
minimale.

L’algorithme VRL détaillé en section 4.1 ne donne pas d’information sur la maniére de gérer les
états absorbants. Cela peut étre fait en ajoutant a ’ensemble de transitions m X ngps “transitions
artificielles”; ou ngps désigne le nombre d’états absorbants du probléeme. Dans le cadre du probleme
“car-on-the-hill”, cela se traduit par ’ajout de 4 transitions artificielles :

{(slu 47 ]-7 Sl)a (317 _47 ]-7 sl)a (8717 47 _17 871)7 (5717 _47 _17 871)}~
La définition des cellules de Voronoi reste identique & celle donnée par les équations (1), (2) et

(3) lorsque x! n’est pas un état absorbant. Dans tous les autres cas, la norme ||.||x peut étre
(abusivement) étendue aux états absorbants de la maniére suivante :

. 0 six=al,
|z —2|lx = . .
+oo six#ax.

5.2 Protocole expérimental

62%

28%

2%
8%

09%2% o2 % 0%. 0%

— —
-6 -5 -4 -3 -2 -1 0 1 2

Retours des politiques de décision

FIGURE 3 — Distribution des retours des politiques de décision calculées a partir de 7§ | k=

max

1...q (en bleu, a gauche) et gfﬁ,max , k=1...q (en rouge, a droite).

Les performances de notre stratégie d’échantillonnage sont comparées avec les performances
d’une stratégie d’échantillonnage uniforme. Pour ce faire, on teste ¢ = 50 fois notre stratégie
d’échantillonnage, ot chaque test k = 1...q est initialisé avec un ensemble de transitions F¥
contenant m = 2 transitions (une transition pour chaque décision) :

Vk € {la s 'aQ}7‘Fvl:z = {(550, —4,0(1?07 _4)5 f(an _4)) )
(z0, +4, p(z0, +4), f (20, +4))} -

Notre stratégie d’échantillonnage est mise en oeuvre sur chacun des ensembles de transitions
FE . k=1...qjusqua ce que chacun contienne N, = 1000 transitions. On obtient ainsi g
suites finies d’ensembles de transitions, chaque suite contenant (Nyax — m + 1) termes :

1 7l 1
Fos Fontr s FNpr oo s Fots Foo 1o Fn

max max



On génere également ¢ suites finies d’ensembles de transitions contenant chacune (Npax — m + 1)
termes

1 1 1 q q
G G, GL G GY

max max

ou, pour chaque k£ = 1...q, et pour chaque n = m... Nynax — 1, chaque ensemble g,’fﬂ est obtenu
en ajoutant & G¥ une transition (z,u, p(z,u), f(x,u)) telle que (z,u) est tiré selon pxxy (). Les
termes de la suite (Ly,),, utilisée pour ces simulations sont définis de la maniére suivante :

Vn e {m,..., Nmax}, Ln = mn .
La distribution de probabilités pxxy(-) est telle que la probabilité de tirer un couple état-décision
(z,u) avec x = s1 ou x = s_1 est nulle, et uniforme ailleurs.

5.3 Analyse des résultats

b owd N _
€y ;‘"’ k¢! A,

15k % 4%3 . ’9' ‘. VM ]
KX W _

_25 | 1 | 1 | 1 1 1 1
0 10 200 00 400 200 @00 ¥OO oo 300 1000

n

FIGURE 4 — Evolution des performances moyennes de notre stratégie d’échantillonnage M (n) (croix
bleues) comparée & ’évolution des performances moyennes d’un échantillonnage uniforme My, f(n)
(points rouges).

Performances des politiques de décision calculées a partir des ensembles de Ny .y
transitions. On calcule les retours des 2q politiques de décision calculées par 1'algorithme VRL &
partir des ensembles finaux contenant Ny, transitions F ]’f,mx et gf,mx ,k=1...q. Les résultats,
exprimés en termes de distribution des retours des politiques de décision apprises, sont donnés en
figure 3.

On observe que 'algorithme VRL parvient a calculer, pour 28% des ensembles de transitions ob-
tenus a partir de notre stratégie d’échantillonnage, une politique de décision pour laquelle le retour
vaut 2, alors qu’aucune politique de décision menant & un retour strictement positif n’est calculée
a partir des bases de données générées par tirage uniforme. A titre informatif, il est nécessaire de
générer des ensembles de 10000 transitions si I’on souhaite obtenir, avec un tirage uniforme, des
performances équivalentes.

Performances moyennes et distribution des retours des politiques de décision apprises.
Pour une cardinalité donnée n (m < n < Npax), on calcule la performance moyenne M(n) des ¢
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FIGURE 5 — Distribution des retours des politiques de décision . ,k=1...q,n = m... Npax.
Pour chaque valeur de n, la surface d’un disque correspondant a un retour r = —10...2 est
proportionnelle au nombre de politiques de I’ensemble {ﬁ}k}zzl pour lesquelles le retour vaut r.
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FIGURE 6 — Distribution des retours des politiques de décision U k=1 ...q,n = m... Npax.
Pour chaque valeur de n, la surface d’un disque correspondant a un retour r = —10...2 est
proportionnelle au nombre de politiques de ’ensemble {ﬁgk}zzl pour lesquelles le retour vaut r.

séquences de décisions @i’ ,k=1...q calculées par I'algorithme VRL a partir des ensembles de

transitions F¥ k=1...q:

On calcule également la performance moyenne M ,;¢(n) des g séquences de décisions ﬁzh k=

1...q calculées par I'algorithme VRL & partir des ensembles G¥ |k = 1...q obtenus par échan-



tillonnage uniforme :

Les valeurs de M(n) et Myni¢(n) pour n = m... Npax sont comparées en figure 4. On donne

*

également en figure 5 (resp. 6) la distribution des retours des politiques U bk =1...q,n =

m. .. Npax (resp. ﬁzg Jk=1...¢n=m... Npax)-

On observe que, a partir de notre stratégie d’échantillonnage, des politiques menant & un retour
de 2 sont apprises a partir d’ensembles contenant moins de 200 transitions. On remarque égale-
ment qu’aucune politique menant & un retour de 2 n’a pu étre apprise a partir des ensembles de

transitions tirées uniformément G¥ [k =1...¢,n =m... Nyax.
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FIGURE 7 — Représentation de I’ensemble de transitions }"}me (obtenu avec notre stratégie d’échan-
tillonnage).

Représentations de ]—'}me et g}vm. On représente graphiquement les transitions contenues

dans Densemble F}  (resp. G ) en figure 7 (resp. 8). Chaque transition (z!,u’, 7! y") est

représentée par un symbole situé en z! = [z, 2]. Un signe ‘+’ indique que u! = +4, tandis qu’un
signe ‘o’ indique que u! = —4. Le symbole est bleu si ! = 0. Des symboles plus grands et coloriés
en noir (vert) sont utilisés si v’ = —1 (r! = 1). La courbe rouge représente la trajectoire du véhicule
conduit selon la politique de décision ﬁ;}h (resp. ﬁgll\] ). On peut observer & la figure 7 que

max

m
notre stratégie tend a échantillonner des transitions situées au voisinage de trajectoires ayant de
bonnes performances.
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FIGURE 8 — Représentation de ’ensemble de transitions Q}me (obtenu a partir de tirages uni-
formes).

6 Travaux connexes

Echantillonner de maniére adéquate la dynamique et la fonction de récompense d’un systéme
inconnu est un probléme qui a déja été abordé par de nombreux auteurs. L’approche développée
dans (Ephsteyn et al. (2008)) est probablement celle qui se rapproche le plus de notre stratégie
d’échantillonnage. Dans (Ephsteyn et al. (2008)), les auteurs proposent une stratégie itérative
favorisant les zones de I'espace supposées influencer la politique de décision. Ces travaux sont
menés dans un contexte stochastique, stationnaire et pour un espace d’état fini, alors que nous
considérons ici des problemes déterministes dans des espaces d’état continus.

Dans (Fonteneau et al. (2010)), une autre stratégie d’échantillonnage est proposée. Son principe
est de calculer, pour un ensemble de politiques de décision, des bornes sur les retours des politiques
afin de déterminer des zones d’échantillonnage supposées améliorer la précision de ces bornes. Cette
approche est fondée sur des hypotheses de continuité Lipschitzienne de la dynamique et de la
fonction de récompense, et sa mise en oeuvre implique la résolution d’un probleme d’optimisation
complexe.

La plupart des travaux issus du RL et abordant le probléeme de la génération d’échantillons
informatifs ont préféré des solutions visant a controler un systeme de maniere a générer des infor-
mations pouvant étre utilisées pour augmenter les performances des politiques de décision, tout
en gardant potentiellement un comportement générateur de bonnes performances. Une approche
classique pour aborder ce dilemme entre exploration et exploitation (Auer (2003); Cohen et al.
(2007)) est d’adopter une politique de type e—greedy qui prend linitiative, avec une probabilité
donnée, de prendre une décision différente de celle suggérée par la politique supposée optimale
(Thrun (1992); Kaelbling (1993); Sutton & Barto (1998)). Ce probleme a été particuliérement bien
étudié dans le cas de problémes ayant un état unique (Bubeck et al. (2009)).

Dans le domaine de la discrétisation adaptative pour la programmation dynamique, on peut



également trouver des travaux qui proposent des stratégies se rapprochant de notre approche.
Dans ces travaux, ’espace état-décision est itérativement discrétisé de sorte a mener rapidement
& une politique de décision optimale (voir par exemple Munos & Moore (2002)). Cependant, la
complexité - en termes de temps de calcul - de notre stratégie ne lui permet pas d’étre une stratégie
d’échantillonnage adaptative performante.

Enfin, on peut également mentionner le fait qu’identifier un sous-ensemble de petite taille de
transitions a partir duquel on puisse apprendre une bonne politique de décision est un probleme
qui a déja été traité dans des contextes différents du notre. Par exemple, (Ernst (2005)) propose
une approche pour extraire un sous-ensemble particulierement informatif de transitions & partir
de Vestimation d’erreurs d’approximation dans des équations de Bellman. Dans (Rachelson et al.
(2011)), ot aucune contrainte sur le nombre total de transitions générées n’est fixée, les auteurs se
concentrent sur 'identification d’un petit sous-ensemble de transitions et parviennent & apprendre
via un algorithme BMRL une politique de décision optimale basée sur moins de 20 transitions,
mais au prix de centaines de milliers de transitions générées.

7 Conclusions

Cet article présente une stratégie d’échantillonnage itérative dont la finalité est de générer des
ensembles de transitions informatifs dans le cas de la résolution de problemes de controle optimaux
déterministes a espace d’état continu. Fondée sur un mécanisme de prédiction, cette stratégie
permet d’identifier des transitions susceptibles de mener & une modification de la politique de
décision courante. Une implémentation de cette stratégie est réalisée en utilisant une méthode du
plus proche voisin.

Des expériences réalisées sur le probleme-jouet “car-on-the-hill” ont donné des résultats pro-
metteurs. En particulier, la stratégie proposée se montre nettement plus efficace qu’une stratégie
d’échantillonnage uniforme. Ces premiers résultats encouragent a étendre I’analyse de cette ap-
proche. En particulier, il serait intéressant d’étudier sous quelles conditions une modification de
la politique causée par ’ajout d’une nouvelle transition correspond également a une amélioration
réelle de la politique de décision. Il serait tout aussi intéressant de caractériser I’erreur de prédiction
et son influence sur les détections de transitions qui n’apportent finalement pas de modifications
de la politique courante. L’objectif de ces travaux serait d’identifier sous quelles hypotheses les
ensembles de transitions ainsi générés pourraient converger vers des ensembles de transitions a
partir desquels des politiques de décision (quasi-)optimales pourraient étre apprises.

Enfin, la stratégie d’échantillonnage introduite dans cet article a été spécifiée et expérimentée
dans un contexte déterministe, avec un espace de décision discret et fini. Il serait intéressant
d’étudier comment mettre en oeuvre cette stratégie dans des contextes différents.
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